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Abstract: In this study, steady-state analytical modeling of a loop heat pipe (LHP) equipped with a
flat evaporator is presented to predict the temperatures and pressures at each important part of the
LHP—evaporator, liquid reservoir (compensation chamber), vapor-transport tube, liquid-transport
tube, and condenser. Additionally, this study primarily focuses on analysis of the evaporator—the
only LHP component comprising a capillary structure. The liquid thin-film theory is considered
to determine pressure and temperature values concerning the region adjacent to the liquid-vapor
interface within the evaporator. The condensation-interface temperature is subsequently evaluated
using the modified kinetic theory of gases. The present study introduces a novel method to estimate
the liquid temperature at the condensation interface. Existence of relative freedom is assumed with
regard to the condenser configuration, which is characterized by a simplified liquid–vapor interface.
The results obtained in this study demonstrate the effectiveness of the proposed steady-state analytical
model with regard to the effect of design variables on LHP heat-transfer performance. To this end,
the condenser length, porosity of its capillary structure, and drop in vapor temperature therein are
considered as design variables. Overall, the LHP thermal performance is observed to be reasonably
responsive to changes in design parameters.

Keywords: loop heat pipe; analytical modeling; flat evaporator; steady-state thermal performance;
gas kinetic theory; vapor-liquid interface; liquid thin-film theory

1. Introduction

A loop heat pipe (LHP) shares with conventional heat pipes fundamental physics including phase
change of a working fluid and capillary force. On the other hand, LHPs have unique features, both
in the structure and working principle, which distinguish themselves from other types of heat pipes.
Typical of these may include the wick confined in the evaporator, inverted meniscus at the liquid-vapor
interface, liquid reservoir (compensation chamber) embedded into the evaporator, separation of liquid
and vapor lines, etc.

Since the advent of LHPs in the early 1970s, a number of studies were conducted with regard to
their operational characteristics and viability for use in engineering applications. LHP-based systems
are now being employed in diverse applications, besides those concerning space vehicles, which
constituted their primary field of use until recently. They have been used for cooling of high-power
electrical and electronic components and solar photovoltaic cooling to enhance the efficiency of
renewable energy generation. In addition, quite a few investigations were conducted pertaining to the
use of LHPs as heat-transfer devices in solar-photovoltaic systems and water-heating systems [1–6],
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solar-power towers [7,8] and in HVAC systems [9–11] to enhance the heat transfer performance.
Specific information and discussions regarding the use of LHPs can be found in [12,13]. Most initially
developed LHP configurations employed ammonia as the working fluid enclosed within a cylindrical
evaporator. Recently, flat or disk-shaped evaporator structures have also been considered owing to their
ease of use as heat sources and excellent thermal-contact performance. Additionally, investigations
have been performed to identify alternate capillary geometries and working fluids suitable for use in
commercial applications.

Physical considerations have typically assumed great importance during theoretical analysis
of LHPs and associated thermal performance prediction. Several studies [13–15] have reported
mathematical modeling of the physical behavior of working fluids at certain locations within the
evaporator. Khrustalev and Faghri [13] employed the thin-film theory to analyze the configuration
of and interface temperature across the gas–liquid interface (meniscus) in the evaporator as it
recedes towards the interior of the capillary structure in the event of a dry-out. Yu et al. [5], Zhao
and Liao [14], and Kaya and Goldak [15] performed studies focusing on the thermal-hydraulic
analysis of LHP capillary structures, thereby providing appropriate mathematical descriptions for
several types of operating limits, such as the critical LHP heat flux, overheating limit, and boiling
limit. Chernysheva et al. [16] performed heat-transfer analysis of an LHP compensation chamber
to demonstrate the effect of a bayonet on the system’s heat-transfer performance. Chernysheva
and Maydanik [17] proposed an analytical model for realizing heat and mass transfers radially
within a cylindrical evaporator, and calculation results obtained using the said model demonstrated
existence of a radial pressure drop. Additionally, investigations have recently been performed
concerning heat leakage from the capillary structure to the compensation chamber [18,19] along with
development of a mathematical model [20] that quantifies the effect of cylindrical-evaporator length
on thermal performance. Such models have demonstrated great utility in shedding light on the
internal physical behavior of LHPs; however, they do not comprehensively describe the heat-transfer
performance of the entire system. Individual models for predicting the steady-state performance of
LHP components—evaporator, vapor line, condenser, and liquid line—have previously been proposed
by Furukawa [21], Abhijit et al. [22], Launay et al. [23], and Bai et al. [24]. These models, in combination,
facilitate prediction of the effect of LHP-system design variables on heat-transfer performance.
The utility of these models is, however, limited in that they do not account for energy conservation
within the liquid reservoir by combining thermal energies associated with the condenser and the said
reservoir. Consequently, the condenser-outlet temperature obtained based on the geometrical size and
cooling conditions concerning the condenser does not affect evaporator temperature distributions.
Additionally, Pouzet et al. [25], Vlassov and Riehl [26], and Kaya et al. [27] have proposed transient
LHP-analysis models. However, a detailed model capable of reliably predicting the overall operating
characteristics of an LHP system is yet to be developed and/or demonstrated.

