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Abstract: The research on DC-DC power converters has been a matter of interest for years since
this type of converter can be used in a wide range of applications. The main research is focused on
increasing the converter voltage gain while obtaining a good efficiency and reliability. Among the
different DC-DC converters, the flyback topology is well-known and widely used. In this paper, a
novel high efficiency modified step-up DC-DC flyback converter is presented. The converter is based
on a N-stages flyback converter with parallel connected inputs and series-connected outputs. The use
of a single main diode and output capacitor reduces the number of passive elements and allows for a
more economical implementation compared with interleaved flyback topologies. High efficiency
is obtained by including an active snubber circuit, which returns the energy stored in the leakage
inductance of the flyback transformers back to the input power supply. A 4.7 kW laboratory prototype
is implemented considering four flyback stages with an input voltage of 96 V and an output voltage
of 590 V, obtaining an efficiency of 95%. The converter operates in discontinuous current mode then
facilitating the output voltage controller design. Experimental results are presented and discussed.

Keywords: DC-DC power converters; DC power supply; snubber

1. Introduction

The flyback converter topology is a well-known and widely-used DC-DC power converter whose
applications cover a broad spectrum including DC motor drives [1,2], switching power supplies [3,4],
photovoltaic generation [5,6], electric cars [7,8] and fuel cell-based generation systems [9,10], among
others [11,12]. For the standard flyback converter topology [13], different modifications have been
proposed in the literature. In reference [14] a converter consisting of the integration of basic zeta and
flyback converter topologies is presented. This zeta-flyback converter combines the main features of
both topologies such as low output voltage and current ripple of the zeta converter with the galvanic
isolation provided by the flyback converter configuration. In reference [8], a topology based on a
bidirectional flyback converter is proposed. The converter is capable of handling multiple power
sources and is intended to manage the energy stored in the batteries of a hybrid vehicle.

Another type of configuration extensively presented in the technical literature consists of splitting
a full converter into several standard flyback cells, each managing a part of the converter overall power.
These modular converters can be classified into four architectures depending on the connection form of
the individual cells, namely input-parallel output-parallel (IPOP), input-parallel output-series (IPOS),
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input-series output-parallel (ISOP), and input-series output-series (ISOS). Figure 1 shows schemes of
the mentioned architectures.

Energies 2019, 12, x 2 of 16 

 

connection form of the individual cells, namely input-parallel output-parallel (IPOP), input-parallel 
output-series (IPOS), input-series output-parallel (ISOP), and input-series output-series (ISOS). 
Figure 1 shows schemes of the mentioned architectures. 

 
(a) (b) (c) (d) 

Figure 1. Architectures of modular flyback converters: (a) IPOP, (b) IPOS, (c) ISOS, (d) ISOP. 

In general, these modular converters are known as flyback interleaved [15–19] and have become 
the most widely used circuit configuration arisen from the basic flyback topology. Their goal is to 
increase the effective output switching frequency and to reduce the peak-to-peak voltage ripple. 

However, most of the interleaved topologies consider a full standard flyback converter as a basic 
module; therefore, in a converter built with N cells, the number of every circuit element will be 
multiplied by N. This will considerably increase the cost and volume of the modular converter 
compared to the standard topology. Moreover, as the interleaving requires to shift the triggering 
pulses of the power switches, the control system must produce N independent transistors gate pulses, 
then increasing the complexity of the control scheme. 

On the other hand, in reference [20] a novel N-stages flyback converter with parallel inputs and 
series outputs is presented. The main feature of this converter is that it considers the series connection 
of the secondary winding transformers instead of connecting in series the output capacitors of the 
individual stages, as in the interleaved ISOP topology. Therefore, only one output diode and 
capacitor are necessary. Furthermore, this converter does not require shifting the transistors 
triggering pulses, and because of this, the control circuit should produce only one gate pulse for all 
the power switches, reducing its complexity. 

