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Abstract: Deep reinforcement learning (DRL) has been successfully used for the joint routing
and resource management in large-scale cognitive radio networks. However, it needs lots of
interactions with the environment through trial and error, which results in large energy consumption
and transmission delay. In this paper, an apprenticeship learning scheme is proposed for the
energy-efficient cross-layer routing design. Firstly, to guarantee energy efficiency and compress huge
action space, a novel concept called dynamic adjustment rating is introduced, which regulates transmit
power efficiently with multi-level transition mechanism. On top of this, the Prioritized Memories
Deep Q-learning from Demonstrations (PM-DQfD) is presented to speed up the convergence and
reduce the memory occupation. Then the PM-DQfD is applied to the cross-layer routing design
for power efficiency improvement and routing latency reduction. Simulation results confirm that
the proposed method achieves higher energy efficiency, shorter routing latency and larger packet
delivery ratio compared to traditional algorithms such as Cognitive Radio Q-routing (CRQ-routing),
Prioritized Memories Deep Q-Network (PM-DQN), and Conjecture Based Multi-agent Q-learning
Scheme (CBMQ).

Keywords: cognitive radio networks; energy efficiency; apprenticeship learning; dynamic adjustment
rating; Prioritized Memories deep Q-learning from Demonstrations

1. Introduction

Spectrum shortage has been one of the major bottlenecks for the development of wireless
communication systems [1]. As a promising solution to the frequency scarcity, Cognitive Radio (CR) is
presented to allow Secondary Users (SUs) to exploit licensed spectrum opportunistically, which breaks
the fixed frequency allocation regulation. Great developments have been achieved in some crucial CR
technologies such as spectrum sensing, spectrum access and power allocation [2–4]; however, there has
been little study on cross-layer routing in the research community. Routing plays a very important
role in the overall performance of any networks [5]. Although the CR technique improves spectrum
utilization efficiency, it raises significant challenges to route selection in distributed Cognitive Radio
Networks (CRN) [6].

Firstly, spectrum allocation should be considered as selecting the next hop in routing [7]. In traditional
wireless communication, all of the nodes share the same frequency bands, whereas in multi-hop CRN, each
node may work with different available channel sets based on the uncertainty of Primary Users’ (PUs’)
activities. Thus, both the geographic location and spectrum bands have an effect on the connectivity of
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network topology. Secondly, it is challenging to develop an efficient and robust routing protocol in multi-hop
CRN due to the spectrum uncertainty feature and the unreliable characteristic of the wireless medium [8].

Conventional routing protocols are used to apply explicit and rigid programming to opportunistic
routing design. In [9], the virtual coordinates were introduced to reflect both geographic distance and
spectrum availability, and then the geographic routing scheme was developed to cut through the area
with lower frequency occupancy. However, it did not consider the interference issue among secondary
users. In [10], a novel routing metric was designed to estimate both the future spectrum availability
and the average transmission time. Then, two routing schemes were proposed to reduce the probability
of spectrum handoff and rerouting. Nevertheless, power adaptation was not taken into consideration,
which affected its energy efficiency. The author in [11] presented an on-demand routing protocol for
a cluster-based cognitive radio ad-hoc network. The network was divided into several clusters, and then
the opportunistic routing was formulated as a weighted graph problem. However, the rendezvous
algorithm for neighbor discovery remained to be studied. With transcendental knowledge such as
network topology and channel characteristics, these works attempted to search a fixed path. This was
not practical, owing to the distributed network architecture and uncertainty nature of CRN.

To be truly intelligent and cognitive, the cognitive radio system should have the ability to learn
and reason [12]. In recent years, the development of Deep Reinforcement Learning (DRL) has attracted
great attention and has been widely used in the decision-making and control field. To resolve the curse
of dimensionality in the problem with large state space, the Deep Q-Network (DQN) was proposed
in [13]. It applied neural network to approximating the Q-function and improved the generalization
ability of the algorithm. Simultaneously, the bias was introduced, and it was more difficult to guarantee
the convergence. Due to the one-step update framework in DQN, its learning efficiency was relatively
high. Furthermore, Policy Gradient (PG) was able to parameterize the strategy and learn the strategy
directly [14]. It had better convergence properties and was effective in the continuous action space.
However, PG typically converged to a local rather than global optimum, and it was inefficient since the
strategy was updated every learning episode. To combine the advantages of DQN and PG, the Deep
Deterministic Policy Gradient (DDPG) was presented in [15], introducing two independent neural
networks called actor and critic, respectively. While the actor performed the actions without the need
for optimized value function, the critic criticized the actions taken by the actor and kept updating the
value function [16]. DDPG adopted a one-step update framework instead of updating the strategy
after the whole episode, which was more efficient than PG. However, the computational complexity of
DDPG was sufficiently high, since it had to train two independent neural networks at the same time.

These DRL frameworks have been used for the cross-layer routing design in intelligent networks.
In [17], an intelligent routing protocol based on DQN was presented. It allowed choosing the best
data transmission paths according to the best criteria and based on the network status. The author
in [18] imposed the DDPG to optimize the routing in software-defined networks with the DDPG
Routing Optimization Mechanism (DROM). It simplified network operation and maintenance by
enhancing the performance with black-box optimization in continuous time. [17,18] utilized the
DRL approach to overcome the uncertainty of network topology, but they failed to consider energy
efficiency in the network. The author in [19] developed a RL-based joint spectrum access and clustering
scheme to improve idle channel sensing and reduce system energy expenditure. In [20], Prioritized
Memories Deep Q-Network (PM-DQN) was developed to solve the route selection and channel access.
It introduced a concept called responsibility rating to compress the huge action space and realize power
adaptation for lower power consumption and calculation complexity. Nevertheless, the responsibility
rating merely allowed single-level transition of the transmit power, which brought about inefficiency of
power allocation. Furthermore, a single source node for generating data streams was considered in [20].
If multiple source nodes exist in the network, every node has to run the DRL for routing. In addition,
all of these works adopted a self-learning scheme that required many interactions with the environment
through trial and error. Since each interaction means the establishment of a communication link,
this resulted in large communication overhead, extensive energy consumption and long exploration
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time. Some applications in CRN cannot afford the extensive latency and energy expenditure. If there
exists any node that has learned a stable routing strategy, it is unnecessary for the newly joined node to
learn from scratch. By using DQfD, interactions with the real environment decrease significantly with
the guidance of empirical data from the expert node. This accelerates the learning process and reduces
the trial-and-error cost, which is more compatible with applications of CRN.