The present study describes development of a steady-state analysis model concerning operation
of the entire LHP system via application of the liquid thin-film theory to the liquid–vapor interface
within the capillary structure comprising fine pores. The novelty of this study is described in the
following. In the proposed model, the nodal approach technique [28] is employed to estimate the
temperature of typical points in the evaporator, whereas the thin-film theory is used to predict the
shape of the vapor–liquid interface created within fine pores. The interface temperature is expressed
using the kinetic theory of gases [29,30]. A novel method is employed to deduce equations for
determining temperatures at which phase change of the working fluid occurs across interfaces as
well as the corresponding interface location. Another novelty of this study exists in the way the
condenser is treated to determine the temperatures at the condenser outlet and liquid reservoir.
The condenser-outlet temperature is predicted using the effectiveness(ε)-NTU method [31], which
are commonly employed for analysis and performance simulation of heat exchangers. Furthermore,
energy conservation between the condenser outlet and liquid reservoir is considered to determine the
liquid-reservoir temperature whilst also demonstrating the impact of condenser-outlet temperature on
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the liquid reservoir. Lastly, our proposed study comprises two parts. Part I presents development of
the steady-state-analysis model of the LHP and associated effects of design variables on the overall
heat-transfer performance. Part II, on the other hand, discusses experimental verification of the
proposed steady-state analysis model.

2. Mathematical Model for Steady-State Analysis

The mathematical model proposed in this study was developed for two LHP types—one with
a flat evaporator (FLHP) and another with a cylindrical (CLHP) evaporator, as depicted in Figure 1.
The major assumptions made during development of the proposed model are:

1. Evaporation only occurs on the contact surface between the capillary structure and grooves
(i.e., vapor removal flow path within LHP); additionally, two-phase flows are not considered
herein in favor of exclusive pure vapor and liquid flows.

2. The capillary structure is saturated with liquid.
3. The liquid reservoir is filled with liquid only.
4. Two-phase flows are not considered herein in favor of exclusive pure vapor and liquid flows in

the condenser path.
5. The vapor- and liquid-transport tubes are well insulated, and thermal contact with

the surroundings is ignored. Therefore, the evaporator-outlet and condenser-inlet
temperatures are identical, and the same equivalency applies to the condenser-outlet and
evaporator-inlet temperatures.
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Figure 1. Schematics of the FLHP and CLHP: (a) Loop heat pipe (LHP) with a flat evaporator (FLHP); 
(b) LHP with a cylindrical evaporator (CLHP). 

 

 

Figure 1. Schematics of the FLHP and CLHP: (a) Loop heat pipe (LHP) with a flat evaporator (FLHP);
(b) LHP with a cylindrical evaporator (CLHP).
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The lumped-layer model [28], which is based on the nodal approach, was used for
mathematical-model simplification. Accordingly, the temperature and thermal-flow relationships can
be effectively illustrated using the thermal-circuit analogy depicted in Figure 2. Vapor temperature
within the vapor-removal groove were estimated via exclusive consideration of convective heat transfer.

The kinetic theory of gases and liquid thin-film theory were used to calculate the phase-change mass
flow rate, interface temperature, equilibrium pressure, capillary pressure, and disjoining pressure across
the liquid–vapor interface of the evaporator. Via consideration of the energy-conservation principle,
the input thermal load applied at the evaporator was evaluated as the sum of the working-fluid latent
heat and the sensible heat leaking into the liquid reservoir. The phase-change interface temperature of
the condenser was also obtained via consideration of energy conservation between the condensation
and evaporation interfaces within the condenser and evaporator, respectively. The working-fluid flow
within the condenser was considered to be single-phase (i.e., either pure liquid or pure vapor) based
on the condensation interface. The heat-transfer performance of the condenser path was evaluated
based on the effectiveness-NTU method, which is widely employed in analysis of heat exchangers.

2.1. Heat-Transfer Modeling of Evaporator

As depicted in Figure 2, the evaporator boundary condition in one-dimensional thermal
flow usually corresponds to one of the three types—constant thermal load (Qin) condition,
constant-temperature (Tew) condition, or convection condition (Tam, Uam). Figure 3 depicts cross
sections A–A corresponding to the FLHP and CLHP cases, depicted in Figure 1, as well as the thermal
conductance between node temperatures of the thermal circuit depicted in Figure 2. The equation
below, in general, pertains to the flow of heat between ambient air and evaporator wall.

