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Abstract: The growing level of grid-connected renewable energy sources in the form of microgrids
has made it highly imperative for grid-connected microgrids to contribute to the overall system
stability. Consequently, secondary services which include the fault ride-through (FRT) capability
are expected to be possessed characteristics by inverter-based microgrids. This enhances the stable
operation of the main grid and sustained microgrid grid interconnection during grid faults in
conformity with the emerging national grid codes. This paper proposes an effective FRT secondary
control strategy to coordinate power injection during balanced and unbalanced fault conditions.
This complements the primary control to form a two-layer hierarchical control structure in the
microgrids. The primary level is comprised of voltage/power and current inner loops fed by a droop
control. The droop control coordinates grid power-sharing amongst the voltage source inverters.
When a fault occurs, the participating inverters operate to support the grid voltage, by injecting
supplementary reactive power based on their droop gains. Similarly, under unbalanced voltage
condition due to asymmetrical faults in the grid, the proposed secondary control ensures the positive
sequence component compensation and negative and zero sequence components clearance using
a delayed signal cancellation (DSC) algorithm and power electronic switched series impedance
placed in-between the point of common coupling (PCC) and the main grid. While ensuring that FRT
ancillary service is rendered to the main utility, the strategy proposed ensures relatively interrupted
quality power is supplied to the microgrid load. Consequently, this strategy ensures the microgrid
ride-through the voltage sag and supports the grid utility voltage during the period of the main
utility grid fault. Results of the study are presented and discussed.

Keywords: microgrid; inverter; fault ride-through; voltage sag; delayed signal cancellation algorithm

1. Introduction

The introduction of renewable energy sources (RESs) based distributed generations (DGs) also
known as distributed energy resources (DERs) into the modern electric power systems has raised
significant challenges such as bidirectional power flow in the distribution system, stochastic generation
nature of RESs, and distinctive fault current properties [1]. Microgrids (MG) are low-voltage mini-grids
and their concept is projected years back to aggregate RESs, energy storage systems (ESS,) and loads to
efficiently manage and control the DGs [2–4]. Consequently, MGs have served as a prospective platform
where RESs are integrated into the modern-day distribution system with operational flexibility and
controllability in either grid-dependent or autonomous modes [5]. In microgrids, controllable voltage
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source inverters (VSI), are commonly used to interface various RESs such as photovoltaic (PV), wind,
batteries, fuel-cells, and micro-turbines to enhance the control flexibility and ensure high quality of
electric power in systems [6–9].

The system frequency, voltage, and power flow control for autonomous MG are determined by
renewable energy sources. However, in grid-connected modes, the main grid imposes most of the
supply standards [9]. In stand-alone operation, voltage and frequency are regulated using control
schemes with multi-loop [8,10]. These control systems are usually implemented in any of these reference
frames; synchronous direct-quadrature-zero coordinates, stationary alpha-beta-gamma coordinates,
and natural three-phase coordinates [8,11]. In a distributed generation, inverter interfaces are typically
connected in parallel [12] with appropriate power-sharing among them. Numerous control strategies
have been proposed to achieve a suitable power (active and reactive) sharing, such as: average current
control [13], master–slave control [14,15], and circular-chain-control [16]. A decentralized control
technique frequently employed in the instance of inverters operated in parallel to avoid circulating
currents is droop technique [17]. Droop control is extensively used in microgrids and relies on
localized information to achieve decentralized control. This makes it a more appropriate power-sharing
technique compared to various high bandwidth communication network-based techniques [6,18].

The inverter interface isolates the DGs and the wider main grid electrically; and nevertheless
serves as an economical link to allow electrical energy transfer and ancillary services at the interface [19].
Several challenges are inherent owing to the sensitivity of the bidirectional flow of power between the
microgrid and host utility grid [5]. In the event of voltage disturbances occasioned by faults in the
host grid, studies infer the instant switching from grid-connected to islanded mode [20]. The total
grid impedance up to the fault and the voltage at the point of fault occurrence have been identified
in fault analysis as major factors affecting electrical faults in the grid [21,22]. The energy-generating
units are expected to disconnect from the grid at the instance of voltage sags and reconnect just at
the moment that the fault or disturbance is cleared. Therefore, MGs were not expected to provide
additional services including low voltage or fault ride-through (LVRT/FRT) supports. Conversely,
due to the growing penetration of the grid-interactive and high power capacity MGs, it is expected that
they deliver a substantial quantity of power to the host grid when operational in grid synchronous
mode. During fault or voltage sag, this will alleviate the potential instability by ensuring the active
power delivery to local microgrid loads and reactive power support to the host grid. Avoiding the
disconnection of high capacity MGs during grid fault or any disturbance forestalls potential network
instabilities [23]. As a result, some developed countries have amended their respective grid codes
to make provisions for rising RES capacity. Spain, Germany, and Denmark are among the foremost
countries in 2004, 2006, and 2008 that already issued the FRT/LVRT requirements for DERs connected
to the grid [24,25]. Spanish code requirement is displayed in Figure 1 accordingly. Even though these
requirements are projected for the high-voltage grid, they are however valid for low-voltage grid due
to similar concepts [18].
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The power quality (PQ) of a grid-connected DG, as well as that of load connected, is degraded
during the period of disturbance such as a fault in the host grid [27]. Supporting PQ schemes—such
as static synchronous compensators (STATCOMs), unified power quality conditioner (UPQCs), and
dynamic voltage restorers (DVRs)—have played tremendous roles in FRT capability enhancement of
the of DER systems [28–30]. Similarly, several innovative FRT control strategies and schemes have been
proposed in [26,31,32]. Zamani et al. [33] recommend a scheme for the control of an inverter interfaced
RES for performance enhancement of the host grid during disturbances and faults. In Kou and Wei [32],
certain considerations on various grid code requirements for MGs interconnection and operation were
made, which recommends LVRT capabilities for MGs and provision of additional services under faults.
By these recommendations, grid-connected MG is required to ride-through balanced and unbalanced
sags in grid voltage as expressed in FRT voltage profile. However, interruption followed by a transition
into autonomous operation is only permitted when fault persists [20]. Fault current limiters (FCLs)
are utilized in minimizing the contribution to the fault current level of the DGs to improve FRT [34].
References [35,36] suggested different types and modified superconducting FCL; flux-coupling-type,
resistive type to enhance the microgrids, wind turbines, solar photovoltaic and other DGs FRT
capabilities. The FCL potential to enhance FRT is well established in works of literature [37,38]. FCL is
positioned between a microgrid and main network and as such, overall FRT is achieved for all of the
microgrid DERs [39]. A supplementary controller for voltage is suggested in [40] for the FRT control
of inverters based DGs. This controller is expected to be superimposed with numerous available
voltage control schemes with minimum adjustments. These modifications, therefore, do not necessarily
need to alter the initial configuration of these existing controllers. Towards realizing the numerous
microgrid control and operation requirements, a hierarchical control has been proposed in [41,42] with
fundamental control goals which include voltage control, local power allocation among distributed
energy units, frequency regulation and power control (active and reactive) under synchronization
with host grid [6]. A rapid fault detection system plays a crucial role in enhancing the effects of these
several strategies.