Since most SUs rely on batteries for power supply, energy constraints have become an urgent
problem to be resolved [21]. Therefore, improvement of energy efficiency is significant for the practical
application of CR technology. Three methods are adopted to reduce the energy consumption of the
network: Firstly, dynamic adjustment rating is introduced for efficient power adaptation. Secondly,
the trial-and-error cost is reduced with expert’s demonstration data, which leads to lower energy
expenditure. Thirdly, energy utilization ratio is included as a part of utility function in the DRL. In this
paper, we apply an apprenticeship learning scheme called DQfD to the cross-layer routing design
in CRN. Initially, the data streams emerge from a source node and it achieves a stable routing strategy
through self-learning. After that, new data streams emerge from another source node, and it learns the
routing protocol from the empirical data of the previous source node, instead of learning from scratch
by itself. The source node to be learned from is defined as the expert source node, and the source node
that needs guidance is called the apprentice source node. Our characteristic work can be featured by
the following:

i. As far as we know, this is the first work that applies DQfD to the large-scale CRN with
a single-agent learning framework. We consider the scenario in which an expert source node
already exists, and new data flows are generated from another source node. Simultaneously,
a small number of relay nodes change their location, and the network topology has little change
compared with the previous network scenario. In this case, DQfD is adopted to learn strategies
from the expert source node, which speeds up the learning process and achieves better network
performance than that of the expert source node.

ii. To resolve the inefficiency in power adaptation when utilizing responsibility rating, a novel
concept called dynamic adjustment rating is introduced, which regulates transmit power
adaptively by comparing single-hop latency with double thresholds. This enables the transmit
power to transfer multiple levels at each time step, until rational transmit power is achieved,
which accelerates power assignment and improves the system performance.

iii. To save the system memory and further improve the performance, PM-DQfD is proposed.
This makes it possible to periodically erase the inessential self-generated data and outdated
expert demonstrations to release replay memory. In addition, it reduces data redundancy and
optimizes memory structure, which produces better performance. Simulation results show
that the proposed method decreases routing delay and enhances energy efficiency, as well as
network stability.

The rest of this paper is organized as follows: Section 2 describes the system model. The novel
metric called dynamic adjustment rating is introduced in Section 3. Section 4 presents the PM-DQfD-based
cross-layer routing scheme, which is followed by the simulation results in Section 5. Finally, Section 6
concludes the paper.

2. System Model

In this section, a multi-hop CRN is considered, which consists of M PUs and N SUs. The licensed
spectrum bands are assigned to PUs, and each Primary User (PU) occupies the specific sub-band with
regularity. SUs have no authority to utilize any frequency bands and opportunistically access channels
only when PUs are inactive. The communication infrastructure is abstracted as a directed graph
G(N, L), where each vertex i ∈ N denotes a Secondary User (SU) node in the network. The directed
link (i, j) ∈ L on the graph represents a communication link between the SU nodes ni and n j that exists
when the nodes are within transmission range of each other and hold at least one common channel.
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The architecture of the CRN scenario is shown in Figure 1. In the networking scenario, the multi-hop
CRN coexists with two centralized PU networks. PUs communicate with the PU base station through
direct transmission. SUs transmit data flows from the source to the destination node in a multi-hop
manner via CR routers. As Figure 1 shows, there exists an expert source node which has learned stable
routing policy. On this foundation, a new source node generates data streams, and the location of
a small number of intermediate nodes changes simultaneously.
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Figure 1. Multi-hop cognitive radio networking scenario.

The available spectrum bands comprise the Data Transmission Channel (DTC) and the Common
Control Channel (CCC). SU utilizes DTC for data transmission and accesses it in the absence of the PU.
CCC is used to exchange command information between SU nodes, and it can be used at any time.
Furthermore, the PU’s occupation is modeled as an independent and identical alternation between
two stages, i.e., ON status, when the DTC is occupied, and OFF status, when the DTC is idle [22].
The probability density function of the OFF periods is demonstrated as follows:

g(τ) =
{
λe−λτ τ ≥ 0

0 τ < 0
(1)

where λ is the mean OFF period of the PU. Hence, the probability that the PU arrives during the data
transmission of SU ni is calculated as

Pcollision = 1− P(t ≥ τi)

= 1−
∫
∞

τi
g(t)dt

= 1− e−λτi

(2)

Here τi indicates the single-hop transmission latency of SU ni and is calculated as:

τi =
Spacket

B log2

(
1 +

gi jcpi

ξ+φPU
ijc

) (3)
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where Spacket represents data packet size, B denotes the bandwidth of DTC, gi jc is the power gain
between the node ni and n j, φPU

ijc represents the adjacent channel interference of PUs at node ni, and ξ
is the AWGN power.

To capture the energy efficiency of SUs, the Power Consumption Ratio (PCR) of SU ni is introduced
as follows:

ηi =
pi

B log2

(
1 +

gi jcpi

ξ+φPU
ijc

) (4)

PCR indicates power consumption as unit throughput is obtained. The parameters described
in (4) are the same as in (3), which will not be repeated again.

3. Construction of Learning Framework

3.1. Dynamic Adjustment Rating

In the CRN scenarios, the selection criterion for the intermediate node stipulates that the relay SU
lies within the transmission range and has common available channels. In addition, power allocation
should be considered to enhance the energy utilization and prevent interference with PUs. In this
case, the route selection, channel access, and power allocation constitutes the agent’s action, leading to
a huge action space.