Qam−ew = Fam−ew(Tam − Tew) = Qin, (1)

where Fam-ew denotes the thermal conductance between ambient air and the evaporator wall. Detailed
equations concerning the determination of thermal conductance, including Eqution (1), are listed in
Table 1. Similar to Equation (1), the heat flow from evaporator walls to the vapor-removal groove can
be expressed as

Qew−g = Few−g(Tew − Tg), (2)

where Tg is the groove temperature. As described in Table 1, the term Few-g further corresponds to a
combination of kge f f

[
= φkv + (1−φ)kg

]
—the effective thermal conductivity with due consideration

of the groove porosity (ϕ)—as well as hg
[
= kvNug/Dh,g

]
—the convective heat-transfer coefficient

between the vapor and groove. Nug denotes the Nusselt number defined by the groove geometry and
corresponding flow characteristics. In this study, the value of Nug for fully developed laminar flow
through a flow path characterized by trapezoidal cross sections was set to 7.57 [32]. The term Dhg
denotes hydraulic diameter of the vapor-removal groove.

The vapor temperature within the evaporator (Tev) can be expressed as

Tev = Tg −
Qew−g

hgAg
. (3)

As described in Equation (3), Tev can be separately determined considering convective heat
transfer between the groove and vapor temperature.

Through energy conservation, part of the thermal energy transferred to the groove wall can be
utilized during evaporation of the working fluid, and the rest can be leaked into the liquid reservoir
via conduction and convection. The latter does not correspond to an ideal approach; however, the said
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leakage from an evaporator structure cannot be avoided in practice. Below is the energy conservation
equation associated with this phenomenon.

Qew−g = Qlv + Qg−w, (4)

where Qlv denotes the rate of phase-change heat transfer associated with the latent heat of vaporization,
and Qq-w represents the heat leak toward the liquid reservoir.
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The heat-transfer coefficient corresponding to the phase change within pores of the wick can be
denoted by hlv, and the corresponding heat-transfer rate can be expressed as

Qlv = hlvAlv∆T = hlvϕAw∆T, (5)

where Alv is the evaporation-interface area, which can be estimated by the product of the porosity
of the wick (ϕ) and apparent wick surface area (Aw), i.e., Alv ≈ ϕAw as reflected in the equation. ∆T
denotes the temperature difference across the phase interface. The pores of the wick are assumed to be
fully saturated with liquid.

Assuming the capillary structure to be saturated with liquid and the liquid–vapor interface to be
located on the contact surface between the vapor-removal groove and wick, Qq-w can be expressed as,

Qg−w = Fg−w(Tg − Tw), (6)

where Tw represents the temperature of the wick in contact with the groove. The thermal conductance
Fg-w in Equation (6) involves the effective thermal conductivity of the liquid-saturated wick, kweff, and
the convective heat-transfer coefficient between the adjacent liquid, hw (see Table 1).

Moreover, the heat-transfer coefficient associated with heat flow from the evaporation surface to
the adjacent liquid can be expressed as

hw = Qg−w/Alv(Tg−w − Tel), (7)

where Tg-w denotes the temperature of the wick near the surface in contact with the groove, and the
same can be determined as the arithmetic mean of Tg and Tev. Tel denotes the liquid temperature near
the interface, which is practically difficult to determine. The above liquid and vapor temperatures
(Tel and Tev, respectively) across the interface are nearly identical if the working fluid is in saturated
state during evaporation.
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Table 1. Thermal conductance values concerning the analytical model of an LHP.

Item
Expression

FLHP CLHP

Fam−ew
2kewWeLe

tew
+ UamWeLe 2πroLeUam +

[
2π

(
ro −

tew
2

)
Le

]
2kew
tew

Few−g

(
2kewWeLe

tew
+

2kge f f NgWgLg

tg

)
+

hgtgWgNg +
.

mvcpv

2πLe

(
ro − tew −

tg
2

)(
2ks
tew

+
2kge f f

tg

)
+

hg

(
2π(ro−tew)

Ng
+ tg

)
LgNg +

.
mvcpv

Fg−w

(
2kge f f WgLgNg

tg
+

2kwe f f WwLw

tg

)
+

hgtgWgNg + hw(ϕLwWw) +
.

mlcpl

2πLe
(
ro − tew − tg −

tw
2

)( 2kge f f
tg

+
2kwe f f

tw

)
+hgtgLeNg+

hw
[
2πϕLw

(
ro − tew − tg −

tw
2

)]
+

.
mlcpv +

.
mlcpl

Fw−wi

(
2kwe f f WwLw

tw

)
+ hw(ϕLwWw) +

.
mlcpl

2πLw
(
ro − tew − tg − tw

)( 2kwe f f
tw

)
+

hw
[
2π

(
ro − tew − tg − tw

)
ϕLw

]
+

.
mlcpl

kwe f f
kw[2kw+kl−2ϕ(kw−kl)]

2kw+kl+ϕ(kw−kl)
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Figure 3. Schematic of FLHP and CLHP for cross-section A–A—(a) FLHP; (b) CLHP. Figure 3. Schematic of FLHP and CLHP for cross-section A–A—(a) FLHP; (b) CLHP.

