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Abstract: A building envelope is a multi-layer porous structure. It transfers heat and moisture to
balance the indoor and outdoor temperature difference and water vapor partial pressure difference.
This is a typical coupled heat and moisture migration process. When the space is filled with moist air,
water or ice, it will directly affect the thermal properties of the material. With respect to moisture
coming through the wall into the indoor building, it will also affect the indoor environment and the
energy consumption due to the formation of latent heat. However, the moisture transfer process in
the building envelopes is not taken into account in the current conventional thermal calculation and
energy consumption analysis. This paper analyzes the indoor thermal and humidity environment
and building energy consumption of typical cities in Harbin, Shenyang, Beijing, Shanghai, and
Guangzhou. The results show that it is obvious that the coupled heat and moisture transfer in the
building envelopes has an impact on the annual cooling and heating energy consumption, the total
energy consumption, and the indoor thermal and humidity environment. The geographical location
of buildings ranging from north to south influences the effect of coupled heat and moisture transfer
on the annual energy consumption of the building, moving from positive to negative. It is suggested
that the additional coefficient of the coupled thermal and moisture method can effectively correct
the existing energy consumption calculation results, which do not take the consumption from the
coupled heat and moisture in the building envelopes into account.

Keywords: coupled heat and moisture transfer; HAM model; energy consumption analysis; heat and
humidity environment analysis

1. Background

Most of the materials of a building’s wall are porous media [1–3]. When exposed to an
outdoor dynamic thermal and humidity environment with large temperature variations, wind, and
precipitation, the building wall material will undergo a heat and moisture exchange with the indoor
environment due to the difference of temperature and water vapor pressure. The traditional analysis
of a building’s energy consumption and indoor thermal and humidity environment pays a great
deal of attention to the heat transfer through the wall [4–6], but the effects of coupled heat and
moisture transfer on the indoor environment and energy consumption of related buildings are often
neglected [7]. In the calculation of the energy consumption and environment situation, we always
consider several parts with a moisture balance on indoor air. These include moisture entering the
zone through natural ventilation, moisture entering the zone through infiltration, moisture sources
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and moisture removed with Heating, Ventilation and Air Conditioning (HVAC) systems. However,
moisture which is adsorbed or desorbed by materials and moisture transfer between the zone and
outdoor environment is always ignored. Moreover, the traditional building thermal analysis only
calculates the heat transfer process under a temperature difference and simplifies the heat transfer
as the quantity increases linearly with the temperature difference, which has nothing to do with the
average temperature. The result of this calculation is incomplete. With the rapid development of
building heat and mass theory, researchers have been prompted to increase their concern about the
impact of moisture transfer and coupled heat and mass in building envelopes due to the contradiction
between China’s energy saving and emission reduction policies and the people’s pursuit of high-quality
and high-comfort buildings [8].

The heat and moisture transfers were conducted under the difference of temperature and water
vapor pressure between indoor and outdoor sides of buildings [4,5,9], and the process by which this
was accomplished was coupling. The climatic characteristics of different regions in China vary and
are affected by the geographical latitude, atmospheric circulation, and the underlying surface. Hence,
China has become the country with the largest climate difference globally [10,11]. The annual outdoor
temperature changes greatly and the indoor temperature is relatively stable under the control of air
conditioning systems. Meanwhile, the average temperature of the building envelopes is becoming
larger, and the heat transfer coefficient is affected by the average temperature significantly. Thereby,
it affects the indoor temperature change and the radiation temperature of the inner wall surface to the
human body [12]. In addition, the moisture absorption and release process by the building envelope
is also accompanied by latent heat exchange [13]. The heat and mass transfer through the building
envelope directly affects the main parameters of indoor thermal comfort, such as air temperature, air
relative humidity, radiant temperature, etc. Thereby, it affects the thermal sensation for the occupants
of the area of energy balance, such as their skin moisture and tactile sensation [8,14,15].

Many studies have shown that a building’s energy consumption and indoor comfort are
inseparable; the goal is to minimize the energy consumption conditions to ensure acceptable indoor
thermal comfort [13,16–18]. Especially in the severely cold and cold regions in northern China, the
heat transfer and energy consumption in building envelopes account for a large proportion of a
building’s energy consumption, which is an area of great energy-saving potential [14]. To reduce
building energy consumption only from the optimization of the system form, the improvement of the
system efficiency [18], and the use of new materials but ignore the heat and moisture coupling effect
on building energy consumption is not conducive to the implementation of fundamental building
energy efficiency.