Nevertheless, a drawback of the flyback converter is within the transformer leakage inductances. 
As the transformers’ secondary windings should manage the overall output current, and the 
converter must allow or block the current circulation in a short period of time, there could be high 
voltage peaks in the transformer (𝐿 𝑑𝑖 𝑑𝑡⁄  voltages due to leakage inductance). To reduce this effect, 
a passive snubber network could be used to suppress the voltage transients dissipating the associated 
energy as heat in a resistor (RCD snubber circuit). 

Another type of snubber network uses an auxiliary switch connected in series with a capacitor. 
This configuration allows to reduce the voltage peaks while the energy stored in the capacitor can be 
returned to the power supply, thus increasing the operating efficiency of the converter. In this work, 
a modified flyback converter based on the topology shown in reference [20] is presented. To reduce 
the voltage transient problems and increase the converter efficiency, active snubber networks are 
incorporated in every flyback converter transformer. Although simpler and cheaper circuits could be 
proposed instead of an active snubber (e.g., an auxiliary winding with a diode [21]), the advantage 
of the active snubber network is that the peak collector-emitter voltage of the switches can be 
controlled by adjusting the duty cycle of the snubber switch. On the other hand, when using passive 
snubber networks, the peak voltages in a semiconductor can be damped but this damping is not 
controllable. Moreover, with active snubbers the recovery of energy is greater than with passive 
snubbers and the converter efficiency increases [21]. 

In this sense, the inclusion of active snubber networks is highlighted as an important 
contribution of this article. The topology proposed is depicted in Figure 2. 

Vin VinRL RL

Module 1

Module 2

Module n

Module 1

Module 2

Module n

Vin VinRL RL

Module 1

Module 2

Module n

Module 1

Module 2

Module n

Figure 1. Architectures of modular flyback converters: (a) IPOP, (b) IPOS, (c) ISOS, (d) ISOP.

In general, these modular converters are known as flyback interleaved [15–19] and have become
the most widely used circuit configuration arisen from the basic flyback topology. Their goal is to
increase the effective output switching frequency and to reduce the peak-to-peak voltage ripple.

However, most of the interleaved topologies consider a full standard flyback converter as a
basic module; therefore, in a converter built with N cells, the number of every circuit element will
be multiplied by N. This will considerably increase the cost and volume of the modular converter
compared to the standard topology. Moreover, as the interleaving requires to shift the triggering pulses
of the power switches, the control system must produce N independent transistors gate pulses, then
increasing the complexity of the control scheme.

On the other hand, in reference [20] a novel N-stages flyback converter with parallel inputs and
series outputs is presented. The main feature of this converter is that it considers the series connection
of the secondary winding transformers instead of connecting in series the output capacitors of the
individual stages, as in the interleaved ISOP topology. Therefore, only one output diode and capacitor
are necessary. Furthermore, this converter does not require shifting the transistors triggering pulses,
and because of this, the control circuit should produce only one gate pulse for all the power switches,
reducing its complexity.

Nevertheless, a drawback of the flyback converter is within the transformer leakage inductances.
As the transformers’ secondary windings should manage the overall output current, and the converter
must allow or block the current circulation in a short period of time, there could be high voltage peaks
in the transformer (Ldi/dt voltages due to leakage inductance). To reduce this effect, a passive snubber
network could be used to suppress the voltage transients dissipating the associated energy as heat in a
resistor (RCD snubber circuit).

Another type of snubber network uses an auxiliary switch connected in series with a capacitor.
This configuration allows to reduce the voltage peaks while the energy stored in the capacitor can
be returned to the power supply, thus increasing the operating efficiency of the converter. In this
work, a modified flyback converter based on the topology shown in reference [20] is presented. To
reduce the voltage transient problems and increase the converter efficiency, active snubber networks
are incorporated in every flyback converter transformer. Although simpler and cheaper circuits could
be proposed instead of an active snubber (e.g., an auxiliary winding with a diode [21]), the advantage
of the active snubber network is that the peak collector-emitter voltage of the switches can be controlled
by adjusting the duty cycle of the snubber switch. On the other hand, when using passive snubber
networks, the peak voltages in a semiconductor can be damped but this damping is not controllable.
Moreover, with active snubbers the recovery of energy is greater than with passive snubbers and the
converter efficiency increases [21].
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In this sense, the inclusion of active snubber networks is highlighted as an important contribution
of this article. The topology proposed is depicted in Figure 2.
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Figure 2. Proposed topology.