Across the capillary wick, the heat-transfer rate from the liquid near the evaporation surface to its
sub-cooled counterpart inside the liquid reservoir can be expressed as

Qw−wi = Fw−wi(Tw − Twi) = Qg−w = Qleak, (8)

where Qleak denotes the thermal energy eventually transferred to the liquid reservoir. As shown in
Figures 2 and 3, the definition of Qleak is essential to understand the flow of heat energy to predict the
heat transfer performance of the LHP. Launay et al. [23] presented the expression of Qleak for FLHP and
CLHP as Equations (9) and (10), respectively. For the FLHP,

Qleak =
.

mlcpl(Tev − Tr)/

exp

 .
mlcpltw

kwe f f Aw

− 1

 (9)

and for the CLHP, Qleak can be expressed as
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Qleak =

(
dwi
dwo

) .
mlcpl

2πkwe f f tw


.

mlcpl

1−
( dwi

dwo

) .
mlcpl

2πkwe f f tw

(Tev − Tr), (10)

where dwo and dwi denote outer and inner diameters of the wick structure, respectively.

2.2. Phase-Change Modeling on Evaporation Surface

In this study, as previously mentioned, the configuration of and temperature across the
liquid–vapor interface were determined using the liquid thin-film theory [33]. Figure 4 shows
the configuration and physical parameters for the evaporation interface of a single pore with cylindrical
shape in the capillary structure.

The behavior of the vapor–liquid interface is dominated by the pressure difference between
the liquid and vapor phases. The pressure difference can be expressed through an augmented
Young–Laplace equation, which is given as the sum of the capillary and disjoining pressure.

pev − pl = pd + pc, (11)

where, pev and pl denotes the evaporator vapor and liquid pressures. pd and pc represent the disjoining
pressure and capillary pressure, respectively.

The interface curvature is created by the liquid surface tension and capillary structure.
The corresponding capillary pressure (pc) within the pores, in accordance with the liquid thin-film
theory, can be expressed as [33]:

pc = σK, K =
d2δ

dx2

1 + (
dδ
dx

)2−1.5

, (12)

where K and σ denote the interface curvature and surface tension, respectively; and dδ/dx denotes the
derivative of the liquid thin-film thickness with respect to x, as depicted in Figure 4.Energies 2019, 12, x FOR PEER REVIEW 8 of 21 
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The disjoining pressure can be approximated as a function of the liquid-film thickness [34]:

pd =
H
δ3 , (13)

where H denotes the dispersion (or Hamaker) constant. When employing methanol as the working
fluid, H equals −1.07 × 10−19 J [33]. In addition, δ denotes thickness of the liquid thin-film thickness,
the maximum value of which corresponds to the pore radius. The detailed representation of the
Young–Laplace equation appears as a fourth-order ordinary differential equation, which can be solved
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using the method proposed by Wang et al. [34]. Once the solution is obtained, the liquid thin-film
thickness and film configuration can be obtained.

The mass flow rate during slow phase-change of the evaporative processes can be expressed
as [29]:

m′′lv = βγ

 peq

T1/2
lv

−
pev

T1/2
ev

, (14)

where β = 2α/(2 − α) and γ =
√

M/2πR; M denotes the molecular weight; and R denotes the universal
gas constant. For water, ethanol, and methanol, values assumed by the accommodation coefficient (α)
lie within the range of 0.002–0.004. The equilibrium pressure (peq) of the phase-change interface can be
determined using the equation below [29].

peq(Tlv) = psat(Tlv) exp

plv−equ − psat(Tlv) − (pd + pc)

ρlTlvM/R

. (15)

In the above equation, the saturation pressure (psat(Tlv)) corresponding to the interface temperature
can be determined using the following equation [29].

psat(Tlv) = psat_re f (Tsat_re f ) exp

Mh f g

R

(
1

Tsat_re f
−

1
Tlv

). (16)

Given a saturated interface with saturation pressure [= psat(Tlv) = psat_ref(Tsat_ref)], the corresponding
superheated state could be arbitrarily considered to correspond to Tsat_ref = Tlv − Tsuper, where Tsuper

denotes superheat temperature.
The rate of conductive heat transfer across the liquid thin-film to the vapor can be determined by

Equation (17).
m′′lvh f g = kl(Tg−v − Tlv)/δ. (17)

Using Equations (14) and (17), the phase-change temperature at the evaporation interface can be
expressed as follows [34].

Tlv = Tg−v +
δ
kl
β

h f g

γ

 peq

T1/2
lv

−
pev

T1/2
v

. (18)

The heat transfer rate by vaporization was defined as Equation (19) through the linearization
process of Equation (14) [29].