To meet the anticipated FRT requirements, control schemes and topologies for the grid-supporting
MG need to be developed. This work aims at developing a secondary control scheme for the
FRT/LVRT enhancement of a droop controlled grid supporting inverter-microgrids using delayed
signal cancellation and stationary reference frame control for the reactive power injection and fault
current limitation. To satisfy numerous requisites of operation and control in a microgrid, the secondary
LVRT control stipulates set-points for the primary control that consists of the droop, power and current
loops. These two levels form a hierarchical control structure. The strategy requires no mode switching
and enables the inverter-interfaced MG to ride through faults or transient disturbances on the host
utility grid. The need for resynchronization of microgrid with the main grid as proposed in seamless
transition method [43–46] after fault clearance is completely unnecessary and shedding of local loads
is avoided. In a grid supporting system, the active and reactive power is controlled to meet local load
requirement and the surplus MG power is simultaneously delivered to the main grid. Active power
and reactive power are controlled through frequency regulation and voltage regulation respectively,
such that local power-sharing among constituent inverters is not compromised in any way.

Acceptable power quality for the local loads during fault duration is ensured with the inclusion
of a properly sized anti-parallel IGBT-diode switched inductance. It is noteworthy that as a result
of high R/X ratio in low voltage distribution feeder line, injecting reactive power under faults may
not substantially contribute to the recovery of voltage. Hence this work has been able to deploy a
properly sized anti-parallel IGBT-diode switched inductance at the PCC of the MG with the grid to
reduce R/X ratio and effectively support the voltage under grid disturbance. This provides protection
and alleviates the effects of fault especially on the local sensitive loads of the microgrid. Consequently,
a direct theoretical framework has been provided for the determination of the value of this switched
inductance. Furthermore, this arrangement counteracts the effect of grid disturbances by limiting
transient overcurrent throughout grid faults. This is enhanced by the introduction of a secondary
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control block that regulates the active power and reactive power exchange between the host grid and
the microgrid in conformity with the stipulated utility grid standard.

To ensure the efficient and prompt responsiveness, a fault detection procedure built on a delayed
signal cancellation (DSC) algorithm is implemented to detect the fault instantly in less than 0.05 s.
The DSC algorithms apply the concept of PLL and therefore enhanced with fast detection of the positive
sequence and negative sequences [47–49]. In [40], an LVRT strategy is proposed which implements the
wavelet-based fault detection technique as given in [50,51]. The voltage disturbance detection method
based on wavelet transform can detect the faults within 3.12 ms. The DSC technique is efficient for faster
convergence and detects faults within 0.1515 ms under various unbalanced voltage conditions has been
validated in several works of literature [52–55] using simulations and experiments. DSC determines
the fault interval at which active and reactive power references are adjusted appropriately. Lastly,
DSC is used in giving adequate information for the control of the PCC voltage and this ensures quality
power delivery to the microgrid loads irrespective of the transients on the main grid. The simulation
results reveal the performance and effectiveness of the proposed scheme in enhancing LVRT/FRT
requirements of Spanish code.

The rest of this paper is organized thus: Section 2 presents the modelling of a grid supporting MG
system whose aim is to actively partake in grid voltage and frequency regulations via the control of
active power and reactive power supplied to the AC grid; Section 3 describes the proposed secondary
FRT control of voltage with the description of DSC; Section 4 discusses the power flow in a grid support
system and presents the how to determine the value of IGBT-diode switched reactor; and Section 5
shows the detailed results of simulation of the proposed strategies under symmetrical disturbance and
asymmetrical disturbance on the grid.

2. Grid Supporting Microgrid Modeling

The grid-supporting inverter fits the control and hardware topology most typical of three-phase
VSI utilized in interfacing numerous DERs. It is intended to fill a variety of roles and can export
power at any specified power factor, when connected to weak grids, stiff grids and to a low-inertia
RES dominated microgrid. Figure 2 is a grid-interactive inverter system whose output is connected to
a stiff host grid. Its model can be derived in a synchronously rotating reference frame by using the
PLL phase angle. The innermost loop controls the filter inductor current, following current references
and removing cross-coupled terms caused by the reference frame transformation. The outer loop
specifies the current references corresponding to required or specified active power and reactive power
references. The VSI and the LC filter constitute the power processing unit. The output is interfaced to
the grid via the LC filters where the L is the coupling inductor with C as the shunt capacitor. The entire
system reference is the common reference frame where the dynamics of each constituent generating
unit are transformed using the angular frequencyω. Subsequently, the decoupling of the active and
reactive power is done through Park transformation (abc-dq).
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2.1. Output LC Filter

The two most widely used passive filters are the LC and LCL filters. LC filters are deployed in a
situation where a local load exists between the inverter and the host grid while the latter is employed
where there is nonexistence of local loads [56]. The LC filter attenuates the output voltage ripple
and limits the high-frequency ripple current of power electronic switches [57]. The LC filter circuit
equations are derived from the synchronous reference frame. Figure 2 shows filter inductance Lf and
shunt capacitance Cf. The grid impedance or transformer leakage inductance or both serve as coupling
inductor [58]. The LC filter arrangement depicted is used for the grid-connected inverter with local
load in between. This work focuses on the parallel operation of inverter-based microgrid with a local
load while in grid supporting mode. Consequently, the LC filter is used in inverter output considering
the presence grid impedance between the microgrid and the host grid. The cut-off frequency fc of the
LC filter is given by

fc =
1

2π
√

LC
(1)

The voltage/power loop and current control loop are designed in such a way to eliminate high
frequencies as a result of disturbances by providing adequate damping for the output LC filter [9].