Although DQN achieves excellent performance in problems with a large state space, its calculation
complexity increases rapidly as the size of the action space becomes larger, which is a result of
the characteristics of its update framework. The network parameters θi are updated through loss
minimization using stochastic gradient descent:

Li(θi) = E
[(

r + βmax
a′∈A

Q(s′, a′;θ−i ) −Q(s, a;θi)
)2

]
(5)

where r is the instantaneous return, β denotes the discounted factor, Q(s, a) represents the Q-value at
state s when choosing action a, and A is the action space of the agent. It can be seen from Equation (5)
that the maximum computation is performed at every time-slot so that the calculation load will be
heavy if the size of A is particularly large. Therefore, a novel concept called dynamic adjustment rating
is introduced in this section to handle this problem.

A reasonable tradeoff between system energy expenditure and routing delay is demanded in CRN.
It is reasonable that if the single-hop latency in the present time exceeds a higher threshold th1, the SU
node in the next hop will enhance its transmit power for lower transmission latency to maintain
a reasonable and stable end-to-end delay. By contrast, if the current transmission latency is sufficiently
short, i.e., less than a lower threshold th2, the next intermediate node inclines in order to reduce its
transmit power for system energy conservation. Otherwise, it is assumed that the current transmit
power is being maintained within an appropriate range and should remain unchanged. According to
this principle, the concept of responsibility rating was introduced in [20,23]. Nevertheless, as for the
responsibility rating, the update framework is defined as follows:

ψt
i =

 ψt−1
j + 1, i f τt−1

j > th

ψt−1
j − 1, i f τt−1

j ≤ th
(6)

where ψt
i is the responsibility rating of SU ni at time step t, and it is a non-negative integer mapping

to a level of transmit power. From Equation (6), we can see that if the single-hop delay is larger
than the threshold th, ψt

i will increase by one unit in the next hop; otherwise, it will decrease by one
unit. Since each responsibility rating ψt

i corresponds to a transmit power pi, the transmit power only
transfers one level for every timeslot. This leads that the process of power adaptation becoming quite
long if the available power set is large, reducing power adjustment efficiency. Thus, a multi-level
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transition measurement called Dynamic Adjustment Rating (DAR) is presented. The DAR of SU ni at
timeslot t is given by:

DARt
i =


DARt−1

j + ϕt
i , i f τt−1

j > th1

DARt−1
j , i f th2 ≤ τt−1

j ≤ th1

DARt−1
j − µ

t
i , i f τt−1

j < th2

(7)

Herein, DARt−1
j is the DAR of previous SU n j at time step t− 1, and τt−1

j denotes the single-hop

latency of previous SU n j at the last timeslot; DARt
i is a non-negative integer mapping to a level of

transmit power, and two special cases are supplemented in Equations (8) and (9) when DARt−1
j = 0

and DARt−1
j = max{DAR}:

DARt
i =


DARt−1

j + ϕt
i , i f DARt−1

j = 0 and τt−1
j > th1

DARt−1
j , i f DARt−1

j = 0 and th2 ≤ τt−1
j ≤ th1

0, i f DARt−1
j = 0 and τt−1

j < th2

(8)

DARt
i =


max{DAR}, i f DARt−1

j = max{DAR} and τt−1
j > th1

DARt−1
j , i f DARt−1

j = max{DAR} and th2 ≤ τt−1
j ≤ th1

DARt−1
j − µ

t
i , i f DARt−1

j = max{DAR} and τt−1
j < th2

(9)

In Equation (7), ϕt
i is the increment index and is defined as:

ϕt
i =

 ϕt−1
j + 1, i f τt−1

j > th1

0 , i f τt−1
j ≤ th1

(10)

That is, every time the transmission latency exceeds the higher threshold th1, ϕt
i will increase by

one unit; otherwise, it will return to 0. Conversely, the decrement index µt
i is given by:

µt
i =

 µt−1
j + 1, i f τt−1

j < th2

0 , i f τt−1
j ≥ th2

(11)

From Equations (7) and (10), it can be seen that the DAR will increase at accelerating levels each
timeslot if transmission delay is consistently higher than the higher threshold th1. On the contrary,
the more successive timeslot single-hop latency falls below the lower threshold th2, the larger the
decrement of DAR will be. Thus, the DAR transfers multiple levels at each time step, which helps
the transmit power of SU nodes reach a reasonable range rapidly and enhances the efficiency of
power adaptation.

Every DAR maps to a value of transmit power pi (pmin ≤ pi ≤ pmax), and the mapping relation is
given by:

pi
(
DARt

i

)
=

1−
DARt

i
|DARi|

pmin +
DARt

i
|DARi|

pmax (12)

where |DARi| denotes the size of
{
DARt

i

}
. Consequently, with DAR, the transmit power is allocated

efficiently to reach a reasonable tradeoff between energy efficiency and routing latency. Moreover,
the DAR is able to transform the large action space problem to an issue with a huge state space,
which reduces computation complexity and makes it compatible with DRL framework.

3.2. Construction of Learning Framework

The cross-layer routing problem is modeled as a Markov Decision Problem (MDP) [24], which is
formulated as a tuple M = 〈S, A, T, R〉. Herein, S is the state space of the network environment,
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A represents the action space; T(s, a, s′) is the state transition function. R(s, a) specifies the reward
received at state s ∈ S when performing action a ∈ A.

Nevertheless, the transition function T(s, a, s′) is hard to obtain due to the dynamic and uncertainty
characteristic of CRN. Considering the above problem, we introduce the model-free reinforcement
learning to resolve the MDP without knowing the underlying game model [25]. The environment state,
agent’s available action and reward function are given in detail as follows.

3.2.1. Environment State

The state of network environment is defined as:

st =
{
ni, DARt

i

}
(13)

where ni ∈ N represents the serial number of the present SU node, and N denotes the set of SU nodes;
DARt

i is the dynamic adjustment rating of SU node ni at timeslot t.
From the state definition in Equation (13), it is found that the present node ni is merely decided

by its previous relay node at the last timeslot, and DARt
i relies on DARt−1

j , as shown in Equation (7).
Thus, the joint design problem satisfies the definition of Markov stochastic process. In addition,
the learning episode terminates if ni is the destination node, i.e.,

{
ndestination, DARt

i

}
is the terminal state

in MDP.

