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Abstract: In its usual definition, exergy cancels out at the ambient temperature which is thus taken
both as a constant and as a reference. When the fluctuations of the ambient temperature, obviously real,
are considered, the temperature where exergy cancels out can be equated, either to the current ambient
temperature (thus variable), or to a constant reference temperature. Thermodynamic consequences of
both approaches are mathematically derived. Only the second approach insures that minimizing the
exergy loss maximizes performance in terms of energy. Moreover, it extends the notion of reversibility
to the presence of an ideal heat storage. When the heat storage is real (non-ideal), the total exergy loss
includes a component specifically related to the heat exchanges with variable ambient air. The design
of the heat storage can then be incorporated into an optimization procedure for the whole process.
That second approach with a constant reference is exemplified in the case study of heat pumping for
heating a building in wintertime. The results show that the so-obtained total exergy loss is the lost
mechanical energy, a property that is not verified when exergy analysis is conducted following the
first approach.
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1. Introduction

In order to reduce global warming, energy efficiency of processes has become a crucial concern.
Second Law analysis is a useful tool for optimizing energy conversion processes via minimization
of either entropy generation [1] or exergy losses [2]. Exergy may be defined in two ways. In the first
one, exergy is the maximal amount of mechanical work that can be produced out of a given flux (or
quantity) of energy by a reversible process operated between that flux and ambient air. The second
definition is more formal: exergy is the considered total energy minus the corresponding entropy
multiplied by the absolute temperature of ambient air. In general, there is no difference between the
two definitions [1–6]. The characteristics of ambient air define a state usually called ‘dead state’, from
which no mechanical energy can be produced: any heat flux received or supplied by ambient air has
zero exergy. The latter lines, and textbooks of thermodynamics in general, consider processes in a
stable environment if not in a steady state. That framework and the real world obviously differ on this
point: the ambient temperature does fluctuate, and no real process exactly operates in a steady state.
The typical amplitude of those fluctuations along the circadian cycle is of the order of ten Kelvin in
temperate climates, i.e. 3% of its absolute value. Annual fluctuations are even more significant. How
should then exergy analyses be conducted in such fluctuating conditions? Forty years ago, Wepfer
et al. addressed such issues with the example of open processes. They concluded that “it is ( . . . )
unnecessary to account for the dead state ( . . . ) when the interesting quantities are differences” [7].
Exergy analyses mostly handle two quantities of interest in relation with energy efficiency: exergy
losses and exergy efficiencies. Both combine exergy fluxes, the former in differences, the latter in ratios.
As a matter of fact, numerous articles investigate the influence of the dead state temperature on the
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exergy efficiency of processes [8–19]: they study how a given process, often air conditioning, operates
in various environmental conditions, especially with various values of the ambient temperature. As a
main result, they show how exergy efficiency depends on the ambient temperature, an influence found
to be strong especially for building applications [9,20]. The present concern is slightly different and
focuses on optimization of energy efficiency when processes are operated in variable environment
conditions. Indeed, these fluctuations have at least two consequences:

• The processes under consideration work in dynamic conditions and thermal inertia always plays
some role (it obviously plays no role in a steady state). That role may be marginal but if a heat
storage is present, especially as a means for saving energy, that role becomes significant.

• The figures of merit quantifying energy efficiency must be calculated over the whole period. For
instance, if the coefficient of performance (COP) of a refrigeration cycle in a steady state is the ratio
of the cooling rate to the power rate supplied to the compressor (both in Watts), in a non-stationary
cycle, each of those rates must be integrated over the whole period, and the average COP (called
the Energy Efficiency Ratio) is the ratio of their integrals (both in Joules).

A robust exergy analysis must account for the non-stationary behavior of the process and must
integrate any exergy flux or loss over the whole cycle [21]. The present key point is to adopt a definition
of exergy that preserves mathematical equivalence between the minimum of exergy losses and the
maximum of energy efficiency: should exergy always cancel out at the ambient temperature (despite
its fluctuations), or only at a prescribed reference temperature (which then differs from the fluctuating
ambient temperature)? The literature is somehow confusing about this point. In most of the articles
mentioned above [8–20], the variable ambient temperature is taken as ‘dead state’ or ‘reference’ (a
variable ‘reference’ then), but without any argument for supporting this option. Some authors propose
to take an ad-hoc time-averaged ambient temperature as reference, either the hourly average [10,22,23],
or the monthly average [10,22], raising then the paradox that ‘the dead state varies with operating
time’ [23] but is in fact kept constant within a given time interval. Few authors consider an absolutely
fixed reference: either the average ambient temperature over the whole year [10,24,25], or a constant
temperature prescribed according to the process under consideration [26,27]. The present work is a
continuation of one of these articles [26] where thermodynamic arguments were first given. They are
now completed with mathematical arguments and original numerical computations demonstrating
convergence between exergy analysis and energy optimization.