The different operation modes of the converter are presented and discussed. To validate the
feasibility of the proposed converter, a laboratory prototype of 4.7 kW has been built and experimental
results are presented considering a closed-loop voltage control scheme. Moreover, an efficiency analysis
for the topology presented is carried out.

The paper is organized as follows. Section 2 describes the operating principle of the converter
including voltage and current equations. Section 3 shows a mathematic derivation of the converter
voltage transfer ratio. Section 4 describes the control scheme used for the proposed topology, Section 5
shows the experimental results obtained, and Section 6 presents a brief efficiency analysis of the
converter. The conclusions of the work are stated in Section 7.

2. Operating Principle

The different operation modes of the proposed converter are analyzed under the
following assumptions:

(1) The output voltage has negligible ripple.
(2) The coupled inductors (so called “flyback transformers”) are identical and have unity turns ratio.
(3) The parameters of the flyback transformers are referred to the primary side.
(4) The windings resistances are neglected.
(5) The active snubber circuit returns the energy stored in the leakage inductance back to the supply.
(6) The power semiconductor devices are ideal.
(7) The converter operates in Discontinuous Conduction Mode (DCM).
(8) Main switches and snubber switches cannot be closed at the same time. D1 is the duty cycle for

the main switch, and D2 is the duty cycle for the snubber switch.
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2.1. Operating Mode 1 (0 ≤ t ≤ ton)

In this mode, all the main switches are closed, then the same current circulates in every inductor
primary coil and main transistor (Figure 3a). The input voltage is applied to the input magnetizing
inductance of every transformer and their leakage inductances store the energy supplied by the source.
The diode Dmain is reverse-biased and the capacitor Co discharges in the load resistor Ro the energy
stored in the last period. It can be shown that the peak current in every main switch Si with i = 1 . . .N
is given by:

INmax =
Vin D1

(Lm + Ll) fs
(1)

where Vin is the converter supply voltage, D1 is the duty cycle of the main switches, Lm is the
magnetizing inductance of each transformer, Ll is the leakage inductance, and fs is the switching
frequency of the converter. The voltage in the primary and secondary inductors are given by (2) and
(3), respectively:

Vp,N = Vin (2)

Vs,N = −
(Vin

a

)
(3)
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The voltage in the main diode is:

VDmain = −
(
N

Vin
a

+ Vo

)
(4)



Energies 2019, 12, 2066 5 of 17

with Vo being the converter output voltage, a is the transformers turns ratio, and N is the number of
flyback transformers. The output current is:

Io =
Vo

Ro
= −ICo (5)

where ICo is the output capacitor current. On the other hand, the switches of every snubber circuit are
opened. However, each snubber capacitor is charged with a voltage VCsnb(0) from the previous cycle.
This voltage is determined by:

VCsnb(0) = INmax Ll
1

tan
[

D2 Ts

2
√

Ll Csnb

] + Vo (6)

where Ts is the switching period, Csnb is the snubber capacitor, and INmax is the maximum current in the
main switch.