From the above analysis, it can be seen that the heat and moisture transfer process have an
extremely important influence on the thermal performance of building envelopes, building energy
consumption and the indoor environment. It is extremely important to simulate and assess buildings’
energy consumption and indoor thermal environment.

2. Methods

This paper takes an independent small office building as a representative of public buildings,
using expanded polystyrene (EPS) and wall rock wool as a typical external thermal insulation structure
for insulation materials, and using the thermal energy simulation software WUFI-Plus (3.0, Fraunhofer,
Munich, Germany) to calculate the indoor environmental parameters of office buildings in different
climatic zones by the conduction transfer functions (CTF) algorithm, which only considers envelope
heat transfer under a fixed heat transfer coefficient, and the combined heat and moisture (HAM)
algorithm, which considers the coupled heat and moisture transfer of envelopes under a dynamic
heat transfer coefficient. The material performance parameters introduce the dynamic thermal and
physical parameters obtained from the experimental results and the commonly used rough constants.
The influences of the heat and moisture coupling of building envelopes on the indoor thermal
environment and energy consumption of buildings were analyzed. To study the annual energy
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consumption and indoor comfort of buildings from the perspective of the overall building structure,
we take the moisture transfer of the envelope and dynamic heat transfer into consideration. The paper
determines the influence of moisture transfer, moisture accumulation, and the dynamic thermal
process on the calculation of building energy consumption and the evaluation of the indoor thermal
environment. Additionally, the effect of the hygrothermal properties of the materials, air conditioning
mode, and ventilation form on the indoor humidity environment was determined. We strived to use
the envelope heat and moisture transfer more rationally in the building in order to achieve the purpose
of reducing building energy consumption and improving indoor comfort.

2.1. CTF Algorithm and HAM Algorithm

In an energy consumption simulation calculation, we usually only consider the energy loss caused
by heat transfer in building envelopes, for the simplicity of the calculation. Conduction transfer
functions (CTFs) are is often used as a thermal balance algorithm. The entire surface heat flow is
calculated by a conduction function. The heat gain of a space consists of heat sources in the room, air
exchange in the two rooms, heat exchange from the room to the outdoor air and the heat convection of
the room surface. The complicated calculation should be performed while considering the heat balance
between the inside surface and the outside surface of the walls, the roof and the ground. In addition,
there is a problem of thermal convection between the surfaces of different materials. This model solves
the heat transfer problem of multilayer structures. It is a simplified method of calculating the heat
transfer of building walls, ignoring the wall moisture, and it only considers the temperature difference
as the driving force of the heat transfer. The problem of moisture transfer and moisture storage in the
building envelope must be taken into account when analyzing the effect of heat and moisture transfer
on the building indoor environment and the energy consumption of the building. HAM is a heat and
moisture transfer finite element method. The coupled heat and moisture transfer model, by using
this algorithm, can simulate the thermal and moisture migration and storage in the wall, and can also
simulate the effects of moisture buffering. This calculation model takes into account the influence of
moisture transfer on the hygrothermal properties of the materials. It updates the parameters of the
variables, performs multiple iterations and takes into account the phase change and latent heat transfer
in the calculation [5].

A closely coupled relationship between the thermal equilibrium equation and the moisture
equilibrium equation can be established. In order to solve the coupled problem of the thermal transfer
of the envelope, especially the coupled steam diffusion, liquid flux and heat transfer, the control
equation is calculated as follows [7,9,19]:

Energy conservation law:(
ρc +

∂Hw

∂θ

)
· ∂θ

∂t
= ∇ · (λ∇θ) + hv∇ ·

(
δp∇(ϕpsat)

)
(1)

Mass conservation law:

dw
dϕ
· ∂ϕ

∂t
= ∇ ·

(
Dw

dw
dϕ
∇Φ + δp∇(Φpsat)

)
(2)

where ϕ—relative humidity; t—time, s; θ—temperature, K; c—specific heat, J/kg·K; w—humidity ratio,
kg/m3; psat—saturated vapor pressure, Pa; λ—thermal conductivity, W/(m·K); H—total enthalpy,
J/m3; Dw—liquid diffusion coefficient, m2/s; δp—vapor permeability coefficient; kg/(m·s·Pa); and
hv—latent heat of phase change, J/kg.