Qlv = Alvm′′lvh f g =

Alv

( 2α
2− α

) h2
f g

Tevv f g

√
M

2πR(Tv)

[
1−

pvv f g

2h f g

]
(Tlv − Tev)


e

. (19)

As shown in Equation (19), if the temperatures at the evaporation interface and that of the vapor
are known, Qlv can be determined. Alternatively, since Qlv is also obtained by the phase change
mass flow rate, latent heat and evaporative heat transfer area in the evaporator, the temperature and
configuration [34] of the phase change interface generated in the fine pores of the capillary structure
should be defined. Qlv is the thermal energy that is transferred to the condenser, and when this value
is obtained, it is possible to analyze the heat transfer to the condenser path.

2.3. Phase-Change Modeling on Condensation Surface

Similar to Equation (19), the observed heat-transfer rate due to condensation can be expressed
as [29]:

Qvl = Avlm
′′

vlh f g =

Avl

( 2α
2− α

) h2
f g

Tcvv f g

√
M

2πR(Tv)

[
1−

pvv f g

2h f g

]
(Tcv − Tvl)


c

, (20)
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where Tcv denotes the temperature of the vapor at the condenser inlet, and Tvl represents the temperature
at the condensation interface.

The condenser inlet vapor temperature can be expressed as Tcv = Tev − δT, where δT refers to
the temperature drop caused by the vapor path in the condenser, which in turn, depends on cooling
conditions. Assuming the generation of a condensation interface between the vapor and liquid phases
at any position within the condenser path [30], the condensation-interface temperature can be evaluated
using Equations (21) and (22) based on the energy-conservation relation between the evaporation and
condensation interfaces. Additionally, assuming that the condensation interface is flat, the term Avl can
be considered as the cross-sectional area of the condenser path. Equation (21) was deduced assuming
the evaporative and condensation heat transfer rates (Qlv and Qvl, respectively) to be identical within
the closed loop.

Qlv
Qvl

=

(
Alv
Avl

) ( h2
f g

Tevv f g

)
e(

h2
f g

Tcvv f g

)
c

√
M

2πRvTev√
M

2πRvTcv

[
1−

pevv f g
2h f g

]
e[

1−
pcvv f g
2h f g

]
c

(Tlv − Tev)

(Tcv − Tvl)
= 1. (21)

The above equation can be arranged for Tvl, as shown in Equation (22).

Tvl = Tcv −

(
Alv
Avl

) ( h2
f g

Tevv f g

)
e(

h2
f g

Tcvv f g

)
c

√
M

2πRvTev√
M

2πRvTcv

[
1−

pevv f g
2h f g

]
e[

1−
pcvv f g
2h f g

]
c

(Tlv − Tev). (22)

Once the condensation interface temperature is obtained, the condenser flow path can be
hypothetically divided into a vapor region and a liquid region, and the length of the vapor and liquid
regions can be predicted by conventional heat exchanger theories.

The heat flows associated with condenser are shown in Figure 2. Among the heat flows that
appear in the paths along the condenser, Qcv and Qcl correspond to

.
mcpv(Tcv − Tvl) and

.
mcpl(Tvl − Tco),

respectively. On the other hand, the heat flows from the condenser to the coolant (heat sink), Qvo and
Qlo are the sensible heat removal from the vapor phase and liquid phase, respectively, before and after
the vapor-to-liquid phase change. The other heat removal, Qvl, occurs during the condensation, as
described by Equation (20).

The condenser length occupied by vapor (Lcv) can subsequently be determined using in Equation
(23), which was deduced using the NTU–ε method [35] as part of the heat-exchanger analysis.

Lcv =
NTUcv ×Cmin

P×Ucv
. (23)

Thence, the corresponding length of the liquid portion can, obviously, be determined using the
relation Lcl = Lc − Lcv, where Lc denotes the total condenser length. Once Lcv and Lcl are determined,
Qvo and Qlo can be easily obtained by the heat exchanger analysis theory [35].

The liquid temperature at condenser outlet can be determined using the following equation.

Tco = Tvl − εcl
Cmin

Cl
(Tvl − Tcool.in). (24)

The heat transfer rate caused by the temperature difference between the condenser outlet and
liquid reservoir,

.
mcpl(Tr − Tco), can be identified as the leakage heat, Qleak, which was also expressed by

Equations (8)–(10). Combining these equations, the liquid reservoir temperature can be determined.
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For the FLHP, the temperature in the liquid reservoir can be expressed as

Tr =

.
mcpl(

exp
[ .

mcpltw
kwe f f Aw

])
e
−1

Tev +
( .
mcpl

)
c
Tco

.
mcpl(

exp
[ .

mcpltw
kwe f f Aw

])
e
−1

+
( .
mcpl

)
c

(25)

In addition, for the CLHP, the temperature in the liquid reservoir can be expressed as

Tr =


.

mcpl

(
dwi
dwo

) .
mcpl

2πkwe f f Lw

1−
(

dwi
dwo

) .
mcpl

2πkwe f f Lw


e

Tev +
( .
mcpl

)
c
Tco


.

mcpl

(
dwi
dwo

) .
mcpl

2πkwe f f Lw

1−
(

dwi
dwo

) .
mcpl

2πkwe f f Lw


e

+
( .
mcpl

)
c

. (26)