First, the bases of the thermodynamic framework for process optimization are described. Then,
the issues raised by the fluctuations of ambient temperature are presented, which leads to (i) the choice
of a fixed reference, and (ii) the concept of ideal heat storage between the process and ambient air. The
so-elaborated exergy analysis is then applied to a case study where a heat pump is used for heating a
building in wintertime. After verification of validity of the present approach, perspectives are drawn.

2. Thermodynamic Framework in Steady State

2.1. The First and Second Laws Applied to Energy Conversion Processes for Optimization Purpose

Any energy conversion system uses a flux of power energy,
.
Ep, in order to produce a flux of

useful energy,
.
Eu, while exchanging the heat flux

.
Qa with ambient air. These symbols denote the fluxes

received by the process (thus
.
Eu < 0 for a heat engine). Each energy flux

.
E• (• = p, or u) also transports

the flux of entropy
.
S• = X•

.
E•, where the factor X equals 0 for work, or 1/T for heat exchanged with a

source at T. The First and Second Laws are:

.
Ep +

.
Eu +

.
Qa = 0 and Xp

.
Ep + Xu

.
Eu +

.
Qa/Ta +

.
S

P
tot = 0, (1)
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Multiplying the entropy balance by Ta and subtracting it from the energy balance, leads to:

(1− TaXp)
.
Ep + (1− TaXu)

.
Eu − Ta

.
S

P
tot = 0, (2)

from which the First Law efficiency η of the considered process is easily deduced:

η =
ε

.
Eu
.
Ep

= −
(1− TaXp)

ε(1− TaXu)

1− Ta
.
S

P
tot

(1− TaXp)
.
Ep

 (3)

In this equation, ε equals ±1 with the same sign as
.
Eu (ε = −1 for a heat engine or a heat pump,

ε = +1 for a refrigerator). Equation (3) clearly evidences that any reversible cycle, i.e., with zero
entropy production, has the highest possible efficiency: ηrev = −ε(1− TaXp)/(1− TaXu), so that the
bracket on the right hand side of Equation (3) is the ratio of the effective First Law efficiency to that of
the corresponding reversible process operated with the same sources, η/ηrev. This ratio always lies
between 0 and 1 and is called Second Law efficiency, it is denoted herein as η̃S because it results from
entropy analysis. Appendix A shows how Second Law analysis helps in optimizing energy conversion

processes by minimizing the total entropy production,
.
S

P
tot, which is the sum of all the individual

entropy productions, component by component, cause by cause (entropy productions are additive).

2.2. Introduction of Exergy

In his review article [13], Hepbasli counted out as many as eighteen definitions of exergy. More
generally speaking, there are mainly two definitions. In the first one, exergy is the maximal amount of
work that can be produced out of a given flux of energy,

.
Ep, (or amount of material) by a reversible

process operated between that flux (or amount of material) and ambient air. Applying the conditions

Xu = 0 (for work) and
.
S

P
tot = 0 (for reversibility) to Equation (3) leads to:

.
Bp = max(ε

.
Eu) =

.
Ep(1− TaXp) =

.
Ep − Ta

.
Sp (4)

This is the linear combination of energy and entropy mentioned in the introduction as the second
definition of exergy. When the flux

.
Ep is heat delivered by a source at Tp, the multiplying factor

is (1 − Ta/Tp) i.e., the efficiency of the Carnot cycle operated between Tp and Ta. Moreover, as
1− TaXa ≡ 0, any heat flux received or supplied by ambient air has zero exergy.