2.2. Hygrothermal Properties of Building Materials

A significant number of hygrothermal properties need to be considered when we consider the
coupled moisture and heat transfer in the energy consumption simulation of buildings and make



Energies 2019, 12, 141 4 of 17

predictions regarding the indoor thermal and humidity environment. In architectural design, energy
consumption analysis, and practical engineering, people often set the properties of the materials
as constant values to be considered in the calculation. However, in the actual situation, there is a
significant change in some parameters, which are affected by the average temperature and moisture
content of the material. Then, there is a certain deviation between the simplified method commonly
used in the thermal calculation and the actual situation. In particular, the construction is perennially
exposed to seasonal changes. The temperature and moisture content of materials are in dynamic
fluctuation [20,21]. In this paper, five kinds of building materials (EPS, mineral wool, concrete, adhesive
mortar, and rendering plaster) which are used commonly in the domestic market were subjected to
a series of hygrothermal property tests at the material level. A mathematical model of thermal
conductivity with temperature and moisture content was constructed. Some physical properties
needed to be converted in order to meet software setting requirements; then, the properties were put
into the WUFI-Plus building materials database as inputs to participate in the calculation.

2.2.1. Basic Properties of Materials

In the conventional thermal calculation and energy consumption calculation, only the basic
properties of materials can be involved in the calculation. Table 1 shows the basic data of the physical
properties of the materials required in the CTF algorithm. The data are the median of the calculated
values of the common physical condition parameters. All basic physical properties (Table 1) are
obtained through experimental tests.

Table 1. Basic physical properties of materials.

Materials
Density Open

Porosity
Specific

Heat
Thermal

Conductivity
Water Vapor Diffusion

Resistance

kg/m3 - J/(kg·K) W/(m·K) -

EPS 19 0.95 1500 0.0382 51.95
Mineral wool 150 0.95 1030 0.0422 2.90

Concrete 2211 0.17 873 0.452 51.87
Adhesive

mortar 1434 0.36 820 0.259 12.98

Rendering
plaster 1409 0.43 856 0.434 16.75

The thermal conductivities of materials are tested by the heat flow meter method and the
guarded-hot-plate method. The specific heat capacity of materials is obtained by a mixed method.
Cup tests obtain the vapor permeability related with moisture content. Open porosity, bulk density
and skeletal density are measured by vacuum saturation tests.

2.2.2. Dynamic Hygrothermal Properties of Materials

The dynamic hygrothermal physical properties of materials take into account the coupled heat
and moisture transport effect, and the parameters are expressed as dynamic functions related to
temperature and moisture content. In this paper, the dynamic hygrothermal properties of five materials
were tested by thermal conductivity tests, cup tests, static gravimetric tests, capillary absorption tests,
and vacuum saturation tests. Table 2 shows some dynamic hygrothermal properties of materials in the
HAM algorithm. Table 3 shows some hygric properties of materials in the HAM algorithm.

The thermal conductivities of materials are tested by the heat flow meter method and
guarded-hot-plate method. Repeatability errors, reproducibility errors and systematic errors caused by
thermal contact resistance are analyzed. Then, we obtain accurate thermal conductivities of materials
with temperature and humidity variations. A mathematical model of thermal conductivity with
temperature and moisture content is constructed. The mathematical model of the thermal conductivity
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law can better express the thermal conductivity of materials with the change of material temperature
and moisture content.

Cup tests obtain the vapor permeability related with moisture content. The water vapor
permeability coefficient is an important moisture property of the material and it is used to describe the
ability of water vapor to pass through the material. Thus, the water vapor permeability coefficient of
the material has a great deal to do with the humidity of the environment.

Table 2. Some dynamic hygrothermal properties of building materials.

