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Abstract: Lithium-bismuth liquid metal batteries have much potential for stationary energy storage
applications, with characteristics such as a large capacity, high energy density, low cost, long life-span
and an ability for high current charge and discharge. However, there are no publications on
battery management systems or state-of-charge (SoC) estimation methods, designed specifically
for these devices. In this paper, we introduce the properties of lithium-bismuth liquid metal batteries.
In analyzing the difficulties of traditional SoC estimation techniques for these devices, we establish
an equivalent circuit network model of a battery and evaluate three SoC estimation algorithms
(the extended Kalman filter, the unscented Kalman filter and the particle filter), using constant current
discharge, pulse discharge and hybrid pulse (containing charging and discharging processes) profiles.
The results of experiments performed using the equivalent circuit battery model show that the
unscented Kalman filter gives the most robust and accurate performance, with the least convergence
time and an acceptable computation time, especially in hybrid pulse current tests. The time spent on
one estimation with the three algorithms are 0.26 ms, 0.5 ms and 1.5 ms.

Keywords: lithium-bismuth liquid metal battery; state of charge; extended Kalman filter; unscented
Kalman filter; particle filter

1. Introduction

The use of energy storage systems could significantly improve the reliability and efficiency of
power grids, with respect to the integration of intermittent renewable energy sources [1]. At present,
the limitation on the widespread application of batteries is their high cost. Liquid metal batteries
(LMBs) have the potential to meet the requirements for stationary energy storage applications [2,3],
since in addition to the low cost of a single cell, these devices have a large capacity and a long service
life, compared with the more widely used lithium-ion batteries and lead-acid batteries. The measured
capacity loss after operation for more than 450 charge–discharge cycles at 100 percent depth of
discharge with the current densities as 1000 milliamperes per square centimeter, projects retention of
over 85 percent of initial capacity after ten years of daily cycling [2]. As well as their increased energy
density, these characteristics are advantageous in reducing the cost of adoption of LMBs, particularly
for large-scale applications. However, commercialization has not been realized because of the initial
limitations of LMB technology. Early LMB devices used magnesium and antimony as cathodes and
anodes, respectively and MgCl2-KCl-NaCl, a mixed molten salt, as an electrolyte, leading to a working
voltage of approximately 0.4 V and a high operational temperature of 700 ◦C [4]. In recent years,
considerable effort has been put into the selection of high performance electrodes, electrolytes to
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improve their working voltage and reduce their operational temperature and sealants capable of
effective heat insulation at high temperatures over long periods of time. The life cycle and failure
mechanisms of these cells have also been studied, resulting in improved understanding of how to
make this technology more viable. Based on this research, a new type of LMB, consisting of lithium and
bismuth, has been proposed [5–7], with commercial cells produced by the Xi’an Jiaotong University in
China. This device could be charged or discharged at a high rate of capacity for a long time without any
irreversible damage, which means it could deal with larger current fluctuations. Also, the hysteresis
effect can be ignored and no safety problems will be caused by overcharge and over discharge.
However, the operational temperature of this device needs to be maintained at 500 ◦C, to ensure
that the LiCl-LiF electrolyte remains in a molten state and the working voltage of the device is 0.7 V,
which is relatively low [7]. Although these cells do not fulfil every requirement for grid-level energy
storage, their development has created the opportunity for practical application-oriented research.

An additional consideration for large-scale energy storage systems is the inclusion of a battery
management system (BMS), which typically monitors the state of charge (SoC) of a battery [8,9].
This parameter is defined as the remaining usable capacity of a device. Accurate estimation of the
SoC is required to avoid over-charging or over-discharging, which degrade the cell and to give the
user a clear indication of the working time of the battery. Hence, BMSs are required to maximize the
improvements in performance gained as a result of the development of Li-Bi LMBs.

There have been many studies on SoC estimation techniques. From these, the most reliable method
has proven to be the discharge test. However, this technique is time-consuming and impractical for
on-line estimation. In contrast, the simplest estimation method is Coulombic counting, a technique
which is widely used in most consumer applications [10]. As the SoC and open circuit voltage (OCV)
of a battery are related, this metric can also be used for SoC estimation. However, the accuracy of this
method is limited and, consequently, it is typically used in combination with other techniques [11–16].
A range of data driven estimation methods have been increasingly studied, because, unlike techniques
such as OCV, exact knowledge of the behavior of a battery is not required for accurate estimation.
Such methods include, support vector machines [17–19], the combined grey model and genetic
algorithm approach developed by Chen et al. [20] and the fuzzy logic-based estimator for Li-ion
batteries developed by Singh et al. [21]. In spite of these developments, data-driven methods feature
time-consuming computation and require large amounts of data training [22]. Hence, model-based
estimation methods have been developed as a way to determine the SoC of a battery using its current
performance, by relating this to a model system, which is typically non-linear.

Additional signal processing is required when model-based estimation techniques are used to
determine a battery’s SoC. Modified Kalman filters are often employed for this purpose, which include
processing steps to address the non-linear system. For instance, an extended Kalman filter was
adopted [23,24] to linearize the battery model. Other efforts have been made to reduce non-convergence
and improve the speed of convergence [25,26]. Sigma-point Kalman filters, such as the unscented and
central-difference Kalman filters, have been studied, for better consideration of model nonlinearities [27],
while Liu et al. applied an extended fractional Kalman filter to a fractional order battery model,
in consideration of non-linear effects [28]. Although they have proven useful, Kalman filters are
limited, in that they are optimized for operation with noise with a Gaussian probability density.
In contrast, by describing the probability density function as a set of particles using Monte Carlo
sampling methods, the particle filter is able to consider any probability distribution [29], suggesting
that it is a more universal alternative to Kalman filters.

Recent research has demonstrated that more accurate SoC estimation can be achieved using
multiple-model techniques, which combine the estimates of different models [30–32] or treat the result
derived from one model as the initial constraint [33–36] of another model. These can be a combination
of all model-based methods [37], data-driven methods and model-based methods [38] or some other
flexible combination [39]. Tran N T et al. explored a method combining dual extended Kalman
filters with auto regressive exogenous on-line parameter estimation, for SoC and state of health
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estimation [39], while Li Y et al. used recursive Bayesian filtering for SoC estimation based on the
features obtained from a Markov model [40].