3.2.2. Agent’s Action

The relay selection, channel access and power assignment need to be jointly considered in the
energy-efficient cross-layer routing scheme. Then the agent’s action at time step t is given by:

at =
{
nk, ci, pDARi

}
(14)

where nk ∈ N is the index of the selected relay node, and N represents the set of SUs; ci ∈ Ci represents
the operating channel of SU ni, and Ci is SU ni’s available DTC set; pDARi is SU ni’s transmit power
corresponding to its DAR.

If the power assignment is treated as a part of the action, the sizes of the action space and the
state space are |N| × |Ci| × |P| and |N|, respectively. With DAR, the action space size transforms into
|N| × |Ci| × 1, since pDARi is entirely decided by DARi, while the size of state space rises to |N| × |DARi|,
which will be sufficiently huge if both the network scale and the power set size become large. That is,
DAR converts a large action space into a huge state space to make it more compatible with the
DRL framework.

3.2.3. Reward Function

To guarantee energy efficiency and accommodate the maximal latency requirement, we aim to
minimize the energy consumption and routing delay in the cross-layer routing problem. The PCR and
single-hop delay are included in the instantaneous reward function, which is formulated as:

rt(st, at) = − log2

(
κ1 · η

i
t + κ2 · τ

i
t

)
(15)

where ηi
t and τi

t denotes the PCR and single-hop delay of SU ni at timeslot t, which are defined
in Equations (4) and (3), respectively. κ1 and κ2 are coefficients that adjust the weighting between
power expenditure and single-hop latency.

4. PM-DQfD-Based Energy-Efficient Joint Design Scheme

To accelerate the learning procedure, the DQfD-based apprenticeship learning scheme is adopted.
The background of natural DQfD is introduced in Section 4.1. To reduce the memory occupation and
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further improve the system performance, PM-DQfD is presented in Section 4.2. Then in Section 4.3,
the cross-layer routing scheme based on PM-DQfD is developed for lower end-to-end latency and
system energy consumption.

4.1. Background of Natural DQfD

We consider a scenario in which there exists an expert source node that has already learned stable
strategies. On this basis, new data flows are derived from another source node, and a small number
of intermediate nodes change their location in the network. The strategies of the expert source node
cannot be fully adapted to the new network scenario for two reasons. Firstly, the topology has slight
changes compared with the previous network. Secondly, if the new source node lies in a remote area of
the network, the expert’s strategies in the state of the new source node may be imperfect, since few data
packets are relayed by it. However, it will take a long time and extensive energy if the self-learning
scheme is adopted in this case [26,27]. Thus, DQfD is considered, which accelerates the learning
process with the aid of the expert’s demonstration data [28]. Unlike the general learning scheme,
DQfD allows the new source node to learn from the mature experience of the expert source node.
Therefore, it performs well in tasks at the beginning of the learning process. The key link for DQfD
is the pre-training stage. The agent utilizes the expert demonstrations to acquire relatively effective
strategies. After pre-training with the demonstration data, interactions with the real environment are
reduced, which decreases the cost of trial-and-error. Therefore, both the energy expenditure and the
learning period decrease significantly.

In the initial stage, the expert source node learns the routing strategies using a self-learning
framework called DQN. For the expert source node, the environment state is defined as st =

{
ni,ψt

i

}
and

the action is given by at =
{
nk, ci, pψi

}
, where ψt

i is the responsibility rating of SU ni defined in Equation
(6), pψi is the transmit power of SU ni corresponding to its responsibility rating, and the meaning of other
parameters is the same as that of Equations (13) and (14). In addition, the reward function of the expert
source node is the same as Equation (15). As shown in the learning framework depicted in Figure 2,
the agent in the expert source node chooses an action at comprising route selection, channel access and
power allocation, and then it observes the new state st+1 and obtains the instantaneous reward rt from
the environment. The agent integrates them into the demonstration data et = (st, at, rt, st+1) and stores
this in the expert’s replay memory. If the reward rt is larger than a pre-defined threshold, the transition
et will be stored in the demo buffer of the expert node as demonstration data. At a later point, these
demonstration data will be transmitted to the apprentice source node through CCC. Back in the training
step of the expert source node, in every timeslot, a mini-batch of transitions are sampled from the
replay memory to calculate the loss function and update the network parameters based on gradient
descent. At the next time step, the agent selects the action according to the Q-function approximated
by the updated neural network. Finally, the expert source node gradually learns the optical strategy of
cross-layer routing.
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In the pre-training stage, the loss function consists of the Bellman update loss, the supervised loss,
and the L2 regularization loss [29]. The Bellman update loss LB(Q) guarantees that the Bellman equation
is satisfied, and Q-value update can adopt online TD-learning in the later period. The supervised loss
plays an important role in the effectiveness of pre-training. This is because the demonstration data only
covers a limited state space and cannot traverse all possible actions. Many state-action pairs did not
appear in the pre-training stage, so there is no data to ensure the corresponding Q-function converges
to reasonable values [29]. To avoid this, the supervised loss is introduced as follows:

LS(Q) = max
a∈A

[Q(s, a) + l(s, aE, a)] −Q(s, aE) (16)

where aE is the action chosen in the demonstration data, and l(s, aE, a) is a margin function given by:

l(s, aE, a) =
{

0 , a = aE

C , else
(17)

where C is a large positive constant. It is found that if aE achieves the maximum Q-function among all
actions, the supervised loss LS(Q) = 0; otherwise, LS(Q) = Q(s, a) + C −Q(s, aE) > 0. This ensures
the parameters of the neural network update towards the distribution of the expert’s Q-function,
which reaches its maximum value when performing aE. In addition, to avoid over-fitting the L2
regularization loss, LL2(Q) is taken into consideration. Consequently, the overall loss function is
represented as follows:

L(Q) = LB(Q) + γ1LS(Q) + γ2LL2(Q) (18)

where γ1 and γ2 are parameters that regulate the weight between LS(Q) and LL2(Q).
Once pre-training is completed, the neural network has been trained well without trial-and-error

cost. Then the agent enters the self-learning stage, in which it will continue to improve the
decision-making level through interactions with the real environment. During the self-learning
process, the agent selects the action at =

{
nk, ci, pDARi

}
according to the strategy learned in the

pre-training phrase, which consists of route selection, channel access and power allocation. Then the
agent observes the next state of the environment st+1 and obtains the reward rt. The self-generated
data is formulated as dsel f = (st, at, rt, st+1) and stored in an independent replay buffer Dreplay, which is
updated every timeslot. Meanwhile, the demonstration data stored in Ddemo remains static. After the
amount of self-generated data reaches a certain value, the agent starts sampling a mini-batch of data
randomly from Ddemo and Dreplay in a specific proportion, which is used to calculate the loss function
and update the network parameters by gradient descent. Then the agent will be more intelligent when
choosing the next action at+1, and the routing strategy will be more efficient. In addition, it is important
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to note that the Bellman update loss, as well as the supervised loss, is applied for the demonstration
data; while for the self-generated data, only the Bellman update loss is applied.

Moreover, if the self-learning process is finished without acceptable results, the agent cannot learn
the optimal routing strategy, which leads to lower system energy efficiency and longer end-to-end
delay. There are two solutions to this situation. Firstly, we can increase the training steps κ in the
pre-training phrase, which leads the agent to obtain a better strategy after pre-training. Secondly,
the agent can continue training its neural network using expert demonstrations after the self-learning
phrase until its performance is within an acceptable range. The performance of the second method
will be better if the demonstration data in the demo buffer is updated using the expert source node
after pre-training.

4.2. Prioritized Memories Deep Q-Learning from Demonstrations

Prioritized experience replay can be adopted to sample high-value data more frequently for
performance improvement. However, the agent still needs to maintain both of the large replay buffer
Dreplay and large demo buffer Ddemo, which increases the storage occupancy. Therefore, consideration
about how to release storage space and utilize the data efficiently has become a crucial issue.

To address the problem discussed above, the Prioritized Memories Deep Q-learning from
Demonstrations (PM-DQfD) is presented, which optimizes the memory structure of both demo and
replay buffer. It erases the ineffective transitions and biases the memory contents to where the data
value remains high. In DRL, transition’s TD-error δ is defined as follows:

δ = r + βmax
a′∈A

Q(s′, a′;θ−i ) −Q(s, a;θi) (19)

It measures the potential for performance improvement when using the data for training [30].
So TD-error is adopted as an effective index to evaluate the value of transitions. To be specific,
the transitions whose TD-errors are lower than the threshold will be swept off the replay buffer Dreplay,
and expert demonstration with the lowest TD-error will be erased from the demo buffer Ddemo.

In Figure 3, we illustrate the implementation of memory optimization for the replay buffer Dreplay.
The transition at timeslot t is formulated as et = (st, at , rt , s′t, δt), where δt denotes the TD-error
of experience. For the convenience of memory optimization, δt is set as ∞ before et is replayed.
The real TD-error will be rewritten after the transition is sampled. Firstly, the learning process does
not start before the transitions’ amount is more than half the size of the replay buffer. As shown
in Figure 3a, transitions are stored in sequence and number of transitions grows. In the second phase,
the agent begins learning, and the quantity of transitions is below a% (a > 50) of the buffer. We can see
from Figure 3b that every timeslot a mini-batch of transitions is replayed, while the total number of
transitions simultaneously increases. Then we define the Memory Erasing Threshold (MET) at timeslot
t as:

METt = rand(0, ε) ∗
1
Rt

∑Rt

n=0
δn (20)

where Rt is the number of replayed transitions at timeslot t, and ε is a certain value between 0 and 1.
If the quantity of replayed transitions exceeds a% of the buffer size, the transitions whose TD-errors are
lower than MET will be swept off replay buffer Dreplay until the quantity is less than b% (b < a) of the
buffer size. As shown in Figure 3c, the number of transitions decreases sharply in this period, and only
transitions with sufficiently high TD-error are preserved. The second and the third step are executed
alternately until the learning procedure converges.
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On the other hand, the expert demonstrations may be subsequently outdated due to the dynamic
nature of the radio environment. Thus, the reliability of the expert demonstrations is reduced for the
agent, and it is unnecessary to maintain as much demonstration data as the initial phrase. Based on
this, we erase q transitions with the lowest TD-error from the demo buffer Ddemo every time when
the learning episode is finished. When the amount of data decreases to a particular value S, we stop
erasing demonstrations, and the number of demonstrations remains unchanged after that.

Memory structure optimization regularly erases worthless transitions, which saves system memory
and efficiently utilizes the data. PM-DQfD is shown in detail as Algorithm 1.

Algorithm 1 Prioritized Memories Deep Q-learning from Demonstrations

1: Initialize:
2: Input replay memory Dreplay = φ, demonstration data set Ddemo, replay period P,

demonstration ratio υ, number of pre-training steps κ and memory size R.
3: Initialize the Q-function and the target Q-function.
4: Pre-training:
5: For steps t ∈ {1, 2, . . . ,κ} Do
6: Sample n transitions randomly from Ddemo.
7: Compute the overall loss function.
8: Perform gradient descent to update θ.
9: End For
10: Self-learning:
11: For episode ∈ {1, 2, . . . , T} Do
12: Initialize state s1.
13: For steps t ∈ {1, 2, . . .} Do
14: Choose action at based on policy π∈Qθ .
15: Execute action at and observe reward rt, state st+1.
16: Store transition (st, at, rt, st+1, δt = ∞) in Dreplay.
17: Sample n transitions randomly from Ddemo

∪Dreplay with a fraction υ
of the samples from Ddemo.