Materials Thermal Conductivity
W/(m·K)

Equilibrium Moisture
Content (kg/kg, %)

Water Vapor Permeability
Coefficient kg/(m·s·Pa)

EPS
λ = 1.06× 10−3u + 4.50× 10−4T

−3.32× 10−5 + 3.15× 10−2 0.68 3.7 × 10−12

Mineral wool
λ = −3.92× 10−3u + 4.23× 10−4T

−4.92× 10−5 + 3.59× 10−2

u = ln[(100ϕ + 1)0.04/(1− ϕ)0.07]

−3.28× 10−44 exp(100ϕ)
6.71 × 10−11

Concrete
λ = 1.48× 10−2u + 2.20× 10−3T

2.16× 10−4 + 4.19× 10−1

u = ln[(100ϕ + 1)0.03/(1− ϕ)0.62]

1.81× 10−43 exp(100ϕ)
δ = 3.77 + 0.005u15

Adhesive mortar
λ = 9.6× 10−3u + 1.1× 10−3T

7.3× 10−5 + 2.4× 10−1

u = ln[(100ϕ + 1)−0.07/(1− ϕ)1.05]

6.0× 10−43 exp(100ϕ)
δ = 8900− 8883u−6.78×10−4

Rendering plaster
λ = 3.9× 10−3u + 2.6× 10−3T

2.8× 10−4 + 4.3× 10−1

u = ln[(100ϕ + 1)0.01/(1− ϕ)0.97]

2.8× 10−43 exp(100ϕ)
1.2 × 10−11

Table 3. Some hygric properties of building materials.

Materials
Water Absorption

Coefficient
Capillary Saturation

Moisture Content
Liquid

Diffusivity
Vacuum Saturation
Moisture Content

kg/(m2s0.5) kg/m3 m2/s kg/m3

Concrete 0.0268 157 2.31 × 10−8 175
Adhesive mortar 0.020 210 7.4 × 10−9 360
Rendering plaster 0.0026 — — — — 430

Sorption isotherms are tested by static gravimetric tests. The equilibrium moisture content
of EPS at each relative humidity can be considered as a constant. The calculation of the natural
environment can be seen as an EPS moisture content of 0.6653 (kg/kg, %), which is related to the
closed-cell membrane structure of EPS. The difference between the absorption and desorption curve
of rock wool is not obvious, and the capillary hysteresis phenomenon is weak. This is related to the
open-cell structure of rock wool. The equilibrium absorption and desorption curves of concrete matrix
materials are relatively close. The material difference error in the balanced absorption and desorption
experiment is small. The sorption isotherms of rock wool and concrete matrix materials are fitted by
the Feng formula.

The water absorption coefficient and capillary saturation moisture content are determined by
capillary absorption tests. In addition, the liquid diffusion coefficient of the material can be estimated
by the above two parameters. These properties are essential to analyze the liquid water storage and
transfer process in the building envelope.

Vacuum saturation moisture content is measured by vacuum saturation tests. The property
indicates the maximum moisture content achieved when all of the openings in the material are
occupied by liquid water.

To the hygrothermal properties tests, the uncertainty is mainly from material errors and
repeatability errors in one lab, which is confirmed by Feng [22]. And the average repeatability
error and material error of related tests is listed in Table 4.

According to the Table 4, we find that the repeatability error is smaller than material error overall.
The values are between 0.47 and 2.21. This illustrates that the tests are reliable.
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Table 4. The average repeatability error and material error of related tests.

Materials rsrepeatability % rsmaterial %

EPS 2.00 2.11
Mineral wool 0.92 0.00

Concrete 0.47 19.48
Adhesive mortar 2.21 13.15
Rendering plaster 1.77 13.72

2.3. Model Construction

This paper carries out a simulation analysis of five different climate areas. Harbin, Shenyang,
Beijing, Shanghai, and Guangzhou are representative cities that face a severe cold A and B area, a severe
cold C area, a cold area, a hot summer and cold winter area, and a hot summer and warm winter area,
respectively. Climate parameters include temperature, relative humidity, atmospheric pressure, solar
radiation intensity, wind speed, wind direction, and so on.

The energy consumption is huge in public buildings with serious waste. Therefore, there is
great energy saving potential. Office buildings occupy a large proportion of public buildings and
are extremely representative. Thus, an independent small office building is analyzed as the object in
this paper. This form of construction is in accordance with the relevant provisions of the domestic
construction, which are set strictly. The length of construction of the office building is 14.1 m, the
width is 10.8 m and the height is 7.2 m. The shape factor is 0.4659, the construction area is 304.56 m,
the outside windows have two sides (length 2 m, height 2 m and Length 1 m, height 2 m), and the
window-to-wall ratios in east, west, north, and south directions are 0.2572, 0.2572, 0.3152, and 0.2758,
respectively. Figure 1 shows the architectural appearance and building partition plan.
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Figure 1. Outward appearance effect and floor plans of the construction. (a) The construction’s outward
appearance effect chart; (b) first floor plan; (c) second floor plan.