Most of the techniques listed above were studied for Li-ion and lead-acid batteries. The application
of these methods to devices such as lithium-sulphur batteries has also been explored [41,42]. However,
to date, they have not been applied to Li-Bi LMBs, a fact that can be explained by the differences
between them and Li-ion batteries. For instance, the characteristic OCV-SoC curves of the latter device
enables SoC estimation, as their variation is generally monotonic. In contrast, the variation of the OCV
of an LMB, with respect to SoC, is minimal in a wide range of operation. These devices also have
a low operating voltage of about 0.7 V, which increases the difficulty in resolving changes in voltage.
In addition, the polarization voltage parameters of LMBs differ from those of Li-ion batteries, due to
their unique working principles. Finally, the Coulombic and energy efficiencies of these batteries are
sensitive to the applied current profile, while their rated current is about 50 A, far greater than it is for
Li-ion batteries. Until recently, few SoC estimation methods for Li-Bi batteries had been published.
In this paper, we evaluate three SoC estimation techniques using an equivalent circuit network model
of a Li-Bi LMB, to verify their applicability to this technology.

The rest of this paper is organized as follows: Li-Bi LMBs are introduced in Section 2. Then description
of the experimental setup and the practical test conducted on the cell is included in Section 3, in addition
to the equivalent circuit model used in SoC estimation and the parameter identification system.
A discussion on conventional techniques used in SoC estimation and limitations on their application
to Li-Bi LMBs is included in Section 4. In this discussion, we consider the extended Kalman filter,
the unscented Kalman filter and the particle filter. The results of simulations using these algorithms
and evaluation of their performance, are reported in Section 5. The paper concludes with a discussion
on the applicability of these techniques to Li-Bi LMBs in Section 6.

The main contribution of this paper is the development and evaluation of three recursive SoC
estimators for liquid metal batteries as a foundation for the future study on battery management for
these devices. To the best of the authors’ knowledge, no similar work has appeared elsewhere in
the literature.

2. Lithium-Bismuth Liquid Metal Battery

Li-Bi LMBs consist of a negative lithium metal electrode, a positive bismuth metal electrode
and a LiCl-LiF molten salt electrolyte [6]. Since molten metals and molten salts are immiscible,
they automatically stratify, due to their differing densities, as shown in Figure 1. This self-stratification
removes the requirement for special battery separators, which reduces the cost of a battery and enables
battery systems to be enlarged and produced more easily [2,7].
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Figure 1. Schematic of charge and discharge processes in a liquid metal battery (LMB).

The use of liquid electrodes means that solid-state degradation mechanisms, such as dendrimer
growth and fracture, can be avoided, which are the main causes of failure in other battery technologies.
During discharge, lithium is oxidized to lithium-ions at the negative electrode. These ions are dissolved
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into the electrolyte, which subsequently releases electrons into the terminal circuit. At the same time,
lithium-ions in the electrolyte are reduced to lithium metal at the positive electrode, which then alloys
with bismuth [7]. This process stops when the voltage drops below the defined cut-off voltage or when
the battery reaches the desired depth of discharge. These reactions are reversed when the battery
is charged. The most remarkable merit of Li-Bi LMBs is that they can be charged or discharged at
a high rate of capacity, for a long time, without any damage [7]. In addition, the hysteresis effect
often observed with voltage can be ignored. The operational temperature of this device needs to be
maintained at 500 ◦C, to ensure that the LiCl-LiF electrolyte remains in a molten state.

The main parameters of a Li-Bi LMB are summarized in Table 1. We note that when the SoC
ranges between 0% and 65%, there is little variation in OCV and the curve is effectively a horizontal
line. In addition, unlike Li-ion and other solid-state batteries, the internal resistance of LMBs is affected
by the internal temperature and effective thickness of the electrolyte layer, which changes with the
battery’s state of operation.

Table 1. Parameters of a Li-Bi liquid metal battery.

Nominal capacity 200 Ah
Nominal voltage 0.7 V

Cut-off voltage (charging, discharging) 1.2 V, 0.4 V
Self-discharge current 0.4 A
Rated working current 50 A (0.25 C)
Operating temperature 500 ◦C

Weight 4.8 kg
Size (diameter, height) 18 cm, 10 cm

Cost 240 $ kWh−1 [7]

As this Li-Bi LMB is intended for use in power grids, as compensation for renewable energy
sources such as wind power, the battery will switch frequently between charging, discharging and
static modes of operation, which means the working current of the battery also fluctuates frequently.
The unique proprieties of LMBs means that precise estimation of the SoC is required for protecting the
device from overcharging or discharging, offering reference for the capacity equilibrium of battery
packs and showing the residual capacity and the remaining working time to users. Careful monitoring
is particularly necessary for SoCs between 0% and 65%.

3. Experimental Details and Equivalent Circuit Model

In this section, we describe the experimental setup and the details of the current profiles used
in this paper, as well as establish the equivalent circuit model for the LMB. Finally, the relationship
between the parameters derived in this model and SoC are also determined.

3.1. Experiment Details

Experiments were conducted on a Li-Bi LMB, to generate a dataset for verification of parameter
identification based on battery modelling and the proposed SoC estimation methods. The experimental
set up, consisting of a Li-Bi LMB, battery tester, temperature control system, holding furnace and a host
computer, is shown in Figure 2. Tests were conducted at room temperature, while the combination
of the temperature control system and the heat insulation box maintained the cell at 500 ◦C. Current
profiles for experimentation were designed on the host computer and loaded on the test cell using the
BT-5HC-20CH battery testing system produced by ARBIN Instruments. The measurement ranges of
this device are −100–100 A for current and 0–5 V for voltage, with a precision of ±0.02% FSR, for both
types of measurement. This error is small enough to enable the assumption that parameters estimated
using these measurements are their actual value. The testing system records a range of information,
including date, time, cycle index, current, voltage, charge capacity, discharge capacity, charge energy
and discharge energy. In these experiments, SoC was determined using the charge and discharge
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capacity. Data acquired by the battery tester was transmitted to the host computer, on which it was
stored, over TCP/IP.
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Figure 2. Experimental setup.