Using these relations, Equation (2) is rewritten as:
.
Bp +

.
Bu −

.
B

L
tot = 0, where (−

.
Bu) is the flux of

exergy produced by the process and where the total loss of exergy of the process is proportional to

the total entropy production:
.
B

L
tot = Ta

.
S

P
tot. This proportionality holds for any individual exergy loss

and entropy production mentioned above. Moreover, straightforward rearrangements in Equation (3)
lead to:

−(1− TaXu)
.
Eu

(1− TaXp)
.
Ep

=

.
Eu − Ta

.
Su

.
Ep − Ta

.
Sp

=
−

.
Bu
.
Bp

=

1−
.
B

L
tot
.
Bp

 (5)

This ratio (−
.
Bu)/

.
Bp is the exergy efficiency of the process, denoted as η̃B. The right-hand

side shows that η̃B is identical to the Second Law efficiency η̃S. Considering process optimization,
Equation (5) shows that it is mathematically equivalent to (i) maximize the process energy efficiency
η, (ii) maximize the exergy efficiency η̃B (their ratio ηrev is independent from the process design),
(iii) minimize the total entropy production, and (iv) minimize the total exergy loss (their ratio, Ta,
is independent from the process design). It is thus equivalent to minimize entropy productions or
exergy losses in order to optimize processes, as done in Appendix A. Entropy and exergy analyses are
perfectly equivalent, they are two sides of the same coin, the Second Law.
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When considering individual components, the literature never mentions any ‘Second Law’
efficiency (i.e., resulting from entropy balances), but their exergy efficiency is very often mentioned.
The principle is similar to Equation (5): exergy leaving the component over exergy entering the
component. Unfortunately, the latter definition suffers from some ambiguity. Martinaitis et al. [15,28]
describe how and why the ‘universal’ and the ‘functional’ exergy efficiencies of individual heat
exchangers differ. Moreover, these authors present cases where the individual exergy efficiency takes
a paradoxically negative value, although the exchanger under consideration contributes positively
to the energy efficiency of the whole process [15]. Lastly, if the combination of individual exergy
losses into the total one is the simplest ever possible (addition), there is no rule for combining the
individual exergy efficiencies into the global one, an operation which by the way is never mentioned
in the literature. For all those reasons, the present article exclusively considers exergy losses and their
analysis, with the purpose of minimizing them for the sake of process optimization.

3. Exergy Analysis with Variable Ambient Temperature

Among the many issues raised by the variations of ambient temperature, the present study
considers the circadian cycle under the assumption of perfectly periodical process operation. The
generic energy conversion process presented above exchanges heat with ambient air via a heat
exchanger (e.g., the condenser for power plants and cooling machines, or the evaporator for heat
pumps). When the ambient temperature fluctuates, the temperature field in that heat exchanger also
fluctuates, although with a certain lag due to thermal inertia. Temperature changes might also affect
the internal pressure, or the state of the working fluid (e.g., fractions of liquid/vapor phases). These
phenomena induce changes in the total energy, E, and in the entropy, S, contained in the whole system
(index sys). The following First and Second Law balances account for these changes:

.
Ep +

.
Eu +

.
Qa = dEsys/dt and Xp

.
Ep + Xu

.
Eu +

.
Qa/Ta(t) +

.
S

P
tot = dSsys/dt (6)

where all the energy/heat fluxes and the total rate of entropy production are time-dependent. The
energy efficiency of the whole process is given by the ratio εEu/Ep, where the amounts of energy, E•,
result from time integration of the corresponding rates over the whole cycle, E• =

∮ .
E•dt.

3.1. Approach with Entropy Only

The Equations (6) are integrated over the whole cycle. Assuming periodicity, and as total energy
and entropy are functions of state, the integrals on the right-hand sides cancel out. This leads to:

Ep + Eu + Qa = 0 and XpEp + XuEu + Qa/T̃a + SP
tot = 0 (7)

where Qa =
∮ .

Qadt, SP
tot =

∮ .
S

P
totdt (additivity of entropy productions also holds in time), and where

the mean entropic ambient temperature, T̃a, is such that:
∮ [ .

Qa(t)/Ta(t)
]
dt = Qa/T̃a. Combining the

two Equations (7) with the factor T̃a leads to the average energy efficiency:

η = ε
Eu

Ep
= −ε

(1− T̃aXp)

(1− T̃aXu)

1− T̃aSP
tot

(1− T̃aXp)Ep

 (8)

Equations (7) and (8) look very similar to Equations (1) and (3), respectively. However, if the steady
ambient temperature, Ta, obviously did not depend on the process design, the average temperature T̃a

now depends on how and when the process exchanges the flux,
.

Qa(t), with the environment at variable
temperature, Ta(t). As the energy efficiency, η, is a function of two design-dependent quantities, SP

tot
and T̃a, minimizing SP

tot is not mathematically equivalent to maximizing η.
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Could the equivalence between maximal energy efficiency and minimal irreversibility be recovered
by exergy analysis with an appropriate definition of exergy? Two approaches are explored here-under.