2.2. Grid Synchronization

The AC grid voltage parameters; voltage magnitude, grid frequency, and phase angle of an
inverter-based MG are key to accurate and dynamic control of active power and reactive power injected.
Therefore, a precise estimation of these aforementioned parameters has a significant effect on the
inverter general performance. Furthermore, continuous parameter sampling and AC grid condition
monitoring are required to dynamically decide the appropriate and optimal mode of operation.
The inverter-based microgrid synchronization using PLL ensures appropriate response during normal
and abnormal AC main grid condition [10]. The phase angle and frequency of the main grid is closely
tracked by the synchronous reference frame PLL using Equation (2).

Tabc−dq =

 cos(ωt) cos
(
ωt− 2π

3

)
cos

(
ωt + 2π

3

)
sin(ωt) − sin

(
ωt− 2π

3

)
− sin

(
ωt + 2π

3

)  (2)
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Equation (2) transforms a three-phase instantaneous voltage from the natural abc reference frame
to a rotating synchronous dq reference frame by Park (abc-dq) transformation. In the dq reference frame,
the Equation (3) shows an angular position, which is regulated via the feedback loop driving the
voltage quadrature component vq to zero.

θ′ =

∫
ω′ =

∫ (
ω ∗+

(
kp +

ki
s

)
× vq

)
(3)

By the synchronization arrangement, ω’ is estimated frequency of the AC grid while the rated
reference frequency ω* signifies PLL’s feed-forward which enhances the phase estimation θ’ dynamics
and this is achieved by integrating ω’.

2.3. Primary Control

Different microgrids with a wide-ranging array of operation and control objectives; grid-forming,
grid-feeding, grid-supporting, require sets of well-coordinated and designed control schemes to
guarantee effectual operation especially in the dynamic state [10]. The power-sharing, voltage/power,
and current controllers locally regulate the output variables of the inverter with high-performance
bandwidth to ensure prompt response time in a dynamic state. In the hierarchical control architecture,
these three different loops all constitute primary control level that ensures microgrid stability.

The focal objective of the primary level of control is controlling the active power and reactive
power interaction and export between DERs and host AC grid as voltage sources being controlled by
the current [59]. The positive sequence control loops regulate the active power contributed by every
constituent inverter interfaced DER. This active power supply is maximized under a symmetrical grid
situation subject to the available active power potential in case of RES-based DG system. However,
under asymmetrical grid voltage situations, the negative and zero sequence control loops regulate the
reactive power delivery. DGs supply the obtainable active power from the maximum power tracking
system in normal grid conditions. A percentage of total active power generated, together with the
entire reactive power, is supplied to meet microgrid load demand, while the remaining percentage of
the active power generated is directly provided to the main utility grid consumption.

2.3.1. Droop-Based Power Control

The effective distribution and allocation of required power among the inverter-based DERs of a
given microgrid is implemented by a droop control scheme. Droop emulates frequency and voltage
regulation of a typical synchronous generator at the inverter output. Several power sharing control
schemes—such as average current-sharing, master–slave, and droop—have been significantly employed
to control parallel-connected inverter-based DERs. In microgrids, parallel-connection of inverters
are known to improve the overall performance and reliability even with the failure of a constituent
parallel inverter [60–62]. Propitiously, droop controls have been generally acknowledged as the most
effective power-sharing scheme due to flexibility and nonexistence of significant communication
networks between parallel-connected inverters [17,63]. Furthermore, various techniques have also
been proposed in the literature to improve the performance of droop and grid-connected inverters
at high RES penetration [64,65]. The injected active power by a particular constituent inverter into a
reference bus is largely dependent on αwhich denotes angle of power. However, reactive power is
significantly influenced by the voltage amplitude [17]. The droop characteristics equations of both
frequency and voltage as they relate to the active power and reactive power respectively are written as

ω = ω∗ − kp(P∗ − Pm)

E = E∗ − kq(Q∗ −Qm)
(4)

where kp and kq are the coefficients of the frequency and voltage droops of the inverter, respectively.
Similarly, P* and Q* are active and reactive power references, respectively. Furthermore, the measured
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output of active power and reactive power are signified by Pm and Qm, respectively. Also, ω* signifies
the set-point frequency while E* is the rated set-point amplitude of the voltage. Hence, voltage
magnitude and frequency are set by the coefficients of the voltage and frequency droops specified for
the active power and reactive power. In Equation (4), droop control shares every load change among
inverters by adjusting the frequency by the specified coefficient of frequency-active power droop. In a
grid-supporting VSI, the measured active power and reactive power Pm and Qm at any point in time are
computed using the measured output three-phase current and voltage transformed to the equivalent
direct-quadrature components as depicted in Equation (5) at the fundamental frequency of ω*

Pm = 3
2

(
vdid + vqiq

)
Qm = 3

2

(
vdiq − vqid

) (5)

With the frequency droop gain, the frequency is determined and integrated for setting the phase.
Therefore, the dynamic features and inertia characteristics of conventional generators are mimicked
with incorporated negative feedback. Similarly, with a voltage droop gain, the voltage magnitude
is determined which is equivalent to a d-axis output voltage reference. In other words, the control
ensures the magnitude reference of the output voltage is in line with the d-axis voltage component of
the reference frame while zero voltage q-axis component reference is maintained [9].