A depiction of the four current profiles obtained during testing is shown in Figure 3. Datasets
comprising current, charge capacity, discharge capacity, terminal voltage and experiment duration,
were obtained for each profile, which were subsequently used for identification of the parameters of
the battery model, for evaluation of the proposed models.

Prior to experimentation, we allowed the cell to rest in a state of complete charge or discharge
(depending on the current profile being recorded) for 12 h, for equilibration. The initial state of the cell
was then recorded as the initial OCV. For acquiring the pulsed current profile, we applied 50 pulses of
−50 A, resting 40 min after each pulse, until the charge cut-off voltage (1.2 V) was reached, as shown in
Figure 3a. The pulse-width in this process was 20 min. The OCV of the cell was measured during the
rest periods, for characterization of its relationship to SoC. Similarly, for the pulsed discharge profile,
50 pulses of 50 A were applied, until the discharge cut-off voltage (0.4 V) was reached, as shown in
Figure 3b. The pulse-width in this process was also 20 min. The OCV in this curve is the mean of the
OCVs measured during the pulse charge and pulse discharge processes.

The constant current discharge profile shown in Figure 3c was obtained by applying a current of
50 A to the cell, until the cut-off voltage was reached. Finally, to consider a more realistic scenario [43],
we obtained the hybrid pulse current profile shown in Figure 3d. In this experiment, a current was
randomly selected from the −0.4 C (−80 A) to 0.4 C (80 A) range, spaced at a multiple of 0.025 C
intervals and applied to the cell. Current selection and modification were repeated every 60 s, for the
duration of the experiment. The enlarged plots in the insets of Figure 3d highlight the details of the
current profile and the corresponding changes in voltage and SoC.
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of operation.

3.2. Equivalent Circuit Model and Parameter Identification

The equivalent circuit of the LMB [44] used in this paper, a first-order Thevenin model, is shown in
Figure 4. The model consists of a first- order parallel resistor-capacitor (R1 and C1) network, an internal
resistance (Ro) and an open circuit voltage (OCV). The closed-circuit voltage (CCV) is defined as the
voltage across the load, consisting of a polarization voltage (up), OCV and an internal resistance voltage
(UR). The current (I) is assumed to be positive in the discharge direction. Self-discharge is ignored as it
is a long-term cumulative effect, with little influence on the transient response of the device.
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To describe the battery model used in estimation, functions relating OCV, Ro, R1, C1 and SoC
are essential. The relationships between OCV and SoC during charge and discharge processes were
obtained using the datasets depicted in Figure 3a,b. An OCV-SoC curve can be drawn by taking
the mean of the OCV values obtained from the two different processes, as shown in Figure 5a,
which enables parameter identification.

The relationships between Ro, R1, C1 and SoC can be determined by first considering how the
former three values are defined in the battery model established in Figure 4. Ro is defined as in (1),
below, where ∆U and ∆I are the instantaneous change in voltage and current caused by variations to
the current profile.

Ro = ∆U/∆I (1)
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The values of ∆U and ∆I at different SoCs were obtained from the dataset depicted in Figure 3b,
enabling us to plot the Ro-SoC curve displayed in Figure 5b.

Using the measured CCV-SoC curve and the estimated OCV-SoC and Ro-SoC curves,
the relationship between up and SoC can be defined as in (2) and the relationship between up, R1 and
C1 can be defined as in (3). The relationship between R1, C1 and SoC can thus be determined from
these equations. The curves depicting these relationships are shown in Figure 5c,d.

CCV = OCV −Up − IRo (2)

dup

dt
= −

up

C1R1
+

I
C1

(3)

We fit polynomial functions to these curves, with parameters determined using the Levenberg-
Marquardt algorithm [45]. The curves depicting these relationships are shown in Figure 5.
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Equations (A1)–(A4) in Appendix A express the mathematical relationships depicted in the
OCV-SoC, Ro-SoC, C1-SoC and R1-SoC curves, respectively.

The state-space model of the cell is established as in Equations (4) and (5), where x~[SoC, up]T

represents the state of the system and y = [OCV] represents the output of the system. x1 and x2 are the
first and second row of x (i.e., SoC and up) respectively and Qm is the rated capacity of the cell.

xk =

[
SoCk
up,k

]
=

 1 0

0 1− 1
fc1(x1,k−1) fr1(x1,k−1)

xk−1 +


−1

3600 Qm
1

fc1(x1,k−1)

Ik (4)

yk = focv(x1,k)− x2,k − Ik fro(x1,k) (5)
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4. SoC Estimation Algorithms

In this section, we explain the reasons behind the selection of the algorithms used in testing,
by discussing the characteristics of SoC estimation techniques in relation to the properties of Li-Bi LMBs.

4.1. Applicability of Traditional Techniques

4.1.1. Open Circuit Voltage Method

Studies have shown that the electromotive force and by extension, the open circuit voltage of
lead-acid and Li-ion batteries, is closely related to their SoC. The relationship between these values
enables OCV to be used for SoC estimation. Although in some cases, such as with MH/Ni and Li-ion
batteries, the relationship between these two parameters is not strictly linear, a simple mathematical
equivalence relating OCV and SoC can typically be found. Despite its arguable accuracy, this method
is widely used, as it is the simplest and fastest SoC estimation technique [22]. However, as OCV
can only be measured accurately when a battery is in a stable state, this technique is not suitable
for on-line monitoring, as devices frequently transition between charging and discharging process,
without enough time for stabilization. As the OCV-SoC curve of an LMB is practically static when the
SoC is between 0% and 65%, this technique is not suitable for these devices.

4.1.2. Ampere Hour Counting Method

Ampere hour (Ah) counting, also known as the Coulombic counting method, is the most-widely
used SoC estimation technique in BMSs. With this method, SoC is estimated by continuously
monitoring the dissipated current and the duration of operation. Assuming the capacity of the battery
is known, this information can be used to calculate the SoC, by subtracting the discharged capacity
from the initial value, which is typically determined using the open circuit voltage method [10]. In spite
of its adoption, this method has several shortcomings. For instance, integration and accumulation
errors are difficult to eliminate. The degradation of battery capacity, caused by factors such as working
temperature, aging and discharging current and changes to cell capacity, caused by fluctuating currents,
intensify errors in SoC estimation. This method is not practical for use with LMBs because determining
their initial SoC is difficult. In addition, these devices are intended for compensation for intermittent
energy sources, in which the working current fluctuates in a wide range.