18: Compute the overall loss function.
19: Perform gradient descent to update θ.
20: Calculate MET according to (18).
21: If (Rt > a% ∗N) or ((Rt < Rt−1) and (Rt ≥ b% ∗N))

22: For transition = 1, N Do
23: If δtransition < METt

24: Erase the transition from Dreplay.
25: End For
26: Every P steps reset Q̂ = Q.
27: End For
28: If

∣∣∣Ddemo
∣∣∣ > S

29: Erase q transitions with the lowest δt from Ddemo.
30: End For
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4.3. PM-DQfD-Based Energy-Efficient Cross-Layer Routing Scheme

In this section, the PM-DQfD is applied to the cross-layer routing design for improvement of
power efficiency and reduction of transmission delay. To combine the single-agent DRL with wireless
network environments, an effective mechanism is designed. In the protocol, only the source node
needs to deploy the cognitive engine and the replay memory, which radically reduces the computation
load and communication overhead. The implementation is demonstrated as follows:

The complete learning stage consists of three parallel steps: data transmission, action transmitting
and transition back propagation. As shown in Figure 4, we take the learning process of the SU node ni
at stage t as an example. Firstly, after the data transmission of link ( j, i), SU n j generates the transition
et of the link ( j, i) and back propagates et to the source node n0 via CCC. Meanwhile, the SU node
ni chooses the intermediate node nk as its next relay node and starts transmitting data to nk through
DTC ci according to the action selection at the previous stage at−1 =

{
nk, ci, pDARi

}
. During the data

transmission, the agent in source node n0 updates network parameters to θt by sampling a mini-batch
of transitions. Then it selects action at of the next relay node nk and sends it to nk through the established
route. The three parallel steps are executed hop by hop until the destination node successfully receives
the data packet.
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Furthermore, memory structure optimization is adopted in the joint design scheme. When the
transition number is increased to a certain extent, it will release the storage space in order to reduce
memory occupation. The memory saved can be used to store more data caches. For example, it is possible
to store sensor data with higher precision for wireless sensor networks. Therefore, the PM-DQfD-based
joint design algorithm is compatible with wireless environments in multi-hop CRN. Although the
PM-DQfD-based protocol has many advantages over traditional schemes, a tradeoff is made between
system performance and signaling overhead. The signaling overhead of the PM-DQfD-based cross-layer
routing protocol consists of two parts. Firstly, the expert demonstrations are transmitted from the expert
source node to the apprenticeship source node through the established route via CCC. Secondly, action
transmission and transition back propagation are performed every hop in the single-agent-based routing
mechanism. However, since the size of both transition and demonstration buffer is limited, the signaling
overhead during the demonstration data transmission is in an acceptable range. In addition, the size of
one action is sufficiently small compared to the data packet so that the signaling overhead caused by
the action transmission and transition back propagation is relatively low. The interactions with the real
world decrease despite these overheads, which is worthwhile for the significant decline of the power
consumption and transmission latency.
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5. Experiment and Evaluation

5.1. Simulation Setup

Through pre-training with the expert demonstrations, the agent passes over the initial stage and
its neural network is trained without trial-and-error cost. Furthermore, memory optimization helps the
agent exploit the data more efficiently and further improves its performance. All of this means that the
PM-DQfD-based scheme is able to achieve faster convergence speed, less memory occupancy, higher
energy efficiency and lower routing latency, which is vital to effectiveness and reliability in wireless
communication. Thus, the approach is especially suitable for energy-constrained and delay-limited
applications in CRN.

In this section, the performance of the PM-DQfD-based scheme is assessed. The results of the
proposed scheme are compared with traditional schemes such as i) Deep Q-Network (DQN) [31]; ii)
Prioritized Memories Deep Q-Network (PM-DQN) [20]; iii) Natural DQfD [29]; iv) Conjecture Based
Multi-agent Q-learning Scheme (CBMQ) [32]; and v) Cognitive Radio Q-routing (CRQ-routing) [33]
with respect to effectiveness, robustness and learning speed. The simulation framework was built
using Python (3.5.1, Google, Mountain View, CA, USA). Specifically, the network environment and
learning algorithm were coded on the basis of the Networkx (2.3, Los Alamos National Laboratory,
Los Alamos, NM, USA) and Tensorflow (1.4.0, Google, Mountain View, CA, USA), respectively. It was
assumed that the expert source node applies DQN.

In addition, we consider a networking scenario comprising 30 SU nodes. The location of nodes is
subject to a two-dimensional uniform distribution. It is assumed that the coordinate of a SU node is
(x, y), and its probability density function is given by:

f (x, y) =
{ 1

A , (x, y) ∈ G
0, otherwise

(21)

where G is a bounded domain on the plane (G is a square area of 2000 × 2000 m2 in our simulation
process), and A is the size of bounded domain G. The network topology is shown in Figure 5. In Figure 5a,
SU node n24 is the source node and it establishes route to the destination node n10 through DQN.
In Figure 5b, SU node n22 becomes a newly joined source node, and it routes messages by learning the
routing protocol from the expert source node n24. Simultaneously, the relay node n0 and n6 have moved,
and some changes take place in the network topology. Furthermore, there are 10 licensed channels
available for SUs, and the set of transmit power comprises 40 levels: {100, 120, 140, . . . , 1000 mW}.
The remaining parameters are demonstrated in Table 1.
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Table 1. Simulation parameters.