To obtain (6) it is necessary to define the current when the snubber is activated, which is defined by:

isnb(t) =

(
Vo −VCsnb(0)

)
Ll

√
LlCsnb sin(ωt) + I(0) cos(ωt) (7)

where I(0) is the initial current (from the previous cycle) and the frequency is ω = 1/
√

LlCsnb. Then, the
voltage VCsnb(0) shown in (6) is given by evaluating (7) at t = (D2Ts)/2 considering that the current
isnb

(D2Ts
2

)
= 0 and I(0) = INmax (see Figure 4).
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2.2. Operating Mode 2 (ton ≤ t ≤ t1)

In this mode, all the main switches are turned off and the snubbers diodes (in parallel with the
snubber IGBTs) are conducting current (Figure 3b) from t = ton to t = t1. However, although it will
not conduct any current until t = t1, the snubber IGBT is triggered at t = ton. This is performed for



Energies 2019, 12, 2066 6 of 17

simplicity, since it would be very difficult to know precisely the instant t = t1 as it depends on the
leakage inductance (which is difficult to measure accurately).

The current in the magnetizing inductance Lm circulates through the primary winding and the
leakage inductance (Ll). The current in the main diode is given by:

IDmain = iLm(t) − ILl (8)

The magnetizing inductance current iLm decreases linearly until the stored energy falls to zero in
an instant ton. The expression for the magnetizing inductance current is:

iLm(t) =
(
−

ILmmax
Vo

VinD1Ts
t + ILmmax

)
+ ILl (9)

The current in the leakage inductance iLl equals the current in the snubber capacitor and is given
by:

iLl(t) = iCsnb(t) =
Vo −VCsnb(0)

Ll

√
LlCsnb sin

(
1

√
LlCsnb

t
)
+ ILmmax

cos
(

1
√

LlCsnb
t
)

(10)

and the voltage in the leakage inductance (vLl ) is defined by:

vLl(t) = Ll
diCsnb(t)

dt
= Vo/N −VCsnb(0) cos

(
1

√
LlCsnb

t
)
− ILmmax

Ll
√

LlCsnb
sin

(
1

√
LlCsnb

t
)

(11)

In this state, the voltage in the magnetizing inductance is VLm = −Vo. Then, the snubber capacitor
voltage is:

vCSnb = VLl + VLm (12)

At t = t1, the current in the snubber capacitor decreases to zero.

2.3. Operating Mode 3 (t1 ≤ t ≤ t2)

In this operating mode (Figure 3c), all the snubbers IGBT switches are turned on. There is an
energy balance between the snubber capacitor and the leakage inductance. Therefore, the energy
delivered by the inductor to the snubber capacitor is returned to the leakage inductance. Hence, the
current in the leakage inductance at t = t2 is maximum of value ILmmax

but with the opposite direction
to operating mode 2.

At the end of this period, the output capacitor recovers its initial charge of operating mode 1. The
blocking voltage of the main switches is given by:

VCEo f f = VLl(t) + VLm −Vin = VLl(t) −Vo −Vin (13)

and the current in the main diode is defined by:

iDmain(t) = iLm(t) − iLl(t) (14)

2.4. Operating Mode 4 (t2 ≤ t ≤ t3)

This operating mode is shown in Figure 3d. In this case, all the main IGBT switches are turned
off but their anti-parallel diodes are conducting current. Therefore, the energy stored in the leakage
inductance is delivered back to the input voltage source. The leakage inductance current decreases to
zero. The main diode current begins to decrease and the voltage in the leakage inductance (VLl) is
defined by:

VLl = Vin + Vo/N (15)



Energies 2019, 12, 2066 7 of 17

The instant t = t3 corresponds to the time where the leakage inductance current falls to zero, and
can be calculated with:

t3 − t2 = VLl ·
D2Ts

2 (Vin + Vo/N)
(16)

where VLl is the average voltage in the leakage inductance.

2.5. Operating Mode 5 (t3 ≤ t ≤ t4)

In this operating mode (shown in Figure 3e), the energy stored in the leakage inductance is totally
delivered to the input supply. The main diode current decreases to zero at t = t4. The period where
the main diode is conducting can be calculated as:

∆t4 =
VinD1Ts

Vo/N
(17)

From t = ton to t = t4, the output capacitor Co receives the energy stored in the magnetizing
inductance, then its charge increases as well as its voltage.