3.2. First Approach for Exergy: Combination Energy—Entropy with the Fluctuating Temperature Ta(t)

This first exergy function, denoted as B1, is defined by dB1 = dE− Ta(t)dS. This combination of
Equations (6) results in:

(1− Ta(t)Xp)
.
Ep + (1− Ta(t)Xu)

.
Eu − Ta(t)

.
S

P
tot = dEsys/dt− Ta(t)dSsys/dt (9)

As the term in
.

Qa is eliminated, this function B1 cancels out for any heat flux exchanged by
ambient air. Integration of Equation (9) over the whole daily cycle leads to:∮

(1− Ta(t)Xp)
.
Epdt +

∮
(1− Ta(t)Xu)

.
Eudt−

∮
Ta(t)

.
S

P
totdt =

∮
dEsys −

∮
Ta(t)dSsys (10)

Integrating the fluxes
.
B1• =

.
E• −Ta(t)

.
S• = (1−Ta(t)X•)

.
E• with (• = p, or u) on the left-hand side

leads to the usual exergy balance: B1p + B1u − BL
1tot, where the total exergy loss, BL

1tot, is the integral

of
.
B

L
1tot = Ta(t)

.
S

P
tot. Due to the presence of Ta(t) in their integrands, those three integrals depend on

the distributions of
.
Ep,

.
Eu, and

.
S

P
tot along the cycle and not only on their integrals Ep, Eu, and SP

tot. On
the right-hand side, the integral of dEsys over a cycle surely cancels out (total energy is a function
of state), but the second integral does not. Indeed, the variation, dSsys, of the entropy contained
in the system depends on the thermal inertia of each component, including the heat exchanger in
contact with ambient air. The integral of dSsys over a cycle does cancel out (entropy is a function
of state), but not the integral

∮
Ta(t)dSsys, except by chance and even with a perfectly periodical

behavior of the system and environment. According to the definition of B1, the right-hand side should
represent the variation over a cycle of the exergy contained in the system, i.e.,

∮
dB1sys, and it occurs

to be finite (non-zero). Gathering all those considerations, the exergy balance (10) is rewritten as:
B1p + B1u − BL

1tot =
∮

dB1sys , 0. This leads to the following expression for the exergy efficiency of
the process:

η̃B1 =
−B1u

B1p
= 1−

BL
1tot +

∮
dB1sys

B1p
(11)

where the numerator involves, in addition to the total loss of exergy, BL
1tot, a finite term related to

thermal inertia, the sign of which cannot be known a priori. Because of that finite term, minimizing
BL

1tot does not mathematically entail that η̃B1 is maximal.

3.3. Intermediate Discussion

In this first approach, the heat fluxes exchanged by ambient air always have zero exergy. The
mathematical derivations of the previous sub-section present several differences with the exergy
analysis in a steady state. Indeed, the mathematical equivalence between (i) maximal energy efficiency,
(ii) maximal exergy efficiency, and (iii) minimal total exergy loss, is lost. Moreover, the ratio between
the rates of entropy production and of exergy loss, Ta(t), is time-dependent. Mathematically speaking,
those exergy losses give more weight to the entropy productions occurring when Ta is high: they do
not obey the same additivity rule as entropy productions. Moreover, minimizing those exergy losses
does not entail that entropy productions are also minimal, which breaks the consistency between
entropy and exergy analyses.

The derivations of Section 3.2 show that those serious drawbacks stem from the time-dependence
of the factor multiplying the entropy equation when constructing the exergy B1. Those drawbacks
disappear if a constant factor, namely T0, is used instead of the time varying Ta(t). But, then, the exergy
of the heat fluxes exchanged by ambient air, [1− T0/Ta(t)]

.
Qa, does not cancel out (except at the exact
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moments when Ta(t) = T0). This comes in frontal contradiction with a property of exergy, usually
seen as central in exergy analyses. As the rest of this article relies on this unusual definition of exergy,
it is important to argue and justify that choice from the point of view of energy efficiency.