4.1.3. Data-Driven Methodology

Extensive study has been conducted on data driven estimation methods, because of their flexibility
and model-free characteristic. These methods are typically used as a black-box, taking some measurable
and representative factors associated with a battery’s SoC, such as open circuit voltage, internal
resistance and temperature, as an input for calculation to get the required information. While many
implementations of this methodology exist, such as the evolutionary algorithm, support vector
machines [19], genetic algorithms [20] and fuzzy logic [21], most of the parameters used when these
algorithms have been applied with Li-ion batteries do not have similar analogues in LMBs. Thus,
the relationships required for estimation are more complex and there is no record that these techniques
have been used for Li-Bi LMBs, as a result.

4.1.4. Model-Based Methods

As the name suggests, with model-based methods, equivalent circuit network (ECN) or battery
models, such as the pure resistance ECN model, Thevenin ECN model [46], general non-linear model
(GNL) and the new generation of American car partnership plan (PNGV) [47] are defined, to describe
the behavior of a battery. State machines of these models are subsequently established, which predict
terminal voltage as the output of the system. The core idea of these methods is to produce the
optimal estimate of the terminal voltage of the battery, with minimum variance, by reducing the error



Energies 2019, 12, 183 9 of 22

between the predicted and measured values, using recursive algorithms. A compromise is required
between the complexity of the ECN model and the selected algorithm, to ensure it can be processed
in the BMS. ECN models which combine the open circuit voltage method with Ah counting may
provide the possibility of SoC estimation for Li-Bi LMB. Although recursive algorithms such as particle
filter [35], particle swam optimization [48,49], least squares methods [50] and Kalman filter-based
methods (e.g., the extended Kalman filter [23], unscented Kalman filter [27] and adaptive unscented
Kalman filter [51] algorithms) can be considered implementations of this technique, no record of their
application with Li-Bi LMBs exists in the literature.

The unique properties of LMBs suggest that filters are the most suitable option for SoC estimation
for these devices, as the large number of iterative processes can reduce the estimation error, caused by
fluctuating working current and the quasi-static relationship between working voltage and SoC and
eliminate the influence of the initial SoC, which can be difficult to determine for LMBs. To explore
this possibility, three algorithms are discussed and evaluated: the extended Kalman filter (EKF),
the unscented Kalman filter (UKF) and the particle filter (PF).

4.2. Extended Kalman Filter

In the context of this paper, the Kalman filter (KF) is used to provide an optimal estimate of the
SoC of a system from observation data. As this data is affected by noise and interference, estimation is
effectively a filtering process. To complete this, a linear model describing the relationship between the
input and output of the system is first established. However, as the ECN model of LMB is non-linear,
as established in Section 3.2, intermediate steps are needed to convert this system into a form suitable
for processing with the KF. In the EKF, these intermediate steps are implemented by converting the
nonlinear system into an approximate linear system using a first order Taylor series expansion centered
on a reference value [23]. The non-linear state-space model used in this study is shown in Equations (4)
and (5). The operation of this algorithm is summarized in Table 2.

Table 2. Summary of extended Kalman filter operation [23].

Non-linear state-space model and linearized model{
xk = f (xk−1, ik−1, ωk−1, k− 1)
yk = g(xk, ik, υk, k− 1)

 _
x
−
k ≈

_
A
−
k−1

_
x
+

k−1 +
_
B
−
k−1ωk−1

_
y k ≈ g(

_
x
−
k , ik, υk, k)

Step 1: Initialization
x̂+0 = E(x0), P0 = E

[(
x0 − x̂+0 )(x0 − x̂+0

)T
]
, Q = E(ωωT), R = E(υυT)

For k = 1, 2, ..., n, loop from step 2 to step 10.
Step 2: Update Jacobian matrices: Ak, Bk,

Ak =
∂ f (xk, ik, ωk, k)

∂xk

∣∣∣∣
x=x̂+

k

Bk =
∂ f (xk, ik, ωk, k)

∂ωk

∣∣∣∣
ωk=ωk

Step 3: Priori state update
x̂−k = f (x̂+k−1, ik−1, ωk, k− 1)
Step 4: Priori error covariance update
P−k = Ak−1P+

k−1 AT
k−1 + Q

Step 5: Update Jacobian matrices: Ck, Dk

Ck =
∂g(xk, ik, υk, k)

∂xk

∣∣∣∣
x=x̂−k

Dk =
∂g(xk, ik, υk, k)

∂υk

∣∣∣∣
υk=υk

Step 6: Kalman gain update

Kgk = P−k CT
k [CkP−k CT

k + R]−1

Step 7: Measurement update
y−k = g(x̂−k , ik, υk, k)
Step 8: Posteriori state update
x̂+k = x̂−k + Kgk(yk − y−k )

Step 9: Posteriori error covariance update
P+

k = (I − KgkCk)P−k
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In Table 2, xk is a vector of the form x~[SoC, up]T, which represents the state of the system and
ik and yk are the input and output of the algorithm, defined as y = [OCV] and I = I, respectively.
The superscripts, ‘+’ and ‘−’, are used to indicate posteriori and priori values, respectively, while ‘ˆ’
indicates that the superscripted value is an estimate. Ak and Bk describe the dynamics of the system
parameters, while Ck and Dk detail the dynamics of the measurement system. ωk and υk are,
respectively, the process noise and measurement noise, which are both assumed to follow a Gaussian
distribution, with a mean of 0 and to be independent. As Q and R are the respective covariances of ωk
and υk, these noise parameters can be expressed as ωk~N (0, Q) and υk~N (0, R).