2.3.2. Power/Voltage Loop Control

Both loops for voltage/power and current regulation are used to set the final reference for the
voltage used as the input of the pulse width modulation (PWM) of the VSI. The PLL stipulates the
reference voltages (v*d and v*q) of direct-quadrature axes based on its synchronization with the grid.
Consequently, the voltage/power loop control uses the v*d and v*q to generates the references currents
(i*d and i*q) for the direct-quadrature axes components using the measured active power and reactive
power as given in the Equations (4) and (5) and shown in Figure 2. This control can also be realized
with a PI control scheme such that the controller output is given by

i∗d =
(
kpv +

kiv
s

)[
v∗d − vd − vdp

]
i∗d =

(
kpv +

kiv
s

)[
v∗d − vq − vdp

] (6)

where kIV and kPV are the integral gain and proportional gain of the voltage PI control respectively.
The vdp is the drop in voltage due to the grid or virtual impedance.

However, in a grid supporting VSI that operates in the role of a typical current source, the voltage
control loop is regarded as power control loop such that the references, i*d and i*q, generated are
computed using the output of the droop power-sharing Pm and Qm such that

i∗d = 2
3

Pm
v∗d

i∗q = −
2
3

Qm
v∗q

(7)

In the absence of any disturbance or fault at the AC side of the VSI, this control loop regulates the
active and reactive power to ensure the transfer of power from DC to AC side of the VSI. Under this
balanced voltage condition, the voltage vd is constant and the active power is regulated by adjusting the
current id. Similarly, the reactive power regulated through the current iq control. Therefore, the active
power and reactive power transferred to the AC side is determined by making Pm and Qm the subjects
of the formulas in terms of stationary quantities in Equation (7) [66].

2.3.3. Current Loop Control

Loops for voltage/power and current regulation simultaneously play the roles of setting the final
reference for the voltage used as the input of the PWM of the VSI. Furthermore, according to the
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current references, i*d and i*q, generated by the loop of voltage control, the loop of current control
generates reference voltage (ud and uq) of direct-quadrature-axes for the PWM. This control is realized
using a PI controller such that the controller output is expressed as

ud =
(
kpi +

kii
s

)[
i∗d − id

]
+ vd + (ωL) × i∗q

uq =
(
kpi +

kii
s

)[
i∗q − iq

]
+ vq − (ωL) × i∗d

(8)

where kii and kpi denote integral and proportional gains of the current control loop respectively.
The direct-quadrature axes components vd and vq of the voltage signify the feed-forward quantities
while +(ωL)i*q and −(ωL)i*d signify the cross decoupled quantities. The feed-forward and cross
decoupled quantities are employed to accomplish independent d–q axis current controls. Lastly, L in
the cross-decoupled quantities is the output filter inductor.

3. Proposed LVRT/FRT Scheme

Faults are usually unbalanced and the grid codes are less strict in asymmetrical fault cases (phase
to ground and line to line) unlike strict regulations imposed under the symmetrical (three-phase)
disturbance. However, certain limitations are imposed which include the prohibition of the grid
absorption of both active power and reactive power in the event of fault as stipulated by the Spanish
P.O.12.3 document [67,68]. Consequently, the unbalance in the grid can be promptly eliminated
alongside current limiting by inhibiting grid active power absorption and supporting grid voltage
recovery by contributing an appropriate reactive current. The microgrid topology used for the purpose
of this paper is shown in Figure 3.
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direct-quadrature axes components vd and vq of the voltage signify the feed-forward quantities while 
+(ωL)i*q and −(ωL)i*d signify the cross decoupled quantities. The feed-forward and cross decoupled 
quantities are employed to accomplish independent d–q axis current controls. Lastly, L in the cross-
decoupled quantities is the output filter inductor. 
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3.1. Secondary Voltage Control

This study uses Spanish grid code guidelines [26,69] in developing the FRT/LVRT secondary
control. These documents released by the government stipulates that grid-connected DGs should
ride-through at least 0.2 pu grid voltage drop lasting for 500 milliseconds. However, these DER are
permitted to disconnect from the grid when the voltage drops versus the time are outside the FRT curve.
Moreover, DERs are demanded to inject a stipulated reactive power quantity defined by the reactive
power support capability to support voltage sag as depicted in Figure 4. However, an insignificant
amount of reactive power support is expected during voltage sag that falls above 90%. In essence,
the Spanish grid code specifies a certain amount of reactive current/power (per unit) injection based
on the percentage voltage drop. Equation (9) clearly explains the aforementioned side by side with
Figure 5.

Qre f =



(
93
70 −

6
7 ·

Vg
VN

)
QN, Vg ≤ 0.5VN(

57
100 − 6 ·

Vg
VN

)
·QN, 0.9VN ≥ Vg > 0.5VN,(

1− 1
5 ·

Vg
VN

)
·QN, Vg > 0.9VN

(9)
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where VN signifies the rated grid voltage at nominal value, reactive power QN corresponds to the rated
reactive current of the inverter and reactive power reference Qref corresponds to the required reactive
current that will be injected. of the microgrid. The reference required signal of reactive current is
obtained in the same degree with the depth of voltage sag on the grid, through the proposed secondary
control loop. Once this voltage falls below 0.9 of the nominal value, the secondary control scheme will
instantly commence reactive current/power support as shown in the Equation (9). The injection of
reactive power/current is systematically regulated to ensure the restoration of voltage above 0.9 of
the nominal value, instead of exactly 0.9 VN. The immediate detection of faults in systems is crucial
in enhancing the overall reliability, productivity, and safety, hence the Clarke transformation of the
measured grid voltage is done using Equation (9) and shown in Figure 4. The magnitude is conditioned
using a first-order low pass filter and subsequently monitored. The essence of this is to prevent and
unnecessary activation of the anti-parallel IGBT-diode switching arrangement for the inductance.
With this, fault occurrence and clearance are detected with 0.05 s as shown in the results.
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where VN signifies the rated grid voltage at nominal value, reactive power QN corresponds to the 
rated reactive current of the inverter and reactive power reference Qref corresponds to the required 
reactive current that will be injected. of the microgrid. The reference required signal of reactive 
current is obtained in the same degree with the depth of voltage sag on the grid, through the proposed 
secondary control loop. Once this voltage falls below 0.9 of the nominal value, the secondary control 
scheme will instantly commence reactive current/power support as shown in the Equation (9). The 
injection of reactive power/current is systematically regulated to ensure the restoration of voltage 
above 0.9 of the nominal value, instead of exactly 0.9 VN. The immediate detection of faults in systems 
is crucial in enhancing the overall reliability, productivity, and safety, hence the Clarke 
transformation of the measured grid voltage is done using Equation (9) and shown in Figure 4. The 
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3.2. DSC Algorithm for Unbalance Detection and PCC Voltage