Parameter Default Value

Link Gain g = εG(r/r0)
−m [34]

Available Spectrum 56 MHz–65 MHz
Bandwidth, B 1 MHz
AWGN power, ξ 10−7 mW
PU-to-SU interference, φPU

ijc φPU
ijc ∼

[
10−7, 10−6

)
mW

Packet Size, Spacket 2× 105 bit
Mean OFF Period of PU, λ 2 ms
SINR threshold, σth −80 dBm
Higher Latency Threshold, th1 16 ms
Lower Latency Threshold, th2 12 ms
Weighting of the power consumption ratio, κ1 100
Weighting of the single-hop delay, κ2 1
Demonstration ratio, υ 0.1
Discount factor, β 0.99
Learning rate, α 0.001
Weighting of the supervised loss, γ1 1
Weighting of L2 regularization loss, γ2 10−5

Pre-training step, κ 200
Replay period, P 300
Size of Mini-Batch, ρ 64
Upper Limit of Erasing, a 99
Lower Limit of Erasing, b 70
Erasing Parameter, ε 0.2
Final Size of Demo Buffer, S 1500
Erasing parameter of Demo Buffer, q 3
Replay buffer size, R 2000
Demonstration buffer size, R 2000

5.2. Simulation Results

Figure 6 shows the quantity variation trends of self-generated data and expert demonstrations
in the self-learning stage. We find that the amount of demonstration data remains constant before
1000 time steps. After that, the agent starts self-training and the size of the demonstration buffer
decreases until it reaches 1500. On the other hand, the quantity of self-generated data increases
monotonically before 2000 time steps. Then the total amount of the self-generated data fluctuates
between b% and a% of the replay buffer size as memory optimization is performed. The decrease
of demonstration data and the dynamic change of the self-generated data save the storage space,
which can be used for storing more cache data or sensor data with higher precision.
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The data efficiency of the natural DQfD and PM-DQfD is investigated in Figure 7. Figure 7a
presents the average TD-errorr of natural DQfD and PM-DQfD as they change with the learning
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timeslot. It can be seen that the average TD-error of both algorithms increases with timeslot, and the
TD-error of PM-DQfD is significantly higher than that of DQfD. This is because data with low TD-error
is swept off the demonstration buffer and the replay buffer when using PM-DQfD, which enhances
the average TD-error. These results comply with common sense. In addition, the average TD-error
of PM-DQfD surges as the self-generated data is erased. After that, the TD-error declines until it
stabilizes, and the stable value of TD-error is larger than the value before the surge. The reason for
this is that a large amount of high-quality data is retained after executing memory erasing, and it
brings accumulation advantage for the subsequent phases. Figure 7b demonstrates the overall loss
of the natural DQfD and PM-DQfD changing with time steps. It is observed that the overall loss
of two algorithms shows a trend of fluctuating downward, and the loss of PM-DQfD is lower than
that of DQfD. Moreover, the overall loss of PM-DQfD shows a sharp decline every time data erasing
is performed. This is mainly because PM-DQfD periodically erases transitions with low TD-error,
and the average TD-error of the remaining data gets larger. Data with larger TD-error make greater
contributions to parameter training for neural network than other data. Thus, PM-DQfD causes lower
loss and achieves better performance.Energies 2019, 12, x FOR PEER REVIEW 16 of 22 
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Figure 8 demonstrates that with increasing learning episodes, the expected reward increases
gradually for all algorithms. The red curve represents the reward of PM-DQfD with DAR. Other curves
depict the performance of PM-DQfD, DQfD, PM-DQN, DQN, and CRQ-routing with responsibility
rating, respectively. It is found that the expected return of DQfD-based schemes is generally higher
than that of CRQ-routing and the two DQN-based algorithms. This is because the network is well
trained after pre-training for the DQfD-based schemes, leading to more sophisticated strategies.
In addition, the rewards of the two prioritized memories-based schemes, i.e., PM-DQfD and PM-DQN,
are larger than those of natural DQfD and DQN, respectively. The reason for this is that the prioritized
memory-based schemes periodically erase transitions with low TD-error, retaining high-quality data
that has greater value for policy learning. Furthermore, better performance is achieved when the
DAR is applied to PM-DQfD. Since the transmit power can be tuned to a reasonable value with fewer
hops when applying DAR, lower energy consumption and end-to-end delay are obtained in each
learning episode.
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The effectiveness properties of the energy efficiency and routing latency are investigated in Figure 9.
In Figure 9a, we depict the system power consumption ratio changing with the number of episodes.
For all algorithms, system PCR experiences a gradual decline as the learning process goes on. From these
curves, it can be concluded that the DQfD-based routing protocols achieve lower energy expenditure and
faster learning speed than PM-DQN, DQN and CRQ-routing. Moreover, the single-agent framework,
DQfD-based schemes have almost the same convergence speed as the multi-agent CBMQ scheme,
and achieve better performance than it with regard to energy efficiency. This is because in DQfD-based
schemes, the pre-training stage decreases the interactions with the real environment, which decreases
trial-and-error cost as well as energy consumption. Furthermore, PM-DQfD holds an advantage over
natural DQfD. This is because more valuable transitions are preserved with the memory structure
optimization and redundancy reduction, which helps the agent achieve an energy-efficient routing
protocol. In addition, since power adaptation is completed with fewer hops when applying DAR,
the average PCR on the whole path decreases. Hence the system energy efficiency of DAR-based
PM-DQfD is further improved compared with the responsibility rating-based schemes. In Figure 9b,
we evaluate the trend of expected end-to-end delay changing with the learning episodes. It is similar
to Figure 9a, since the weight of routing latency is equal to that of PCR when constructing the
instantaneous reward in Equation (15). PM-DQfD with DAR achieves the shortest routing latency
in all algorithms. In addition, it converges as fast as the multi-agent scheme CBMQ, which has a faster
convergence speed than CRQ-routing and DQN-based protocols. No more expatiation here, since the
reason for this is the same as in Figure 9a.
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In Figure 10, we investigate the average hops along the path changing with the number of
learning rounds. It is found that DQfD-based schemes achieve lower average hops compared with
other algorithms. Furthermore, the learning speed of DQfD-based schemes is the same as CBMQ,
which converges much faster than CRQ-routing and two DQN-based algorithms. The reason for
this is that pre-training with demonstration data accelerates the parameter-tuning of neural network
in DQfD-based schemes. It is worth mentioning that the average number of hops of CBMQ are almost
the same as that of PM-DQN. This is because the advantage of multi-agent schemes is the reduction
in the power consumption and transmission delay of each hop, rather than achieving fewer hops along
the path. Similarly, the prioritized memory-based protocols achieve fewer learning steps than the
natural algorithms. This is due to the fact that data with high TD-error decreases blind exploration for
relay nodes. However, applying DAR to PM-DQfD has no effect on reducing exploration steps in one
episode. This is because the DAR can only produce a higher reward in each learning episode, but is
invalid for route selection.Energies 2019, 12, x FOR PEER REVIEW 18 of 22 
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As shown in Figure 11, the Packet Delivery Ratio (PDR) increases for all algorithms with the
increasing number of episodes. It can be observed that the PDR of DQfD-based schemes outperforms
CBMQ, CRQ-routing and the two DQN-based methods. Among the DQfD-based methods, PM-DQfD
with DAR achieves the highest PDR. Since PM-DQfD with DAR achieves the lowest end-to-end delay,
as shown in Figure 9b, the portion of its packet delivery with a routing latency below the setting
threshold exceeds that of other schemes. This illustrates that the PM-DQfD-based DAR is more robust
and reliable compared to traditional algorithms.
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Figure 12a,b illustrate the trend of system PCR and routing latency as a function of PU arrival
probability, respectively. In Figure 12a, the system PCR increases as PU arrival probability increases.
This is because frequent arrival of PUs results in more data transmissions being interrupted. Increase
in retransmission results in greater energy expenditure. For different PU arrival probabilities, PM-DQfD
achieves the lowest system PCR, followed by DQfD. The PCR of PM-DQN is obviously higher than
DQfD, and DQN has the greatest energy consumption. This demonstrates the advantage of learning
from the expert demonstrations and memory structure optimization. Furthermore, it can be seen
that the advantage of DQfD-based schemes decreases as PU arrival probability increases. This occurs
mainly because the performance of the expert agent tends to deteriorate when the primary user returns
frequently. Thus, even with the aid of the expert’s demonstration data, the advantage to the apprentice
node is still diminished. In addition, the change end-to-end delay with PU arrival probability given
in Figure 12b is very similar to that in Figure 12a, and we will not repeat it here.
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5.3. Time Complexity Analysis