In this paper, the initial values are set as follows: x0 = [SoC0, 0]T
, while SoC0 is set to 0.6,0.75,0.85

and 1. Finally, P0 = [ 0.014 0; 0 0.01], Q = [0.0001, 0; 0, 0.1] and R = 0.05.
From Table 2 it can be observed that only Ak and Ck are required for estimation. These values are

expressed in Equations (6) and (7) as,

Ak =

 1 0

(
f ′r1(x1)

f 2
r1(x1) fc(x1)

+
f ′c1(x1)

f 2
c1(x1) fr1(x1)

)x1 −
f ′c1(x1)

f 2
c1(x1)

ik
−1

fc1(x1) fr1(x1)

 (6)

Ck =

[
∂ focv(x̂−k,1)

∂x̂−k,1
−

∂ fro(x̂−k,1)

∂x̂−k,1
ik −1

]
(7)

where, x1 represents the first element of vector x, which is the SoC, fr1(x1), focv(x1), fc1(x1) and fro(x1)
are the functions obtained in Section 3.2 and f’r1(x1) and f’c1(x1) are the derivatives of fr1(x1) and
fc1(x1), respectively.

4.3. Unscented Kalman Filter

The UKF also considers linearization of model systems. With this approach, a set of sigma points
are created, which update the system function to obtain a priori system state. As there is no need
to take a derivative of the functions, this technique is more powerful than the EKF algorithm in
eliminating the influence of the initial value [27]. The operation of this algorithm is summarized in
Table 3, where dim(x) is the length of x. For equivalent comparison, the initial value of x is the same as
that used with the EKF, while P0 = [0.004, 0; 0, 0.01], Q = [10−11, 0; 0, 10−8] and R = 0.01. The scaling
factors, α, β and κ, are set equal to 1, 2 and 0, respectively. Wc and Wm are real scalars, the sum of
which are equal to 1.

Table 3. Summary of unscented Kalman filter operation [27].

Non-linear state-space model{
xk = f (xk−1, ik−1) + ωk−1
yk = g(xk, ik) + υk

Step 1: Initialization
L = dim(xk), λ = α2(L + κ), c =

√
L + λ, Wc = Wm = [λ/c, 0.5/c + zeros(1, 2L)]

Wc(1) = Wc(1) + (1− α2 + β), Qk = E(ωkωk
T), Rk = E(υkυk

T)

For k = 1, 2, ..., n, loop from step 2 to step 12.
Step 2: Create sigma points√

P+
k−1 = chol(P+

k−1)

χ+
k−1 = [x+k−1, x+k−1 + c

√
P+

k−1, x+k−1 − c
√

P+
k−1]

Step 3: Priori sigma points update
χ−k,m = f (χ+

k−1,m, ik−1) + ωk−1, m = 1, 2, · · · 2L

Step 4: Priori state update

x−k =
2L+1

∑
m=1

χ−k,mWm(m)
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Table 3. Cont.

Step 5: Priori error covariance update

P−k =
2L+1

∑
m=1

(χ−k,m − x−k )Wc(m)(χ−k,m − x−k )
T
+ Qk−1

Step 6: Measurement for sigma points update
ψ−k,m = g(χ−k,m, ik) + υk, m = 1, 2, · · · 2L

Step 7: Measurement update

y−k =
2L+1

∑
m=1

ψ−k,mWm(m)

Step 8: Measurement covariance update

Pyy,k =
2L+1

∑
m=1

(ψ−k,m − y−k )Wc(m)(ψ−k,m − y−k )
T
+ Rk

Step 9: State/measurement cross covariance update

Pxy,k =
2L+1

∑
m=1

(χ−k,m − x−k )Wc(m)(ψ−k,m − y−k )
T

Step 10: Kalman gain update
Kgk = Pxy,k/Pyy,k

Step 11: Posteriori state update
x+k = x−k + Kgk(yk − y−k )

Step 12: Posteriori error covariance update
P+

k = P−k − KgkPyy,kKgk
T

4.4. Particle Filter

Particle filters appear ideal for application to SoC estimation, as they can be used with any kind
of state space model [52] including those with non-Gaussian noise [53]. These algorithms employ
Monte Carlo methods to generate particles expressing the state estimation distribution probability.
The operation of the PF algorithm is summarized in Table 4. As before, the initial value of x is set equal
to that used in EKF, for a fair comparison between the different algorithms. In addition, we model
the process noise and measurement noise as Gaussian distributions, with Q = 10−8 and R = 0.00005.
In consideration of the accuracy and efficiency of computation, the number of particles, N, is set to 20.
These particles are also described by a Gaussian distribution, with a variance of 0.0008 with respect to
SoC and 0.004 for U1.

Table 4. Summary of particle filter operation [54].

Non-linear state-space model{
xk = f (xk−1, ik−1, ωk−1)↔ p( xk|xk−1)
yk = g(xk, ik, υk)↔ p( yk|xk)

Step 1: Initialization

xi
particle = 1

σ
√

2π
exp(− (x−x0)

2

2σ2 ), i = 1, 2, 3, . . . , N

For k = 1, 2, ..., n, loop from step 2 to step 6.
Step 2: Prediction
Prior probability distribution
xi

particle,k ≈ p( xk|xi
particle,k−1) ≈ f (xi

particle,k−1, ik, ωk−1)

Corresponding observational values
ŷi

particle,k ≈ g(xi
particle,k, ik, υk)

Step 3: Update-importance sampling
Likelihood distribution

qi
k = p( ŷi

particle,k

∣∣∣xi
particle,k)

1√
2πR

exp(−
(yk−ŷi

particle)
2

2R )

Step 4: Weighting value normalization

ωi
k = qi

k/
N
∑

i=1
qi

k
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Table 4. Cont.

Step 5: Resampling- Eliminate particles with low weights and duplicate particles with high weights

[
_̂
x

i

particle,k, ω̂i
k] = resample[xi

particle,k, ωi
k], ω̂i

k = 1/N

Step 6: State update

x̂k =
N
∑

i=1
ω̂i

k
_̂
x

i

particle,k

5. Results and Discussion

To verify the applicability of the proposed algorithms to LMB management, we evaluated the
results of estimation using qualitative analyses of the derived parameters and quantitative analyses of
the error between the predicted and reference values of SoC and CCV. In this paper, the root mean
square error (RMSE), defined below, was used in analysis:

RMSE =

√
1
n

n

∑
i=1

(xi − x+i )
2 (8)

where xi and xi
+ are the reference value obtained from the battery tester and the value predicted using

the relevant algorithm, respectively and n is the total number of data points. We also compared the
convergence times and computation times obtained with different initial value settings and the RMSEs
of the different SoC estimates after convergence.