Based on the hygrothermal properties of the materials above and the limited thermal parameters
in different thermal zones, the typical external thermal insulation structures were constructed.
The structure of the wall is shown in Figure 2 and the wall parameters are shown in Table 5. Wall 1 has
an EPS external insulation structure, and wall 2 has a rock wool insulation structure.
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Figure 2. External insulation structure forms. (a) EPS external insulation structure form; (b) rock wool
external insulation structure form.
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Table 5. Structure of building enclosure in different regions.

Climate Zone Typical City Number

Heat Transfer
Coefficient

Thermal
Resistance

[W/(m2·K)] [m2·K·W]

Severe cold A and B zone Harbin
Wall 1 0.34 2.79
Wall 2 0.34 2.80

Severe cold C zone Shenyang Wall 1 0.37 2.53
Wall 2 0.37 2.56

Cold zone Beijing Wall 1 0.41 2.26
Wall 2 0.40 2.33

Hot summer and cold winter zone Shanghai Wall 1 0.58 1.73
Wall 2 0.54 1.85

Hot summer and warm winter zone Guangzhou Wall 1 0.68 1.48
Wall 2 0.73 1.38

According to GB 50189-2015, combined with the functions of the office buildings in different
rooms and staff activities, the stall in-room rate, heat and humidity production, equipment and lighting
power density and other parameters need to be set. Figure 3 shows the staff of the office in-room rate
and the energy metabolism of staff in corridors hourly during work time.
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Figure 3. Office staff in-room rate and energy metabolism of staff in corridors hourly during work time.
(a) Office staff in-room rate hourly in working time; (b) energy metabolism of staff in corridors hourly
in working time.

According to the range of the Fanger thermal comfort model, the personnel self-regulation ability
and the building energy-saving target, the indoor temperature, and the relative humidity and other
indicators are defined. Figure 4 shows the temperature and the relative humidity of the controlled
office, hourly during working time.

Due to the differences in climate characteristics, the air conditioning heating and cooling operation
time should be set in different areas according to the actual situation. Table 6 shows the air conditioning
running time in different regions throughout the year.
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(a) Temperature controlling method; (b) relative humidity controlling method.

Table 6. Air conditioning running time in different areas.

Locations Air Conditioning
Running Mode

Air Conditioning
Running Time

Harbin
Heating 20 October–20 April
Cooling 1 July–31 August

Shenyang Heating 1 November–31 March
Cooling 1 June–15 September

Beijing Heating 15 November–15 March
Cooling 15 May–30 September

Shanghai Heating 1 June–15 September
Guangzhou Cooling 1 June–15 September

3. Analysis of Heat and Moisture Transfer

The climatic environment is different in different climatic zones. The extreme values and
fluctuation of temperature and humidity are significantly different. The building is in an unsteady
environment throughout the year. The moisture content and the average temperature change of the
envelope undergo dynamic changes. In the thermal calculation, energy consumption prediction,
and comfort analysis, this is directly related to the accuracy of the air conditioning system selection,
the evaluation of the building energy conservation, or the envelope trade-off judgment; i.e., whether to
consider the building moisture transfer, moisture storage, and dynamic heat transfer process. Then,
under the premise of ensuring the indoor thermal comfort, the designer should reduce the energy
consumption of the building as much as possible.

In this paper, we analyzed the effect of coupled heat and moisture transfer in building envelopes
on the thermal and humidity environment and indoor human comfort using the difference results from
the CTF algorithm and the HAM algorithm. In this section, all simulations only consider the natural
infiltration of doors and windows without natural and mechanical ventilation. In the air conditioning
system operation period, the indoor relative humidity is adjusted by the humidifier, and the indoor
temperature is controlled by the air conditioning system throughout the year.
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3.1. The Effect of Coupled Heat and Moisture Transfer on the Indoor Thermal Environment

Indoor temperature, humidity, wind speed, and the average surface temperature are objective
indices of indoor comfort. The heat exchange is achieved by convection between the indoor air
temperature and humidity and the human body and radiation by the temperature difference between
the room surface and the human body. The three factors are all important for the indoor thermal
and humidity environment. The wind speed can be adjusted by the air conditioning system within a
comfort range, and hence, it has nothing to do with the envelope heat transfer. Therefore, we analyzed
three indicators—indoor temperature, humidity, and average surface temperature—in this section.