In this section, the time complexity of the cross-layer routing protocol is taken into consideration.
The neural network has three fully connected layers in the simulation experiment. The number of
neurons in the input and output layer is equal to the dimension of the state n f eature and the size of
action space naction, respectively. The neuron quantities in the first and second layer are n1 and n2,
respectively. The input layer is not included in the total number of layers in the neural network because
it only transmits data into the network and does not participate in the calculation. The feed-forward
calculation for one sample contains two matrix operations, which needs n1 × n2 and n2 × naction times
of computation [20]. Since the size of the action space naction is a constant, the time complexity for
one sample in the feed-forward calculation can be calculated as o(n1 × n2 + n2 × naction) = o(n1 × n2).
The complexity of the back propagation is the same as that of the feed-forward calculation, such that
the time complexity of training the neural network for one sample is o(n1 × n2). We assume that the
algorithm converges after T episodes, and the average hops along one path are H (it can be seen that T is
800 and H approximates to 5 from the simulation results in Figure 10). Thus, the total number of samples
in the simulation process is T ×H, and the time complexity of the apprenticeship learning-based
scheme is o(T ×H × n1 × n2). Since the values of both T and H are less than those in other algorithms,
the proposed routing protocol has a lower time complexity than the self-learning schemes.

5.4. Discussion of Application Scenario

On the basis of experiment and evaluation, it is found that the apprenticeship learning-based
cross-layer routing protocol has the following characteristics: Firstly, its learning speed is sufficiently
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high with the guidance of expert demonstration data. Secondly, it achieves high energy efficiency by
reducing the trial-and-error cost and applying the DAR. Thirdly, the routing latency of the scheme is
relatively low, and it accommodates the maximal latency requirement. Fourthly, it releases memory
space periodically to store more data caches or high-precision data. Fifthly, by using DRL, the proposed
algorithm is able to solve joint routing and resource management for large-scale networks. With all these
advantages, the proposed scheme can be used in wireless sensor networks such as the Internet of Things
(IoT) and the Wireless Environmental Monitoring Network (WEMN). In these applications, the number
of sensor nodes is large, and every node has limited storage resources. Moreover, the network lifetime
is limited, since the nodes are energy-constrained and the environment of their deployment area is
complicated. In addition, the proposed scheme can also be applied in cognitive radio ad hoc networks
such as Military Ad Hoc Networks (MAHN) and Personal Area Networks (PAN). These applications
require the network to have fast self-organizing capability, and the routing protocol has to ensure that
the end-to-end delay is within the tolerance and meets the application requirement. Furthermore,
since most radios rely on batteries for power supply, energy efficiency should be taken into account.
Consequently, the proposed scheme would satisfy all of the requirements for these application scenarios
and produce better network performance.

6. Conclusions

Green cognitive radio technology has attracted increasing attention due to the energy efficiency
requirements of beyond-5G wireless communication systems. It achieves reasonable tradeoffs between
energy efficiency and spectrum efficiency in wireless networks. In this paper, we studied the key
techniques in the green cognitive radio, and a PM-DQfD-based energy-efficient cross-layer routing
scheme was presented. Unlike the general DRL method, PM-DQfD utilizes expert demonstrations
to accelerate the learning procedure, which improves both of the energy efficiency and spectrum
efficiency. Furthermore, it reduces storage occupancy and achieves better performance through
memory structure optimization. This approach is especially suitable for the energy-constrained and
delay-limited applications in green communications. Although energy efficiency is considered one of
the most important performance metrics in this paper, SUs are battery-powered and energy-constrained.
Once the power of the SU nodes starts to run out, the function of the whole network will be affected.
Nowadays, energy harvesting technology is being studied and is becoming available that is able to
extract energy from the surrounding environment. This can greatly improve the lifetime of wireless
networks and reduce the difficulty of node deployment. In future work, we aim to apply energy
harvesting to the joint routing and resource management in CRN.
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