The main factors that affect the accuracy and convergence of estimation are, generally, the accuracy
of the model, the initial value setting and the current profile. Hence, as previously mentioned, we tested
each algorithm with four different initial SoCs (1, 0.85, 0.75 and 0.6). The results of estimation with
these initial values, for the different current profiles, are depicted separately. In these experiments,
we assume that the real initial value is equal to 1 such that the first SoC tested is for verifying the
proximity of the predicted result to that of the actual system and the remaining three (0.85, 0.75 and 0.6)
are used to test the effect of deviation from the initial value. We specifically included an initial SoC of 0.6
for testing, in consideration of the properties of Li-Bi LMBs, to evaluate the algorithms’ response to the
quasi-static OCV-SoC relationship in this region. We considered three application scenarios: (a) pulse
discharge, (b) constant current discharge and (c) hybrid pulse charge/discharge, in accordance with
the current profiles detailed in Section 3 and illustrated in Figure 3b–d, respectively. The same battery
capacity (200 Ah) was used in all calculations, without considering deviations caused by aging and
changes to the current profile, to examine the robustness of the algorithms. The batteries tested here
were fully-charged using a constant current-constant voltage strategy. All simulations were conducted
on the same system, a 3.6-GHz Intel Core i7-4790 CPU, with 16 GB of RAM and a 64-bit operating
system. Comparisons between the SoCs obtained from experiments and those estimated using the
proposed algorithms, for the different current profiles, are shown in Figures 6–8. The subfigures (a–c)
relate to the SoC estimates made using the EKF, UKF and PF algorithms, respectively, while (d–f) are
the respective estimation errors for these algorithms. The results of error analysis for the different
algorithms in different scenarios are summarized in Tables 5–7.

5.1. SoC Estimation Results in Pulse Discharge Mode

The properties of Li-Bi LMBs, particularly the quasi-static SoC-OCV relationship when the SoC is
between 65% and 0%, can be used to explain the results of estimation. We note from Figure 6 that when
the UKF algorithm is applied for estimation in the pulse discharge scenario, the results converge to the
actual SoC after 63 and 65 s, respectively, with initial settings of 0.85 and 0.75. In contrast, convergence
only occurs after 1539 s when the initial SoC is 0.6. When the EKF and PF algorithms are used for
estimation, the convergence time with an initial SoC of 0.6 is about twice of that obtained with an initial
SoC of 0.75.
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Figure 6. Comparison of SoC measured in pulse discharge mode (scenario (a)) with estimates made
using different initial values (SoC0): (a) SoC estimation using EKF; (b) SoC estimation using UKF;
(c) SoC estimation using PF; (d) Error of SoC estimation using EKF; (e)Error of SoC estimation using
UKF; (f) Error of SoC estimation using PF.

We observe that, with the PF algorithm, the convergence time increases in proportion to the
magnitude of deviation between the initial value and the true SoC value. The partially enlarged plots
in the insets to subfigures (d–f) indicate that after convergence, the estimation error distributions
obtained using the EKF algorithm were consistent, regardless of the initial SoC. In contrast, while the
distributions obtained using the UKF algorithm were consistent when the initial SoCs were above
0.65, these values differed from the one obtained with an initial SoC below 0.65. We also note that
the error distributions change irregularly throughout the estimation. To highlight the differences in
performance observed with the different algorithms and initial values, the RMSE of the SoC estimates
for the complete test period and the value obtained after convergence, are listed in Table 5, together
with the convergence times. Our results indicate that the estimates obtained using the EKF and UKF
algorithms, with different initial SoCs, are convergent. The estimation of the SoC with SoC0 set as 1 is
used to evaluate the accuracy of the three algorithms. The RMSE of EKF algorithm and UKF algorithm
are 0.0118 and 0.0063, respectively, indicating that for the SoC estimation, the UKF algorithm has
a higher accuracy. The difference between the two algorithms is mainly caused by the modelling error.
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Table 5. RMSE and convergence time for SoC estimation in pulse discharge mode (scenario (a)),
using EKF, UKF and PF with different SoC0 values.

Algorithm SoC0 Overall RMSE Convergence Time (s) RMSE after Convergence

EKF

1 0.0118 1 0.0118
0.85 0.0171 786 0.0130
0.75 0.0263 1622 0.0124
0.6 0.0533 2585 0.0121

UKF

1 0.0063 1 0.0063
0.85 0.0067 63 0.0063
0.75 0.0071 65 0.0063
0.6 0.0988 1539 0.0080

PF

1 0.0114 1 0.0114
0.85 0.0195 1841 0.0158
0.75 0.0327 3419 0.0092
0.6 0.0857 7984 0.0188

In the PF algorithm, particles described by a Gaussian distribution are used to describe the state
estimation distribution probability and resampling is applied. So, the estimation results may not
change smoothly like the other two algorithms. The RMSE after convergence using PF algorithm with
different SoC0 are 0.0114, 0.0158, 0.0092 and 0.0188, varying substantially, indicating that this algorithm
may not be suitable for the SoC estimation of LMB. Since, this is a device that is hard to determine the
initial SoC accurately.

The difference between overall RMSE and RMSE after convergence is caused mainly of the
difference between the SoC0 set at the beginning of the estimation and the difference between them
can be reduced by expanding the experimental time. The greater difference between the SoC0 and the
actual SoC value is, the greater difference between overall RMSE and RMSE after convergence will be.
The overall RMSE and RMSE after convergence shows little difference in UKF algorithm with SoC0 set
as 0.85 and 0.75 proving the ability of this algorithm in eliminating the influence of the initial value.

5.2. SoC Estimation Results in Current Discharge Mode

We note a similar convergence characteristic for the different algorithms in Figure 7. However,
the PF algorithm failed in scenario (b). The failure of the PF algorithm is due to the poor distribution
of particles and the invariant working current. The RMSEs of the SoC estimates after convergence
are listed in Table 6, together with the convergence times. Scenarios (a) and (b) both simulate battery
operation in a relatively stable state, explaining the similarities in the performance of the algorithms.