The overall heat-transfer coefficient (Uam) between the evaporator wall and ambient air can,
therefore, be expressed in the thermal-resistance form as

1
UamAc

=
1

Fam−ew
+

1
Few−g

+

(
1

UA

)
cv
+

(
1

UA

)
cl

2
+

1
Fg−w

+
1

Fw−wi
+

1
hwAlv

. (27)

In the prosed study, an initial estimate of Uam is made at the beginning of the heat-transfer analysis.
Subsequently, relevant calculations are repeatedly performed, until converged values are attained for
all the temperatures at different locations. Ultimately, the value of Uam was iteratively determined
using Equation (27) until the initially estimated and calculated values were converged with sufficiently
small difference. A flow chart demonstrating the above calculation process is depicted in Figure 5.

3. Results and Discussion

To demonstrate the validity of the analytical model, the predicted results were compared with the
experimental results. Figure 6 illustrates the model prediction against the corresponding experimental
data for a FLHP with methanol as a working fluid [36]. As representative temperatures, those of
the evaporator wall (Tew), evaporator vapor (Tev), and condenser outlet (Tco) were investigated for
the input thermal load the range of 10 to 80 W. The predicted value of the wall temperature of the
evaporator was in close agreement with the experimental result within the relative error of 0.5%. It was
presumed that the error might have been very small because the overall heat transfer coefficient, Uam,
was determined by the experimental results. The relative error of the vapor temperature was 1.2%
at the maximum (thermal load of 40 W), and the errors for all the other input thermal loads were
less than 0.8%. From these results, it was confirmed that the heat transfer coefficient (hg) used in the
model was appropriate. For thermal loads between 20 and 40 W, the predicted value of the liquid
temperature at the condenser outlet exhibited relatively large error compared to other temperatures,
but the temperature error was less than 4 ◦C. On the other hand, for an input heat load of 80 W, the
predicted values nearly coincided with experiments with only little error.

With regard to investigating the effect of LHP design variables on LHP heat transfer performance,
FLHP was considered as the basic model [36], geometric dimensions of which are depicted in Table 2.
The evaporator and condenser dimensions of the said model were identical to those described in [36].
However, basic specifications of the capillary structure were defined differently to include stainless
steel (STS 316L) as its base material with 47% porosity (ϕ) and a sintered metal particle diameter of
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5 µm. During the said investigation, porosity (ϕ) of the capillary structure, temperature drop due to
relevant cooling conditions (δT), and number of turns (n) of the condenser path were considered to be
primary design variables.

During simulations performed to evaluate heat-transfer performance of LHP, the different design
variables were assigned the following values. The temperature drop (δT) due to cooling conditions
equaled 0 ◦C; coolant inlet temperature (Tcool„in) was set to 10 ◦C; superheat temperature (Tsuper) was
set to 0 ◦C; particle diameter of porous structure was set as 5 µm; capillary-structure porosity (ϕ)
equaled 0.6; and the number of turns (n) of the condenser path was set as 5. It must be noted that two
of the straight configurations in the crooked condenser path in Figure 1b correspond to one turn.Energies 2019, 12, x FOR PEER REVIEW 12 of 21 
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Figures 7 and 8 demonstrate results obtained regarding the prediction of film thickness, capillary
pressure, and disjoining pressure in accordance with changes in pore size of the capillary structure.
The said predictions were performed via application of the thin-film theory [34] to the pores of the wick
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depicted in Figure 4. The above-mentioned results were depicted as functions of the pore diameter.
The geometric configuration of the LHP used during analysis was identical to those described in [34].Energies 2019, 12, x FOR PEER REVIEW 13 of 21 
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Table 2. FLHP geometric characteristics and working conditions.

LHP Dimensions/Working Condition FLHP by Boo and Chung [36]

Working fluids Methanol

LHP-case material Stainless steel 316 L

Evaporator 50 (Le) × 40 (We) × 30 (He) mm

Trapezoidal vapor-removal groove 3 (tg) × 3 (Wg) mm, 75◦(θ)

Number of axial grooves 9

Wick material/porosity/pore diameter Stainless steel/47%/0.5 µm

Wick dimensions 5 mm (tw)

Liquid/vapor-line dimension 2 mm (dpi)/4 mm(dpi), 0.5 m (L)