To avoid exceeding the limit, the PCC voltage magnitude control is put in place to buffer and
avoid exceeding the limit of grid code prescript and acceptable range (0.9–1.1 pu). The values of its
symmetrical components are obtained to implement an effective unbalanced grid voltage compensation.
Towards actualizing the aforementioned, delayed signal cancellation (DSC) as depicted in Figure 5,
is deployed to detect the presence of symmetrical components and obtain their values accordingly.
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The values obtained for vqp and vqn are subsequently kept for half a period in two independent 
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immediately kept in the two buffers at a time equivalent to half a period. The components and their 
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The algorithm for DSC is centered on the three-phase voltage measurement and subsequent
decomposition into their commensurate symmetrical components [66]. Primarily, the voltages
measured in phase are denoted in stationary reference frame using the Clarke (abc-αβ) transformation.

[
vα
vβ

]
=

 1 0 0

0
√

3
3 −

√
3

3

 ·


va

vb
vc

 (10)

In line with the resultant stationary reference frame above, two opposite rotations are executed
using the phasor measured angle of the host grid voltage (θ and −θ). This angle θ matches the same
provided at the output of the phase-locked loop.

The positive component implies[
vdp
vqp

]
=

[
cosθ sinθ
− sinθ cosθ

]
·

[
vα
vβ

]
(11)

The negative component implies[
vdn
vqn

]
=

[
cosθ − sinθ
sinθ cosθ

]
·

[
vα
vβ

]
(12)

The values obtained for vqp and vqn are subsequently kept for half a period in two independent
data buffers. Lastly, the positive component and negative component final samples are obtained and
immediately kept in the two buffers at a time equivalent to half a period. The components and their
additions are expressed in Equations (13)–(16):

The positive component implies

vdp(k) =
1
2
·

[
vdp(k) + j · vdp

(
k−

fs
4 · fg

)]
(13)

vqp(k) =
1
2
·

[
vqp(k) + j · vqp

(
k−

fs
4 · fg

)]
(14)

The negative component implies

vdn(k) =
1
2
·

[
vdn(k) + j · vdn

(
k−

fs
4 · fg

)]
(15)

vqn(k) =
1
2
·

[
vqn(k) + j · vqn

(
k−

fs
4 · fg

)]
(16)

The second term samples in Equations (13)–(16) are equivalent to the first term components and
however, they are shifted a fourth of period and this shifting is depicted by j multiple of the second
terms. Once the sequence components of the PCC voltage are obtained in direct-quadrature coordinates
at the instance of grid fault using Equations (13)–(16), the two PCC voltage-independent control system
operates to restore to normal sequence references. Positive sequence control aims to bring back the
PCC voltage positive sequence level to its rated value. Hence, the error, in this case, is utilized in
regulating the reactive power Qp injected into the grid while considering power electronic switch
thresholds. Similarly, the PCC voltage negative sequence control restores quadrature component to
the zero references of normal condition. This balances and buffers the further PCC voltage unbalance
introduced through reactive power injection into the grid.

The microgrid voltage at the local load point of connection with the PCC is therefore controlled
by the control scheme using the DSC to independently adjust both positive component and negative
component in conformity with their respective sequence references. Thus, the microgrid voltage for
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the DERs and local sensitive loads relatively enhanced regardless of the voltage sag experienced in the
main grid. Therefore, active power is uninterruptedly delivered to the microgrid sensitive load while
delivering ancillary voltage support service to the main grid. The independent controls of the voltage
at the point of common coupling of the microgrid to the main grid is expressed in the Equation (17).

Qp =
(
kpp +

kip
s

)[
v∗p −

√
v2

dp + v2
qp

]
Qn =

(
kpn +

kin
s

)[
v∗n −

√
v2

dn + v2
qn

] (17)

The aggregate reactive power injection from the microgrid through the PCC to the utility grid for
ride-through and reactive power support implies

∆Q = Qp + Qn + Qreq (18)

4. Power Flow and Switched Reactor

4.1. Voltage Source Inverter and Grid Interactive Power Flow

In inverter grid supporting mode, there is power interaction with host grid which involves power
exchange. The equivalent power flow diagram between the inverter-based microgrid and the host grid
is shown in Figure 6, where vi signifies the VSI voltage and vg represents the grid voltage. Similarly,
the inherent impedances of the inverter and its filter circuit are lumped together as Zi while the
grid impedance is represented as Zg. The load current and impedance are signified by IL and ZL.
These aforementioned impedances are typically inductive owing to the significant output inductance
of the VSI. Nevertheless, this inverter impedance can be greatly influenced by the type of control
strategy employed [70], and grid impedance is highly resistive in low-voltage distribution feeder
lines [71]. Similarly, the impedance (resistance and inductive reactance) of the grid is significantly
present and taken into consideration in microgrids located at a long distance away far from the host
grid. Consequently, this work put into consideration the line impedance of the grid. In line with the
stipulation of the grid codes, only reactive current is injected all through the period of voltage sag.
Consequently, the resulting compensating voltage is relatively in phase with the grid voltage.
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4.2. Switched Inductance: Sizing and Switching

A microgrid is to ensure required uninterrupted supply of quality power to the local sensitive
loads besides fulfilling FRT requirement of reactive power support in the event of disturbance on
the main grid. In this work, this is ensured by ascertaining that all the sections in the microgrid are
supplied with a constant voltage at a regular frequency. The proposed scheme in Figure 5 shows the
implementation of this requirement through an additional reactive power injection. The VSI injects
a significantly high amount of reactive power in supporting the utility grid and sustain microgrid
load voltages since the grid impedance is usually low [72]. However, the aforementioned secondary
control based LVRT schemes are significantly limited in voltage sag compensation. To tackle this
problem, a PCC voltage moderation scheme based on PI control using the DSC positive and negative
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is introduced. Furthermore, under a strong (stiff) main grid connection, independent control of the
point of common coupling voltage and by extension microgrid voltage is not sufficient for good
power quality since the host grid imposes the voltage. Thus, control strategies may not be able to
effectively restore the network voltage especially at the PCC [73,74]. Hence, a switched inductance is
inserted in series at the PCC to the main network during a voltage disturbance to increase the network
impedance to independently regulate the microgrid voltage irrespective of the host grid condition.
Thus, sustaining the PCC voltage at the rated magnitude.