The error between the estimated and reference SoC in scenario (b) is higher than that observed
in scenario (a). This is because the SoC of a battery is reduced as it discharges. As previously noted,
the OCV is insensitive to SoC when this value is below 65%. However, since a polarization voltage
is generated when the current changes (when pulses are applied), the insensitivity of OCV to SoCs
below 65% can be compensated, reducing the error in the estimate obtained in scenario (a). In contrast,
the current is static in the constant current profile of scenario (b). As a result, SoC estimation depends
on Coulombic accumulation, which intensifies errors. We observed a significant increase in error at
13500 s, with all three algorithms investigated, when the SoC was close to zero. This can be explained
by the fact that there is a rapid decline in voltage at the end of the discharge process, while the OCV
remains unchanged. With little compensation from polarization voltage, the reduced sensitivity of
OCV and Ro to SoC cause a calculation error.
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Table 6. RMSE and convergence time for SoC estimation in constant current discharge mode (scenario (b)),
using EKF, UKF and PF with different SoC0 values.

Algorithm SoC0 Overall RMSE Convergence Time (s) RMSE after Convergence

EKF

1 0.0271 1 0.0271
0.85 0.0367 311 0.0334
0.75 0.0503 716 0.0310
0.6 0.1071 1801 0.0279

UKF

1 0.0255 1 0.0255
0.85 0.0264 17 0.0263
0.75 0.0256 18 0.0250
0.6 0.1377 1105 0.0376

PF

1 0.0288 1 0.0288
0.85 0.0429 446 0.0403
0.75 0.0871 851 0.0764
0.6 0.2524 - -
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The overall RMSE and RMSE after convergence using all three algorithms in scenario (b) are
larger than that in scenario (a) show that these algorithms have difficulty in dealing with a long-lasting
constant working condition. The UKF algorithm works better than the others.

5.3. SoC Estimation Results in Hybrid Pulse Charge/Discharge

From Figure 8, we are able to observe clear distinctions in the behavior of the three algorithms.
Although they all converge to the reference value initially, with the EKF algorithm, the estimation
error began to grow after 4 h, eventually reaching a maximum of 0.3. While the estimates obtained
with the PF algorithm mirrored the changes to the actual SoC, there were large errors between the
different values. We note a similar convergence characteristic with the PF algorithm in Figures 6 and 8.
In contrast, with the UKF algorithm, after convergence, the estimates reflected the changes to the actual
SoC, with an RMSE of about 0.019, even when the SoC was below 65%. In addition, convergence
was quicker with this algorithm than it was with the PF and EKF, indicating it had the best overall
performance of the techniques considered. The RMSEs of the SoC estimates after convergence are
listed in Table 7, together with the convergence times. From this, we note that with the EKF and UKF
algorithms, the RMSEs are larger and the distribution is more consistent, regardless of the initial SoC,
than the results obtained in application scenario (a) and (b).

The estimation errors observed with these results can partly be explained by the conditions
defined for scenario (c). The fluctuations in the current profiles have an effect on SoC estimation,
as discussed earlier in the comparison between Figures 6 and 7. The experiment was conducted for
25 h, after which the total capacity of the battery, which has a self-discharge current of 0.4 A, had been
reduced to nearly 5%. As this self-discharge current is negligible compared to the working current
of the cell, it is ignored in the ECN model and the capacity of the battery remains constant at 200 Ah.
Hence, real-time update of the battery capacity, according to parameters such as the working current,
working time and cycle life may improve the accuracy of the algorithms.
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Table 7. Root mean square error (RMSE) and convergence time for SoC estimation in hybrid pulse
charge/discharge mode (scenario (c)) using EKF, UKF and PF with different SoC0 values.

Algorithm SoC0 Overall RMSE Convergence Time (s) RMSE after Convergence

EKF

1 0.1021 1 0.1021
0.85 0.1024 961 0.1021
0.75 0.1064 2640 0.1021
0.6 0.1089 2641 0.1021

UKF

1 0.0190 1 0.0190
0.85 0.0186 73 0.0186
0.75 0.0191 100 0.0190
0.6 0.0817 1898 0.0199

PF

1 0.0486 1 0.0486
0.85 0.0373 2443 0.0361
0.75 0.0486 3421 0.0447
0.6 0.0818 7998 0.0475

5.4. Further Discussion

We note from a comparison of Figures 6–8, that the UKF algorithm shows the most stable
convergence characteristic, while the EKF algorithm fails in long-lasting estimation and the PF
algorithm fails with the constant current profile. Convergence was quickest with the UKF algorithm
and there was little change in the RMSE of the overall SoC estimates and the values obtained after
convergence, which were about 0.007, 0.026 and 0.019 in scenarios (a), (b) and (c), respectively.
Convergence was longer with the EKF algorithm, after which the RMSE of the SoC estimates remained
relatively stable at about 0.012, 0.03 and 0.10 for scenarios (a), (b) and (c), respectively. The PF algorithm
required the longest time for convergence. In addition, SoC estimation was much more accurate in
scenarios (a) and (c), than in scenario (b).

We also note that the convergence time increases when the SoC0 set in the calculation is decreased.
This can be explained by the characteristic of the LMB. When the SoC0 is set as 0.6, it is below 0.65.
This device has a quasi-static OCV-SoC relationship when the SoC changes between 0 to 0.65 while the
Ro-SoC curve is not obvious either. So, the observational values calculated by the state estimates in the
algorithms changes little at the beginning of the simulation and more steps are needed to converge
the difference between estimated and actual observational values, which means more convergence
time. When the SoC0 are set above 0.65, such as 0.85 and 0.75, both the OCV-SoC curve and the Ro-SoC
curve are more obvious, the convergence is much easier to be achieved. As the LMB is fully charged at
the beginning of the experiments in all three scenarios, SoC0 set as 0.85 is closer to the real initial value
than SoC0 set as 0.75, resulting in a shorter convergence time than the latter one.
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The computation times of the three algorithms in the different scenarios, as well as the duration
of testing, are also considered and shown in Table 8. Computation is quickest with the EKF algorithm,
which spends approximately 0.26 ms making one estimation. As the evaluation of Jacobi matrices
((6) and (7)) accounts for half of the computation time, it can be said that the complexity of calculation
is primarily influenced by the battery model. The UKF algorithm spends almost twice as much time
in computation than the EKF algorithm, meaning that it takes about 0.5 ms to make one estimation.
Calculation of the four iterative functions (4)–(7) takes about 61.9% of the total simulation time,
indicating that the speed of computation could be improved if the battery model could be simplified
and the order of the functions could be reduced without compromising their accuracy. Finally,
while computation with the PF algorithm is about three times longer than it is with the UKF, taking
about 1.5 ms to make one estimation, this increased duration does not lead to an improved SoC estimate.