3.1.1. The Effect of the Coupled Heat and Moisture Transfer on Indoor Temperature and Humidity

In this section, the HAM and the CTF algorithms were used to calculate the indoor and outdoor
temperature and humidity in typical urban buildings in different climatic zones. Figure 5 shows the
indoor temperature and humidity status of the 101 room in five typical cities throughout the year.
The green area indicates that the predicted mean vote (PMV) is between −0.5 and 0.5, and the yellow
area indicates the PMV is between −1 and 1. When the indoor temperature and humidity points
are distributed in this area, this can be regarded as a comfortable indoor environment. As the office
buildings during holidays only need basic air conditioning operation to be maintained, there are a
large number of state points under non-air conditioning control for uncomfortable areas.
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Figure 5. Interior temperature and relative humidity in the 101 room in different areas: (a) Harbin
(Wall NO.1—EPS); (b) Harbin (Wall NO.2—Rock Wool); (c) Shenyang (Wall NO.1—EPS); (d) Shenyang
(Wall NO.2—Rock Wool); (e) Beijing (Wall NO.1—EPS); (f) Beijing (Wall NO.1—Rock Wool);
(g) Shanghai (Wall NO.1–EPS); (h) Shanghai (Wall NO.1—Rock Wool); (i) Guangzhou (Wall
NO.1—EPS); (j) Guangzhou (Wall NO.1—Rock Wool).

The results show that the heat and moisture state distribution range calculated by the HAM model
is narrow due to the absorption and desorption properties of the envelope. The CTF model calculates
that even the distribution of the state points is narrow. The relative humidity is related to indoor staff
activities when using the CTF algorithm. When staff activity is lower, moisture production is less,
and hence, the relative humidity is low. When staff activity becomes greater, moisture production is
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increased, and thus, the relative humidity is high. This causes a larger fluctuation. Considering building
energy efficiency, in the transition season, heat transfer by the natural environment is encouraged
as much as possible without an air conditioning system. At the moment, the indoor temperature is
low, and comfort is poor. When using the HAM algorithm, the moisture storage of walls is taken into
account, and the use of its buffer performance can adjust relative humidity. Whether using rock wool
or EPS as the insulation material of the external insulation system, the results have the same rules
while using either the HAM model or the CTF model.

In short, the difference between indoor heat and the humidity environment is obvious while using
the HAM model and the CTF model. Overall, the effect of coupled thermal conditions and moisture
in building envelopes on the indoor air temperature and relative humidity is great. Therefore, this
should be taken into account in the calculation of environmental parameters.

3.1.2. The Effect of the Coupled Heat and Moisture Transfer on Surface Temperature

In this section, the CTF algorithm and the HAM algorithm are used to calculate the temperature
difference between the room air temperature and the surface temperature of the room. The influence
of the coupled heat and moisture on the surface temperature is obtained. Figure 6 shows the room air
temperature and the annual surface temperature difference of the 101 room in Harbin and Guangzhou
using the HAM and the CTF algorithm.
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Figure 6. Air temperature and surface average temperature difference in the 101 room in different cities:
(a) Harbin (Wall NO.1—EPS); (b) Harbin (Wall NO.2—Rock Wool); (c) Guangzhou (Wall NO.1—EPS);
(d) Guangzhou (Wall NO.1—Rock Wool).
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The results show that the air temperature and the average surface temperature difference is not
more than 5 ◦C in every area. The radiation heat transfer intensity of radiation is not very high, and
the comfort level is high. The air temperature is slightly higher than the average radiation temperature
of the room in the heating period. The calculation results of the HAM algorithm are smaller than those
of the CTF algorithm. In the heating period, the average temperature difference of room temperature
in Harbin, Shenyang, and Beijing are comparatively smaller, and the values are 0.15 ◦C, 0.13 ◦C, and
0.1 ◦C, respectively, using the HAM algorithm. When the heating is on, the difference is close to zero
in Shanghai and Guangzhou. The average surface temperature of the room during the cooling period
is slightly higher than the air temperature. In the cooling period, the average differences of room
temperature in Harbin, Shenyang, Beijing, Shanghai, and Guangzhou are comparatively smaller, and
the values are 0.1 ◦C, 0.11 ◦C, 0.15 ◦C, 0.2 ◦C, 0.2 ◦C, and 0 ◦C, respectively, using the HAM algorithm.
The effect is small due to the different insulation materials. The air conditioning is off in the transition
season. The room surface temperature and air temperature are closest to the most comfortable one.
This indicates that the use of natural ventilation can not only improve the indoor heat and humidity
environment but also improve indoor staff comfort in the transitional season.