Condenser Rectangular, 4 (Wc) × 5 (Lc) cm

Liquid-reservoir volume 35.5 mL

Coolant temperature 0, 10, 20, 30 ◦C

Coolant Mixture of 80% water and 20% ethylene-glycol, 5GPH

Ambient temperature 20~25 ◦C

As depicted in Figure 7, with increase in pore size, thickness of the liquid film reduces at the same
axial location (i.e., along the x-axis in Figure 4). For example, when the pore diameter equaled 0.5 µm,
the corresponding film thickness equaled approximately 0.25 µm at x = 0.3 µm, whereas at a pore
diameter of 1 µm, the corresponding film thickness was reduced to 0.04 µm. Figure 8 demonstrates an
increase in maximum capillary pressure with reduction in pore diameter. As can be observed in the said
figure, at pore-diameter values of 0.5 and 1 µm, the maximum capillary pressures correspond to 250
and 140 kPa, respectively. The said pressure values were calculated at a point located midway along
the pore radius (denoted by Rp in Figure 4) at which the interface curvature demonstrated its highest
value. Additionally, Figure 8 illustrates the disjoining pressure (pd) to be inversely proportional to the
liquid thin-film thickness (δ), as described in Equation (13). The maximum value of pd corresponds to
the commencement of liquid film formation, subsequent to which the value of pd rapidly reduces to
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nearly zero. That said, the value of pd increases with increase in pore diameter. As can be observed in
Figure 8, at x = 0.05 µm, pd equals 2.5 and 240 kPa corresponding to pore-diameter values of 0.5 and
1 µm, respectively.
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Figure 9 depicts variation trends concerning the Tew value of LHP in accordance with the increase
in Qin as a function of porosity (ϕ). The overall heat-transfer coefficient (Uam) between the evaporator
outer wall and ambient air was calculated using Equation (27). As can be observed in Figure 9, Tew

decreases corresponding to an increase in ϕ. This is because if the value of kweff concerning the capillary
structure decreases, values of Fg-w and Fw-wi also subsequently decrease, thereby causing the thermal
energy transferred to the condenser to increase, as described in Equations (6) and (8) and Table 1.
For example, at Qin = 80 W, as the value of ϕ increases from 0.6 to 0.75, that of Tew is reduced by
approximately 27 ◦C.
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Figure 10 depicts variation trends concerning values of the evaporative heat-transfer rate (Qlv)
and leakage heat (Qleak)—flowing into the liquid reservoir via the capillary structure—as a function of
Qin whilst corresponding to different values of porosity (ϕ). From the energy-conservation viewpoint,
the relation Qin = Qlv + Qleak must be satisfied at all times. Trends depicted in Figure 10 demonstrate
that with increase in porosity (ϕ), Qleak decreases, and this causes an increase in Qlv. For example, at
Qin = 80 W, as ϕ increases from 0.6 to 0.75, the corresponding value of Qleak reduces by approximately
2.78 W while that of Qlv increases by the same amount.
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Figure 11 depicts trends concerning variations in the LHP liquid-reservoir and condensate-outlet
temperatures (Tr and Tco, respectively) at different porosities (ϕ) as functions of Qin. Here, values of Tr

and Tco were obtained using Equations (24) and (25). As depicted in Figure 10, values of both Tr and Tco

decrease as ϕ increases. Additionally, as described in Equations (24) and (25), the two temperatures are
related to each other, and that a reduction in the vapor temperature (Tev) and Tco cause a corresponding
reduction in Tr. Any reduction in the heat transfer rate into the liquid reservoir tends to reduce the
value of Tev, thereby resulting in a lower value of Tco. For example, at Qin = 80 W, as ϕ increases from
0.6 to 0.75, the corresponding value of Tr reduces by 27.4 ◦C while that of Tco falls by 3.6 ◦C.
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Figure 12 depicts variation trends concerning values of the LHP evaporation- and
condensation-interface temperatures (Tlv and Tvl, respectively), at different values of the porosity,
as a function of Qin. As can be seen in the figure, an increase in ϕ corresponds to reduction in the
values of both Tlv and Tvl. As described in Equations (18) and (22), the evaporator-vapor temperature
reduces with increase in ϕ, thereby causing Tlv to decrease. In addition, as described in Equation
(22), increase in ϕ causes a reduction in the interface area ratio (Alv/Avl), which in turn, reduces Tvl.
At Qin = 80 W, as ϕ increases from 0.6 to 0.75, corresponding values of Tlv and Tvl reduce by 27.8 and
32.1 ◦C, respectively.
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Figure 13 depicts trends concerning changes in lengths of the vapor and liquid paths (Lcv and Lcl,
respectively) of the condenser as a function of Qin for cases involving different values for the drop in
vapor temperature (δT). As can be observed in the said figure, the value of Lcv increases with increase
in thermal load while that of Lcl [= Lc − Lcv] correspondingly reduces. At Qin = 70 W, the value of
δT increases from 0 to 2 ◦C; correspondingly values of Lcv and Lcl demonstrate an enhancement and
reduction of 20.6 cm, respectively.
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Figure 14 depicts observed trends concerning changes in the condenser-liquid temperature (Tco)
and the interface area ratio (Alv/Avl) as functions of Qin for different values of the vapor-temperature drop
(δT). As depicted in Figure 14, an increase in Qin causes values of Tco and Alv/Avl to increase and decrease,
respectively. In addition, as δT increases, values of both Tco and Alv/Avl demonstrate an increase.
Corresponding to an input thermal load Qin = 80 W, as Tco increases from 0 to 2 ◦C, corresponding
values of Tco and Alv/Avl increase and decrease by approximately 18.3 ◦C and 0.61, respectively.Energies 2019, 12, x FOR PEER REVIEW 17 of 21 
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Lastly, Figure 15 illustrates variation trends concerning values of the liquid-reservoir and
condenser-outlet temperature (Tr and Tco, respectively) as functions of the input thermal load (Qin) for
different values of the of the number of turns (n) comprising the condenser path. As can be seen in the
figure, any increase in Qin causes an increase in the values of both Tr and Tco. Additionally, at values of
Qin, an increase in n causes a reduction in both Tr and Tr. At Qin = 80 W, as the value of n increases
from 5 to 9, those of Tr and Tco reduce by 4.8 and 6.5 ◦C, respectively.
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4. Conclusions