The appropriate sizing and switching of this inductance ensure sustained microgrid voltage
irrespective of a host grid disturbance. The inductance size is estimated in relation to the voltage sag in
the worst-case scenario which must be compensated at PCC. It also depends on the expected current
flow through the inductance under voltage sag. The balance between microgrid generated power
(active and reactive) and the local load consumption determines the current flow (magnitude and phase
angle) through the inductance during grid disturbance. In the proposed strategy of this work, during
the grid fault, the total microgrid generated active power is commensurate with the rated local load
capacity to limit the amplitude of the current flow into the main grid. However, excess active power
may still be supplied to the main grid due to varying load demand and this affects the inductance
size. To estimate required value for the series inductance, the load demand is assumed to be zero
and the rated load power is assumed generated and supplied to the host grid. The phasor diagram
of this estimation is presented in Figure 7, where Vg represents the phase voltage of the host grid,
Vmg represents phase voltage within the microgrid. Similarly, Xn signifies needed switched inductive
reactance while In signifies current flow across Xn. The inverter voltage is therefore given by

V2
in = (IiXn cosθ)2 +

(
Vmg + IiXn sinθ

)2
(19)
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Consequently, the value of the series inductance is determined by solving the quadratic equation
generated by making the Xn the subject of the formula in Equation (18). It is therefore given as

X2
n +

[
2Vmg sinθ

Ii

]
Xn +

V2
mg −V2

in

I2
i

 = 0 (20)

The inverter current Ii is in phase with the current flowing through the switched inductance Xn,
hence angle θ is calculated from

θ = cos−1
[Prated

Smax

]
= cos−1

 Id√
I2
d + I2

q

 (21)
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In a typical low voltage distribution lines, the resistive component (R) is high [10,75] and therefore
the R/X ratio is considerably reduced with series incorporation of a comparatively sizable inductance.
Hence, the addition of an extra inductance may cause a depreciation in voltage regulation, particularly
within the microgrid. Therefore, the inductance is only inserted during a main grid voltage disturbance
by the operation of the anti-parallel IGBT-diode switches in Figure 5. A fault condition or disturbance
leading to voltage sag at the grid is detected by the fault detection. This simultaneously generates
alternating pulses for the switching on of the anti-parallel switches and uses the Clark transformation
in detecting fault using a low pass filter. Then the switching pulses are off once a fault is detected and
the voltage sag is observed in 0.0001515 s. Thus, the inductive reactance is introduced swiftly devoid
of any adverse influence on the effectiveness of the FRT control strategy.

4.3. Active Power Referencing and Fault Current Limiting

In a grid supporting inverter without a local load, the active power set-point is zero under fault
for effective limiting the active current magnitude and jack up the reactive current within the apparent
power limit. This by extension limits the fault current observed at the PCC. However, under normal
operating conditions, maximum power point tracking (MPPT) output imposes the active power
reference instantaneously at a 100 per cent power factor. The presence of disturbance within the
host grid thereby leading to voltage sag or swell causes the reactive power reference to be evaluated
based on

Q∗new = Q∗ + ∆Q (22)

where Q* represents the reference of the reactive power of the inverter before voltage sag and ∆Q
already specified in Equation (17). By the control strategy proposed, the reactive power needed is
commensurate to the depth of percentage voltage drop. Consequently, the active power and the
reactive power generated from the DER and injected through inverter must be realistic such that it
conforms to the complex power equation as well as preventing inverter overloading. The grid codes
stipulate grid reactive power support by all connected generating units however, it is also important
inverter ensure a continuous supply of active power to the microgrid sensitive load irrespective of grid
conditions. Therefore, due to the reactive power (current) injection, the active power (current) injection
is limited. Thus, the reference P* for the inverter active power is computed using the Equations (23).

P∗ =


√
(S∗max)

2
− (Q∗new)

2 i f
√
(P∗)2 + (Q∗new)

2 > Srated

P∗ else
(23)

where P* signifies the active power reference of the inverter before voltage sag and Srated represents
the maximum tolerance in which the active reference limit triggers and Smax represents the inverter
maximum complex power specified by the manufacturer. The maximum complex power confines the
references of active power and reactive power within its value as shown in Equation (23).

5. Results and Discussions

The effectiveness of this FRT approach proposed is investigated on a grid-connected microgrid
system consisting of two DERs and local load, as depicted in Figure 2. Various types of faults are
simulated on the main grid and are switched on at time t = 1.3 s and assumed to be automatically
cleared at t = 1.8 s. The common types of power system faults are the triple-phase to ground (L-L-L-G),
double line to ground (L-L-G), single line to ground (L-G), and line-to-line faults (L-L). These faults
lead to different degrees and types of voltage sag within the grid and at the PCC of grid supporting
microgrids. In simulating the grid faults, the fault resistances of 0.7 Ω, 0.5 Ω, and 0.3 Ω are used
to produce 70%, 60%, and 50% voltage sags at constant ground resistance of 0.001 Ω and snubber
resistance of 1000 Ω. The simulations were performed in MATLAB/Simulink/SimPower software.
Two inverter-based distributed energy resources DER 1 and DER 2 are used to form microgrid energy
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sources. DERs 1 and 2 feed a local microgrid load of 10 kW with a power factor of 0.90. The excess
power generated in the microgrid by these DERs is distributed into the main utility grid while the
DERs also participate in the frequency and voltage regulations through their respective droops in
the primary control. Installed at the PCC is a step-up transformer of 0.400/11 kV phase to phase rms
through which the excess generation is supplied to the host grid. The other parameters used in the
simulations are shown in Tables 1–4.

Table 1. Inverter electrical parameters.