3.2. The Effect of Coupled Heat and Moisture Transfer on Building Energy Consumption

The envelope transfers heat and moisture under the driving force of temperature difference
and water vapor pressure difference. The indoor and outdoor environment is different in winter,
summer, and transition seasons, and thus, the direction of the heat and moisture transfer is different.
Then, the effect of coupled heat and moisture in building envelopes on heating and cooling energy
consumption and latent energy consumption possibly have two sides. Therefore, the total energy
consumption is required for quantitative analysis. In this section, three indicators should be assessed:
monthly heat and cold energy consumption, latent heat energy consumption, and the annual total
energy consumption.

3.2.1. The Effect of Coupled Heat and Moisture Transfer on Monthly Cooling and Heating
Energy Consumption

In this section, the CTF algorithm and the HAM algorithm are used to calculate the monthly
energy consumption of cooling and heating in different areas. Furthermore, the influence of coupled
heat and moisture on the cooling and cooling energy of the building is obtained. Figure 7 shows the
monthly heating and cooling energy consumption of the 101 room in the different regions by using the
CTF algorithm and the HAM algorithm.

Figure 7 shows that the heating energy consumption gradually increased, and the cooling energy
consumption gradually reduced, from the north to the south. The heating energy consumption
reached the maximum in January and the cooling energy consumption reached the maximum in July.
The heating energy consumption in the HAM algorithm is smaller than that obtained by the CTF
algorithm. When EPS is the insulation material, the maximum difference is 8.3%. When the rock wool
is used as the insulation material, the maximum difference is 9.37%.

In terms of heat transfer, the annual temperature difference is large in a vast area of China.
The average temperature of the envelope is obviously changed, and so the thermal conductivity of the
material changes with it. There has been an important impact on the heat transfer coefficient of the
envelope. When considering the effect of temperature change on energy consumption, the lower the
temperature is, the smaller the thermal conductivity of the material will be.

The heat transfer coefficient of the wall becomes smaller. Thus, the calculation of the heating
energy consumption of the room reduces with the increasing of the insulation performance of the
envelope structure. The higher the temperature is, the greater the heat transfer coefficient of the wall
will be. Therefore, the cooling energy consumption of the room increases with the reduced insulation
performance. The effect of dynamic heat transfer is the dominant factor in the overall difference.
The heating energy consumption difference is most obvious by using the two methods for the coldest
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winter in Harbin. Hence, the heating energy consumption calculated by the HAM model is smaller
than the one calculated by the CTF model. However, the cooling energy consumption is larger.
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Figure 7. Heating and cooling month energy in the 101 room: (a) Harbin; (b) Shenyang; (c) Beijing;
(d) Shanghai; (e) Guangzhou.

In terms of moisture, when considering the moisture transfer of the envelope, the thermal
conductivity of the material increases in the moisture state. The heat transfer coefficient of the wall
increases with the decreasing insulation performance. This will cause the heating energy consumption
to increase. However, the impact is relatively weak. Additionally, the adsorption and desorption
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properties of the concrete wall can adjust the relative humidity, undertaking a part of the latent
heat load.