2.6. Operating Mode 6 (t4 ≤ t ≤ Ts)

In this mode, all the switches are turned-off, as shown in Figure 3f. The energy stored in the
output capacitor is delivered to the load resistor. The current in the output capacitor is given by:

iCo(t) = −Io (18)

where the output current Io is imposed by the load.
The main waveforms obtained from the different operating modes are summarized in Figures 4

and 5. In Figure 4, the magnetizing current ILm of the transformers (top), the main switches current
IIGBTmain (middle) and the snubber switches current IIGBTsnb (bottom) are shown. Figure 5 shows the
voltage in the main switches VCEmain (top), the current IDmain in the main diode (middle), and the gating
signals of main and snubber IGBT switches (bottom).
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3. Voltage Transfer Ratio

The voltage gain of the power converter is derived assuming equal input and output power
Pin = VinIin = VoIo = Po = V2

o /Ro (no losses in the converter). The average current of the snubber
switches (in a period) is zero (see Figure 4), and the average current of the main IGBT switches is
defined by:

IIGBTmain =
INmaxD1

2
−

I2
Nmax

Ll

2 Ts(Vin + (Vo/N))
(19)

On the other hand, since the expression for INmax is given in (1), the total input average current
Iin = NIIGBTmain is:

Iin = N
VinD2

1Ts

2(Lm + Ll)

(
1−

Ll Vin

(Lm + Ll)(Vin + (Vo/N))

)
(20)

Considering the above equations, it is obtained:

V2
o

V2
in

=
ND2

1Ro
(
(Lm + Ll)

(
1 + Vo

VinN

)
− Ll

)
2 fs (Lm + Ll)

2
(

Vo
VinN + 1

) (21)

Defining X = Vo/Vin, Equation (21) can be rewritten as:

X3 +
1
N

X2
−

D2RoN
2 fs (Lm + Ll)

X −
D2N2Ro

2 fs(Lm + Ll)

(
Ll

Lm + Ll
+ 1

)
= 0 (22)

This third-order equation is solved using the Cardano method [22], and for the parameters
considered in this work, it has two real negative roots and one positive real root. Since the converter
does not invert the polarity of the input voltage, only the positive root is valid, therefore the voltage
transfer ratio (VTR) of the topology proposed is:

Vo

Vin
= D1

√
N Ro

2 fs (Lm + Ll)
(23)

4. Control Scheme

A voltage control scheme is proposed for the topology. A Proportional+Integral (PI) controller
processes the difference between a reference voltage and the output measured voltage. The output of
the PI controller is intended to be the duty cycle of the converter D1 and is limited in the range 0–0.65.
The upper limit, so-called critical duty cycle (D1crit = 0.65), is set to avoid operation in Continuous
Conduction Mode (CCM) as DCM operation offers advantages in term of control simplicity and
converter efficiency [17]. For DCM operation, D1Ts + ∆t4 < Ts must be fulfilled. To operate with a
safety margin, it is stated that D1Ts + ∆t4 ≤ 0.96Ts to ensure DCM. The main duty cycle D1 is defined
by (23) and is dependent on the load (which is constant in this case). On the other hand, ∆t4 is defined
by (17) then the critical duty cycle D1crit is given by:

D1crit ≤ 0.96−
VinD1

(Vo/N)
(24)

For controller design purposes, the transfer function G(s) considered (output voltage/main switch
duty cycle) is given by:

G(s) =
Vo(s)
D1(s)

= Vin

√
NRo

2(Lm + Ll) fs

(1 + sRseCo

sRoCo + 1

)
(25)
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where Rse is the series-equivalent resistance of the output capacitor. As can be noted in (25), the transfer
function depends on the load resistor Ro. As the output voltage and current are measured, the value of
the load resistor can be easily calculated by Ro = Vo/Io. Then the controller parameters are calculated
(in a real-time Digital Signal Processor) every sampling period to adapt to the load. For controller
design purposes, the closed-loop transfer function of the system is obtained:

M(s) =

Aωc(Kps+Ki)
RoCo

s3 + s2 (1+RoCoωc)
RoCo

+ s (
ωc+AωcKp)

RoCo
+ AωcKi

RoCo

(26)

where A = Vin

√
RoN

2 fs(Lm+Ll)
·(1 + RseCo) (Rse is the equivalent series resistor of the output capacitor).