This paper reports development of a mathematical-analysis model for FLHP and CLHP via use of
a nodal approach to determine temperature values at typical points within LHP. The temperature at
the evaporation interface was determined using the liquid thin-film theory and kinetic theory of gases,
whereas the condensation-interface temperature was determined in accordance with application of
the energy-conservation principle between the two interfaces. Mathematical expressions concerning
the interface temperature and condenser location were used to divide the condenser length into
pure-vapor- and pure-liquid-occupied parts, by means of which liquid temperature at the condenser
outlet was predicted using the ε-NTU method. Furthermore, application of the energy-conservation
principle between the condenser outlet and liquid reservoir was used to determine the liquid-reservoir
temperature to determine the influence of condenser-outlet temperature on the liquid reservoir.

The proposed steady-state analysis model of LHP was used to estimate the effect of various design
variables on FLHP heat-transfer performance. As observed, an increase in porosity of capillary structure
reduces the amount of leakage heat flowing to the liquid reservoir, thereby causing reduction in all
temperatures concerning the evaporator and condenser components. It has also been demonstrated
that an increase in vapor-temperature drop within the condenser causes an increase in condenser-outlet
temperature, which in turn, causes an increase in liquid-reservoir temperature along with reduction
overall thermal performance of the system. Furthermore, it has been demonstrated that an increase in
length of the condenser path results in elevated liquid temperatures at the condenser outlet, whereas
the liquid-reservoir temperature is reduced, thereby resulting in reduced temperature of the entire
evaporator assembly.
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Nomenclature

A Area [m2]
C Heat capacity [W/◦C]
Cp Specific heat [J/kg·◦C]
Dh Hydraulic diameter [m]
F Thermal conductance [W/◦C]

h
Convective heat transfer coefficient [W/m2] or
enthalpy [J/kg]

H Dispersion constant [J]
hfg Evaporation or condensation latent heat [J/kg]
k Thermal conductivity [W/m·◦C]
K Curvature of phase change interface [m−1]
L Length [m]
M Molecular weight [kg/kmol]
m Mass flow rate [kg/s]
m” Interfacial mass flux [kg/m2

·s]
n Number of turns of condenser path
N Number of grooves
NTU Number of transfer units
Nu Nusselt number
P Perimeter [m]
p Pressure [Pa]
Q Heat transfer rate [W]
q” Heat flux [W/m2]
r Radius [m]
R Pore radius [m]
R Universal gas constant [kJ/kmol·K]
T Temperature [◦C]
t Thickness [m]
v Specific volume [m3/kg]
U Overall heat transfer coefficient [kg/m2]
W Width [m]
x Axial coordinate [m] for flow direction
y Axial coordinate [m] for film thickness direction

Greek Symbol

α Accommodation coefficient
β 2α/(2 − α)
γ

√
M/2πR, Equation (14)

δ Thin film thickness [m]
ε Effectiveness
ρ Density [kg/m3]
σ Surface [N/m]
ϕ Wick porosity

Subscript

am Ambient
am-ew Between ambient and evaporator wall
c Condenser or capillary
r Liquid reservoir
co Condenser liquid outlet
cool Coolant
cl Condenser liquid
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cv Condenser vapor
d Disjoining
e Evaporator
el Evaporator liquid
ev Evaporator vapor
ew-g Between evaporator wall and vapor removal groove
eq Equilibrium
eff Effective
ew Evaporator wall
fg Related to phase change
g Groove
geff Groove effective symbol
g-v Between vapor removal groove and vapor
g-w Between vapor removal groove and wick
in Inlet or input
l Liquid
leak Leakage
lv Evaporation process
lo Liquid out
min Minimum value
o Outlet or outer
pl Constant pressure specific heat for the liquid
pv Constant pressure specific heat for the vapor
r Reservoir
ref Reference state
sat Saturation condition
super Superheat
v Vapor
vl Condensation process
vo Vapor out
w Wall or wick

wi
Wick inlet (contact point of the wick and liquid
reservoir)

w-wi Between wick and wick inlet
weff Capillary wick effective symbol
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