Parameters Descriptions Values

kVA1 DER 1 rated power 12 kVA
kVA2 DER 2 rated power 6 kVA
V abc Voltage (phase-phase) 400 V
V dc DC bus voltage 1100 V

f Frequency 50 Hz
C LC filter capacitance 2.31 µF
L LC filter inductance 11 mH

Table 2. Inverter primary and secondary control parameters.

Parameters Descriptions Values

ωcut Cut-off angular frequency 100π
E Single-phase voltage reference 330 V

Kp I Direct-quadrature current loop P gain 100
Ki I Direct-quadrature current loop I gain 1000

Kp PCC+- Positive sequence and negative sequence P gain 0.0125
Ki PCC+- Positive sequence and negative sequence I gain 2

Table 3. Grid synchronization and parameters.

Parameters Descriptions Values

f min PLL minimum frequency 45 Hz
Kp PLL Regulator P gain 180
Ki PLL Regulator I gain 3200
Kd PLL Regulator D gain 1

Table 4. Switched IGBT-diode inductance parameters.

Parameters Descriptions Values

Lr Reactor inductance 0.005
Ron Switch internal resistance 0.001
Rs Switch snubber resistance 0.00001

The DER inverters are modeled in detailed states and selection of control parameters done by
SimScape closed-loop auto-tuner which computes a linearized approximation of the nonlinear dynamic
system models. Figure 8 below gives the responses of the model while putting into consideration the
dynamics of the inner power/voltage control loop, current control loop, and detailed model parameters.
The power set points of the modelled grid-supporting systems are changed in three steps at times 1.0 s
and 1.5 s. These values are 4 kVA, 12 kVA, and 20 kVA at unity power factor to validate the response
of inverter and portray typical grid supporting system. The corresponding dynamic responses in
active power, voltage, current, and frequency are shown to validate the detailed model used in the
simulation. The strategy implemented in the simulations can be deployed for low voltage ride-through
of a solar PV based grid-connected microgrids and can be used for the interface FRT control of large
scale grid-connected battery energy storage systems.
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Figure 8. DER active power, voltage, current, and frequency under changing power set-points.

5.1. Symmetrical Fault

Figure 9 shows the pulses generated in each of the phases for the control of the IGBT-diode
switches. This shows that the fault is detected within 0.0001515 s in all phases for the activation of the
FRT scheme and of course the switching of the inductor. These pulses activate the switching operation
of the IGBT-diode-based switch and properly change the operating mode of the switching control
system at fault inception and fault clearing instants.
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For balanced voltage sag, the main grid fault; triple-phase to ground is used to simulate voltage
sag of 50% in evaluating the proposed strategy. The extent of the voltage sag on the main grid is shown
in Figure 10, which prompts a corresponding rise in the current amplitude.
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Figure 10. Voltages in the grid and microgrid at grid voltage sag of 50% produced by L-L-L-G fault.

The prompt current amplitude limitation is provided by the secondary power reference embedded
in the FRT scheme of the secondary control in each of the DER as shown the Figure 5 and depicted by
the Equations (9) and (23). The active and reactive current references are changed instantaneously
at fault inception. Similarly, these references are properly restored immediately fault condition is
over with appropriate tuning of the kp and ki gains of the proportional–integral controllers. Thus,
Figure 10 reveals a smooth transition from pre-fault to fault and subsequently, from fault to post-fault
condition. Therefore, the output current of DERs’ LC filter is appropriately limited as shown in
Figure 10. Consequently, the 50% voltage sag percentage observed at the PCC to the grid is improved
to 93.32% in the microgrid.

The voltage sag on the main utility is detected at the PCC in at 0.0001515 s which is less than half
of the first cycle of fault occurrence. This implies that the fault is detected in 1.3001515 s as shown
in the positive half cycle and 1.300 on dot in the negative half cycle. Consequently, the FRT scheme
fault mode operation is activated with simultaneous switching of the IGBT-diode switched reactor in
series with all the phases for balanced transient conditions and series with only the affected phase
in unbalanced conditions. The grid voltages for all the balanced conditions of voltage sag resulting
in 50% voltage sag are shown in Figure 10. The implementation of the FRT schemes for DERs of the
microgrid ensured that the microgrid voltage is compensated for the effective running of the microgrid
irrespective of the main grid transient condition. The voltage in the microgrid is improved to 93.32%
under 50% sags measured at the PCC.

The fault current limiting ability of this secondary control with an appropriate selection of the
gains of the PI controller, the DER 1 and DER 2 contribute to the main grid voltage reactive power
support based on their kVA ratings. Figure 11 presents the output current waveforms of the DERs
on 50% voltage sag at the PCC. The DER output currents are properly limited and no significant
distortion is observed in the signals of DER output voltage and current. Thus, it is clear that the
inverter currents are appropriately limited in the first cycle after fault inception at 1.3 s, as shown in
Figures 10 and 11. The delay of 0.00016 after the fault for the activation of the proposed control is
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short and insignificant. However, overcurrent produced between 1.30000 and 1.30016 s cannot damage
the inverter semiconductor switches. Furthermore, grid faults technically appear across the filter
capacitor and the transient current overshoot at fault inception vanishes almost instantaneously and is
therefore ignored. It must be noted that the current overshoot at the instance of transient disturbance
is completely attenuated whenever the VSI based DER is tied to an electrically weak grid far from the
inverter installation.
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Following EN50160 standard, the THD of output voltage waveforms of any generating unit must
not exceed 8% [76]. Consequently, the THDs (before, during and after fault clearance for various fault
types causing 70%, 60%, and 50% voltage sags) of DER voltage signals and output current waveforms
are revealed in Table 5. The THD is measured using fast Fourier transformation analysis in MATLAB.
The excellent signal quality as signified in the low THDs of the DER voltages and output current is an
indication of efficient performance of the FRT scheme put in place in this work. The microgrid voltages
as observed demonstrate high-quality waveforms, output DER voltage, and current. The voltage
harmonics are relatively negligible with reference to the current harmonics. The low THD recorded
indicates great power factor, high efficiency, and small peak current. This reveals the effectiveness of this
proposed FRT strategy at the secondary control and conformity with the IEC 61000-3-2 standard [77].