The parameters Kp and Ki of the controller are then calculated by equating the denominator of
(26) to the characteristic third-order polynomial (p(s) = (s + αo)

(
s2 + 2ξωns +ω2

n

)
). Therefore, the

proportional and integral constants of the controller are:

Kp =

(
2ξωn (1+RoCoωc)

Ro Co
− (2ξωn)

2 +ω2
n

)
RoCo −ωc

Vin ωc

√
RoN

2 fs (Lm+Ll)
(1 + RseCo)

(27)

Ki =
ω2

n RoCo

(
(1+RoCoωc)

RoCo
− 2ξωn

)
Vinωc

√
RoN

2 fs(Lm+Ll)
·(1 + RseCo)

(28)

where ωn is the natural frequency of the control loop, ξ is the damping ratio, and ωc is the cut-off

frequency of a low-pass filter used in the measurement of Vo. The values considered in this work
are ωn = 2100 [rad/s], ξ = 0.8 and ωc = 2000π [rad/s]. In Figure 6, a diagram of the control scheme
is shown.
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The Bode diagrams of the system in the open-loop and closed-loop are shown in Figures 7
and 8, respectively:
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From Figure 7, it can be noted that the phase margin in the open-loop operation of the converter is
zero as well as the gain margin; then the system is instable and requires a feedback controller. When
the voltage controller is included, the Bode diagram (Figure 8) shows a phase margin of about 70◦ and
an infinity gain margin (as the phase (Figure 8 bottom) never crosses the −180◦ line), then confirming
the stability of the closed-loop system.

5. Experimental Results

To validate the proposed topology, a laboratory prototype with four flyback modules has been
built. In this work, the maximum output power extracted from the converter is 4.7 kW; however, the
prototype has been constructed considering a larger power for future research. Each transformer is
rated at 5 kW, aiming to obtain 20 kW with four flyback stages. The semiconductors were also selected
considering an output power of 20 kW. The full power converter is aimed to be used in electrical drives
applications such as: electric traction using DC machines and DC supply for three-phase inverters
driving AC machines among others. The experimental system is shown in Figure 9.
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Figure 9. Experimental laboratory prototype.

The input supply consists of eight series-connected 12V AGM batteries. The main switches are
IGBTs model STGW35HF60WD and the model of the main diode is STTH9012TV; the snubber switch
is an IGBT model NGTB50N120FL2WG.

The flyback converter transformers (Figure 10) are built with a two-column ferrite core having a 3
[mm] airgap. The transformers parameters (referred to the primary side) are Rp = 4[mΩ] (primary
coil resistance), Ll = 10[µH] (leakage inductance), Lm = 170[µH] (magnetizing inductance) and
Rc ≈ 300[kΩ] (resistance of core losses); the turns ratio is 24 : 24→ a = 1 .
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The output capacitor is a polypropylene-type for low equivalent series-resistance (Rse = 2 mΩ).
The control system was implemented with a Texas DSP28335 microprocessor, and the gating signals
are transmitted to the converter via optical fiber. The experimental parameters are shown in Table 1.

The converter has been tested at rated power in steady state operation. The time period for the
experimental waveforms of Figures 11–14 is 200 µs. Figure 11 shows the currents of the main IGBT
switches. The negative peaks are due to the regeneration process where energy is returned to the
DC supply.
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Table 1. Experimental parameters.