3.2.2. The Effect of Coupled Heat and Moisture Transfer on Annual Latent Heat Energy Consumption

In this section, the CTF algorithm and the HAM algorithm are used to calculate the annual latent
heat energy consumption of different buildings in different areas, and the influence of coupled heat
and moisture on the annual latent heat energy of the building is analyzed. Figure 8 shows the latent
heat energy consumption generated by a humidifier using the CTF and the HAM algorithm in the
101 room in different regions.
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It can be seen in Figure 8 that the latent heat energy consumption increases in turn from the
north area to the south area. When using the HAM algorithm, the humidifier only needs to engage
dehumidification all the year. However, when using the CTF algorithm, the dehumidification mode
needs to be on most of the time. Furthermore, it is necessary to turn on the humidification mode for a
short time. With EPS as the insulation material, the latent heat energy consumption calculated by the
HAM algorithm is comparatively lower, at 58.3%, 39.8%, 36.5%, 18.5%, and 8.8%, respectively, than
that by the CTF algorithm in Harbin, Shenyang, Beijing, Shanghai, and Guangzhou. The difference is
obvious. For mineral wool as the insulation material, the latent heat energy consumption calculated by
the HAM algorithm is comparatively lower, at 51.8%, 33.7%, 30.4%, 12.8%, and 4.7%, respectively, than
that by the CTF algorithm in Harbin, Shenyang, Beijing, Shanghai, and Guangzhou. The difference
was about 6% lower than those of the EPS insulation system. This is the reason that the water vapor
permeability coefficient of EPS is smaller than that of mineral wool. Water vapor can pass easily
through the wall into the room. Meanwhile, indoor moisture is also easier to discharge through the
wall. The system can reduce the latent heat load of the room more effectively throughout the year. It is
pointed out that the effect of the absorption and desorption capacity of the envelope on the relative
humidity fluctuation is extremely significant. The latent heat energy obtained by the HAM calculation
method is relatively small compared to the conventional algorithm.

3.2.3. The Effect of Coupled Heat and Moisture Transfer on the Total Annual Heat
Energy Consumption

In this section, the effects of coupled heat and moisture on the total energy consumption of the
two insulation systems are compared and analyzed. Figure 9 shows the comparison of the energy
consumption of various parts of office buildings using EPS and rock wool insulation in different
representative cities using the CTF model and the HAM model.
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Figure 9. Different parts of energy consumption in the official building in different area: (a) EPS;
(b) rock wool.

It can be seen from Figure 9 that the total energy consumption of Harbin, Shenyang, Beijing,
Shanghai, and Guangzhou is reduced in turn. Additionally, the latent heat energy consumption of
air conditioning is smaller than that dealing with heating and cooling. The energy used to adjust the
temperature of the room is greater than the energy used to adjust the humidity in the room.

3.2.4. Additional Factor of Coupled Heat and Moisture

As mentioned above, the calculation process, compared to the traditional calculation method,
is particularly complex due to needing to refer to many hygrothermal properties of materials; hence,
it is difficult to popularize in engineering and practical applications in the short term. Therefore, the
building energy consumption can be corrected by the additional coefficient method. Based on the
additional factor of the traditional method, the energy consumption can become more accurate. That
is to say, the value of the energy consumption can be achieved by multiplying the basic algorithm with
the additional coefficient. Figure 10 shows the additional coefficient of building energy consumption
in different regions.
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4. Conclusions

This paper measured the dynamic hygrothermal properties of five kinds of building materials.
The measured properties were introduced into the energy software WUFI-Plus to imitate the effect
of moisture migration, accumulation, and dynamic thermal processes on the calculation of building
energy consumption and the evaluation of indoor staff comfort. The research contributes to the more
rational use of envelope heat and moisture transfer in buildings, in order to achieve the purpose of
reducing building energy consumption and improving indoor comfort. The main conclusions are
as follows:

• Due to the moisture absorption and desorption performance of the building envelope, the
distribution of indoor temperature and humidity state points is narrow when considering the
coupled heat and moisture in the wall. If the heat and moisture transfer in the wall is taken into
account, the difference between the average surface temperature and the indoor air temperature
is 0.13 degrees or so less than when not taking this into account;

• The heating and cooling energy consumption that considers the coupled heat and moisture
transfer is less than that which does not. The moisture absorption and desorption capacity of the
envelope has a significant effect on the indoor relative humidity fluctuation. The latent energy
consumption is calculated by the HAM method, which is smaller than the one obtained by the
conventional algorithm;

• With the location of the building changing from north to south, the coupling effect of heat and
moisture on the annual energy consumption of buildings varies from positive to negative. For the
EPS thermal insulation system, the effect ratio of heat and moisture coupling varies from 6.97% to
−2.49%. For the mineral wool insulation system, the effect ratio varies from 8.3% to −0.84%;

• The utilization of an additional coefficient of coupled heat and moisture can be used to correct the
deviation of traditional calculation of building energy consumption without considering the heat
and moisture coupling.

The research findings of this paper fill the blank that coupled heat and moisture transfer is ignored
in thermal analysis, and energy consumption and comfort analysis. It is helpful in making use of the
heat and moisture transfer of the building envelope more reasonably, in order to achieve the purpose
of reducing building energy consumption and improving indoor comfort.
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