Table 5. Total harmonic distortion (THD) of voltage and current waveforms of the DERs.

Voltage Sag DER Signal
Total Harmonic Distortion (%)

Pre-Fault Fault Post-Fault

70%
1

Voltage 0.33 1.17 0.33
Current 2.01 2.15 1.99

2
Voltage 0.33 1.17 0.33
Current 3.94 1.50 3.67

60%
1

Voltage 0.32 1.20 0.33
Current 2.06 2.06 2.09

2
Voltage 0.32 1.20 0.33
Current 3.78 3.64 3.74

50%
1

Voltage 0.32 1..25 0.33
Current 2.06 2.05 2.01

2
Voltage 0.32 1.25 0.33
Current 3.78 3.37 3.84
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In compliance with the grid codes, the FRT control arrangements ensure the delivery of a
commensurate reactive power in supporting grid voltage sag, thereby effecting DERs ride through of
disturbances. Consequently, the changeover from grid synchronous to the islanded mode of operation
is avoided. The microgrid voltage is kept within the range of operation (0.9–1.1 Spanish grid code)
to guarantee continuous delivery of active power to the sensitive local microgrid loads as shown in
Figures 12 and 13. The increase in the reactive power requirement limits the inverter active power
reference generation to conform to complex power limit imposed by the FRT scheme and VSI ratings.
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Under the fault period, the increased generation of the reactive power ensures that the microgrid
voltage is regulated to an acceptable magnitude. Immediately, the fault clearance is effected at the time
t = 1.8 s, FRT scheme senses the rise in main grid voltage to an acceptable range of 0.90–1.10 at the PCC.
Thus, the reactive power injection is reduced based on the degree of voltage rise. Similarly, Figure 11
shows the increase in reactive power injected as well as a proportional steep decline in active power.
The implementation of this FRT control with the DSC algorithms track the main grid disturbance using
the voltage sag sensed at the PCC. The FRT strategy limits active and reactive references in both DERs
as required to cause microgrid voltage improvement without significant distortion to the DER output
current and voltage waveforms.
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The aggregate active power supply by DERs is limited as a result of voltage sag occasioned by
grid fault. The DERs are controlled to firstly inject an active power amount that meets the local load
demand and therefore reduces the active power injection into the faulted main utility grid. Throughout
voltage sags, the decreased grid voltage magnitude and the ‘off’ switching of the IGBT-diode AC
reactor limit active power transmitted to the grid. The amplitude of fault current is limited and the
microgrid voltage is improved for the transfer of active power to the local load. For intense voltage
sag, generated active power is limited to the rated value of the local load. Any time there is an excess
generation, the surplus is supplied to the faulted grid. However, in the acute incidence of grid voltage
sag to the tune of 20% or less, no active power can be generated for the local microgrid load and main
grid load. Consequently, DER reactive power generation is maximized in supporting the voltage
of the host grid in compliance with Spanish grid codes. For instance, under 20% grid voltage drop,
the corresponding power generations by the two DERs are shown in Figure 14.
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5.2. Asymmetrical Fault

Single phase-to-ground faults are the most common in typical distribution systems [78,79].
The other asymmetrical faults include the line to line and double line to ground. The efficacy
of the proposed control strategy is also tested under the unbalanced grid conditions listed above.
This unbalanced fault is simulated in Line 1 (color blue) between t = 1.30 and t = 1.80. Under a single
L-G fault, the grid voltage and DER voltage and current are shown in Figures 15 and 16. No significant
distortion appears in the DER 1 and 2 output voltage waveform and current waveform. The FRT
control with the IGBT switched AC reactor effectively compensated for the unbalance sags in voltage
magnitude. The three-phase voltage within the microgrid as indicated by the DER 1 and DER 2 appear
with relatively balanced values compared to the grid voltage unbalance.
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During an unbalanced transient leading to an unbalanced voltage sag within the grid, the voltage
unbalances at the PCC are evaluated from the phase to phase voltages Vab, Vbc, and Vca. Applying
NEMA (National Equipment Manufacturer Association in the United States of America) voltage
unbalance definition which is given as the ratio of maximum deviation from the mean phase to
phase voltage to mean of phase to phase voltages, the unbalance within the grid under L-G fault is
calculated. Similarly, the unbalance calculated for other types of asymmetrical faults are given in
Table 6. The proposed control actively compensated the unbalance in line to line voltages by reducing
the unbalance to relatively negligible percentages.

Table 6. Voltage unbalance measured under asymmetrical faults.

Fault Type
Voltage Unbalance

Grid Microgrid

L-G 24.14% 4.44%
L-L-G 24.31% 7.13%

L-L 35.36% 12.20%

Similar to the case of balanced voltage sag occasioned by a symmetrical transient disturbance
on the main grid, the Figures 16–19 further affirm the effectiveness of the proposed FRT secondary
control in riding through faults, compensating unbalance voltage sag and improving microgrid voltage,
limiting the amplitude of current, and ensuring local load power demand are met. Irrespective of the
main grid unbalance condition, the microgrid voltage balance is relatively maintained within limit and
currents limited to ensure uninterruptible supply to the local load most importantly before exporting
excess generation to the main grid.
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6. Conclusions

A secondary controller which realizes an FRT control for voltage source inverter based DER using
DSC fault detection algorithm is implemented in this work. This controller meets FRT requirements
of Spanish grid codes by providing a secondary voltage control whose operation is effective and
significant in the transient period of faults. This controller performance is further enhanced with an
IGBT-diode switched AC reactor to improve the voltage and prevents the transient overcurrent in the
microgrid during the grid fault. This ensures a continuous supply of the microgrid local sensitive
load while meeting the grid code requirement of FRT. Similarly, the active power injection from the
microgrid to the main grid is limited to maximize reactive power generation in supporting voltage
sags (0.85–0.9 pu), moderate voltage sags (0.5–0.849 pu) and critical grid voltage sags (less than 0.5 pu).
The sequence detection algorithm using the DSC is implemented to detect negative sequence and
instance of fault in 0.0001515 s to activate the proposed FRT secondary control to comply with the
grid code stipulations. The results of simulation confirm the performance and effectiveness of the
proposed strategy.
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