Variable Description Value Variable Description Value

Vin Input voltage 96 V Co Output capacitor 320 µF
Vo Rated output voltage 590 V fs Switching frequency 10 kHz
Lm Magnetizing inductance 170 µH N Number of stages 4

nP/nS Transformers turns ratio 1 Po Rated power 4700 W
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Figure 15. Output voltage Vo (purple-Scale: 300 V/div) and output current Io (blue-Scale: 10 A/div).
Total time: 200 ms.

Finally, Figure 16 shows the output voltage (blue) and current (purple) during a load impact. The
voltage reference is set to 590 V and a load impact that increases the current from 1 A to 6 A is applied.
The output voltage is stabilized in about 3 ms. Both Figures 15 and 16 verify the effectiveness of the
voltage control strategy implemented.
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A summary of values obtained from experimental and simulation results is shown in Table 2.

Table 2. Summary of experimental and simulation values obtained.

Power Device Experimental Results Simulation Results

Main Switch

- Positive peak current : 32 A 31.5 A
- Negative peak current : 16 A 15.3 A
- Maximum

collector-emitter voltage
: 400 V 398.5 A

Snubber Switch

- Positive peak current : 24 A 23.3 A
- Negative peak current : 32 A 31.3 A

Main Diode

- Maximum current : 57 A 56.2 A

6. Efficiency Analysis

An efficiency study, based on experimental tests of the converter built, has been carried out. A first
analysis was performed in open-loop operation of the converter, with constant load and different duty
cycles. The results obtained are shown in Table 2, where Po and Pin are the output and input power,
respectively. The efficiency is calculated as η = 100 ·

(
Pout
Pin

)
. It is observed that the highest efficiencies

are achieved by operating the converter with duty cycles in the range 0.6–0.7. For duty cycles over 0.7,
the efficiency decreases due to higher conduction losses in the switches and passive elements. It is
worth mentioning that, as stated in Section 4, for duty cycles over 0.65, the converter operates in CCM
mode. This is done only for efficiency evaluation purposes.

A second analysis was carried out with closed-loop control operation. The output voltage Vo is
kept constant and maximum (590 V), and the output current is variable (variable load). The results
are presented in Table 3. A maximum efficiency of 95% is obtained for an output power of 4.77 kW.
Figure 17 summarizes the results shown in Tables 3 and 4.
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Table 3. Efficiency results with constant load.

D1 Vo [V] Iin [A] Po [W] Pin [W] η [%]

0.45 382 23.67 2091 2273 91.99

0.5 425 29.07 2581 2790 92.50

0.6 510 41.28 3717 3963 93.79

0.65 553 48.10 4362 4616 94.49

0.69 589 53.96 4916 5182 94.86

0.72 612 58.94 5353 5719 93.60

0.75 637 64.57 5808 6474 89.71
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Table 4. Efficiency results with constant output voltage.

Io [A] Iin [A] Po [W] Pin [W] η [%]

3.5 24.3 2065 2333 88.51

4.91 33.1 2897 3178 91.15

6.56 43.41 3870 4167 92.88

7.38 48.09 4354 4616 94.32

8.09 52.34 4773 5024 95.00

8.81 57.25 5198 5496 94.57

7. Conclusions

In this paper, a DC-DC converter topology based on a standard flyback converter has been
proposed. The converter proposed is modular and considers a reduced number of power devices
compared to flyback interleaved topologies.

Active snubber circuits are included to avoid excessive voltages in the main power switches. The
different operating modes of the converter are described and mathematically analyzed.

A simple voltage control scheme is proposed considering discontinuous conduction mode
operation, obtaining a good performance under load impacts and voltage variations.

A laboratory prototype has been built and experimental results were obtained, showing a good
performance of the converter and its control scheme in steady state operation as well as during
transient operation.
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The proposed converter results are competitive in terms of cost and efficiency with respect to
the flyback interleaved topologies. The obtained full load efficiency of the proposed converter is 95%
resulting in an attractive alternative for nowadays industrial requirements.
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