Table 8. Computation time for SoC estimation.

Algorithm Scenario (a) Scenario (b) Scenario (c)

EKF 11.908 (s) 4.13 (s) 25.863 (s)
UKF 23.717 (s) 8.291 (s) 52.215 (s)
PF 73.820 (s) 24.810 (s) 158.264 (s)

Test time 12.179 (h) 4.081 (h) 25.778 (h)

To verify that increased algorithmic complexity could improve the accuracy of estimation, we also
tested the performance of the PF algorithm with 100 particles (PF (100)), instead of 20 particles (PF (20)).
The RMSEs and the time spent in estimation are listed in Table 9, where we are able to note that
although the computation time increased by a factor of six with these experiments, any reductions in
the RMSE were negligible, indicating that the PF algorithm may not be suitable for Li-Bi LMBs.

Table 9. RMSE and calculation time for SoC estimation in scenarios (a)–(c) using PF (100) and PF (20)
with different SoC0 values.

Algorithm SoC0 Scenario (a) Scenario (b) Scenario (c)

PF (100)

1 0.0296 0.0274 0.0412
0.85 0.0184 0.0323 0.0505
0.75 0.0357 0.0563 0.0507
0.6 0.0672 0.2051 0.0761

Time 397.378 (s) 132.327 (s) 918.940 (s)

PF (20)

1 0.0114 0.0288 0.0486
0.85 0.0195 0.0429 0.0373
0.75 0.0327 0.0871 0.0486
0.6 0.0857 0.2524 0.0818

Time 73.820 (s) 24.810 (s) 158.264 (s)

6. Conclusions

In this paper, we have introduced the properties of Li-Bi LMBs, to illustrate the difficulties involved
in using traditional SoC estimation techniques. We note that open-circuit-voltage and Coulombic
counting methods are unsuitable for these devices, because of a partially quasi-static OCV-SoC
relationship and the difficulties involved in determining the initial SoC. Hence, we established an ECN
battery model and explored the performance of the extended Kalman filter, the unscented Kalman
filter and the particle filter for SoC estimation, using three current profiles: a constant current discharge
profile, a pulse discharge profile and a hybrid pulse profile comprising charging and discharging
processes. The first two scenarios consider ideal working conditions, while the last one simulates
a more realistic mode of operation. In a reflection of the properties of LMBs, the RMSE is very small
when the initial SoC is above 0.65 and rises when this is below 0.65. Since SoC estimation is difficult
with a constant working current, the variation that occurs above 0.65 enables accurate completion
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of this estimation process, to overcome the difficulties caused by the quasi-static region of OCV-SoC
curve. Our results indicate that the UKF algorithm gives the best overall performance for all the
current profiles considered. In particular, in dynamic working conditions, we obtained RMSEs below
0.02, with this algorithm. Although EKF performs well in relatively stable conditions and can complete
operations at twice the speed of the UKF, the magnitude of the estimation errors increases with the
duration of monitoring. While the PF algorithm works well when the initial SoC is close to the actual
value, it is better optimized for operation in dynamic rather than static conditions, where it risks
failure. The computation time of this algorithm is also about six times longer than that of the EKF
or three times longer than the UKF. As the intended application of the battery is as part of a power
grid, where its mode of operation will change frequently without schedule, monitoring is necessarily
real-time and long-lasting. Based on these characteristics, the UKF algorithm is most suitable for
battery management system because it converges quickly to an accurate SoC estimate.

To improve SoC estimation performance, future work will concentrate on developing a simpler,
more accurate battery model and the possible adoption of on-line parameter identification. As a battery
model considering self-discharge is recommended for long-time SoC estimation, the inclusion of
relationships between battery parameters and SoC at different working currents will increase the
accuracy of the battery model. Further experiments determining other parameters sensitive to current,
for creation of a different model and studying the capacity attenuation mechanism, will be conducted.
Finally, as we only considered a constant operating temperature in this study, future work will also
concentrate on SoC estimation in more varied temperature environments.
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Appendix A

focv(x1) = 0.72 + 0.05x1 − 1.36x1
2 + 14.01x1

3 − 67.14x1
4 + 142.64x1

5 − 45.17x1
6 − 283.63x1

7

+ 312.57x1
8 − 6.46x1

9 + 298.42x1
10 − 868.28x1

11 + 810.42x1
12 − 317.52x1

13

− 451.08x1
14 − 32.72x1

15 + 2170.97x1
16 − 2533.14x1

17 + 857.70x1
18

(A1)

fro(x1) = 0.0024− 0.00074x1 + 0.0076x1
2 − 0.027x1

3 + 0.035x1
4 − 0.0043x1

5 − 0.12x1
6 − 0.83x1

7

− 1.77x1
8 + 0.34x1

9 − 0.062x1
10 + 5.14x1

11 − 0.11x1
12 − 12.22x1

13 + 1.67x1
14

+ 10.53x1
15 − 0.011x1

16 − 0.13x1
17 − 9.22x1

18 + 5.12x1
19

(A2)

fc1(x1) = 36671.8 + 19.8x1+422036x1
2 − 41.3x1

3 + 17703x1
4 − 8.4x1

5 − 15551650x1
6 − 8.6x1

7

+ 64892385x1
8 + 27.2x1

9 − 102633235x1
10 + 25.8x1

11 + 19713412x1
12 − 4.7x1

13

+ 133991065x1
14 − 7.5x1

15 − 150678378x1
16 − 30x1

17 − 49790751x1
18

(A3)

fr1(x1) = 0.0075− 0.13x1 + 0.96x1
2 − 3.88x1

3 + 8.64x1
4 − 9.48x1

5 + 0.52x1
6 + 11.16x1
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− 12.75x1
8 + 5.92x1

9 − 0.99x1
10 (A4)
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