When the weather is too hot at daytime in summer, but the outdoor temperature fortunately cooler
at night, it is a common practice to keep windows wide open at night in order to favor ventilation
and reduce the indoor temperature. On the other hand, at daytime, windows are shut and ventilation
is kept minimal in order to prevent the hot outdoor air to carry heat inside. Beyond the individual
practice, this process is referred to as ‘night ventilation’ [29] and is also related to heat storage [30–32].
The thermal inertia of the building (possibly enhanced by a heat storage) limits the temperature rise
induced by the heat inputs at daytime (solar gains, convective exchange from hot outdoor air, etc.)
while the so-stored heat is released at night toward cool outdoor air, the flowrate of which is often
enhanced on purpose. In other words, heat exchanges with outdoor air are favored at night and
avoided at daytime for the two-fold sake of comfort and energy savings. Still in the field of refrigeration,
Helm et al. experimentally tested the effect of a low-temperature latent heat storage on the energy
efficiency of a solar powered LiBr absorption chiller [33]. The heat storage replaces the hot outdoor air
as heat sink at daytime and is cooled to a low temperature by outdoor air at night. The idea had been
suggested some years before by Boubakri [34]. Compingt et al. describe a secondary refrigeration
system designed and installed in an industrial kitchen [35]. In such a system, cold is produced by
a primary cooling unit at night, stored, and distributed when needed via a secondary loop. An ice
slurry is the storage and transport medium. The heat storage allows to separate the periods of cold
distribution (when meals are prepared) and those of cold production (when the outdoor temperature
is minimal). This strategy reduces the electricity consumption of the primary cooling unit [35]. More
recently, Mosaffa et al. described a similar beneficial effect of thermal energy storage on the efficiency
of an air-conditioner [36]. All of those studies share two notions:

• Sensitivity of energy efficiency to the value of ambient air temperature while the fluxes are
exchanged. Indeed, in those examples, not all the heat exchanges with outdoor air are equivalent
in terms of energy efficiency: some exchanges are worth more than others. The most worthwhile
exchanges occur when the outdoor temperature is the most favorable with respect to energy
efficiency of the process under consideration. If exergy is intended to represent the quality of
heat fluxes in terms of energy efficiency, and if the quality of the fluxes exchanged with ambient
air depends on the value of ambient temperature while they are exchanged, then it becomes
thermodynamically consistent to let the exergy of these fluxes depend on that temperature too,
instead of being systematically null.

• Presence of a heat storage. When a process is designed without heat storage, there is no means
of choosing those most favorable moments for exchanging heat with outdoor air: the energy
efficiency is entirely subjected to the fluctuations of ambient temperature. To the contrary, a heat
storage offers a degree of freedom for exchanging heat with ambient air at the most favorable
moments (while avoiding the least favorable ones) in order to improve the energy efficiency.
Absence or presence, and design of heat storage, therefore contribute to energy efficiency. This
contribution becomes part of the exergy analysis and of process optimization.

If these two notions can be completely ignored in steady state analyses (they would be irrelevant),
they play an important thermodynamic role as soon as ambient temperature fluctuates. The second
approach developed here-under relies on them.
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3.4. Second Exergy Approach: Combination with Constant Temperature T0

In this second approach, the entropy balance is multiplied by a constant temperature, T0. This
leads to the exergy function denoted as B2 such that dB2 = dE − T0dS, and to the exergy flux
.
B2 =

.
E− T0

.
S = (1− T0X)

.
E. Combination of the Equations (6) thus leads to:

(1− T0Xp)
.
Ep + (1− T0Xu)

.
Eu +

(
1−

T0

Ta(t)

)
.

Qa − T0
.
S

P
tot =

dEsys

dt
−

T0dSsys

dt
(12)

where there remains a term in
.

Qa. Integration over the whole cycle results in:∮
[(1− T0Xp)

.
Ep + (1− T0Xu)

.
Eu]dt +

∮ (
1−

T0

Ta(t)

)
.

Qadt−
∮

T0
.
S

P
totdt =

∮
(dEsys − T0dSsys) (13)

As the factors T0, (1− T0Xp), and (1− T0Xu) are constant, this equation may be rewritten as:

(1− T0Xp)Ep + (1− T0Xu)Eu +

∮ (
1−

T0

Ta(t)

)
.

Qadt− T0SP
tot = 0 (14)

where the right-hand side cancels out because E and S are state functions. In this second approach, B2 is
a linear combination of state functions, and also is one. This equation introduces integral exergy fluxes
B2p and B2u, which are exactly proportional to the energy fluxes Ep and Eu (the ratios only depend on
the corresponding sources of energy). Similarly, the exergy loss T0SP

tot is exactly proportional to the
total entropy production. This second approach solves all the reservations raised by the first approach,
but the cost is that the flux

.
Qa remains in the exergy balance: the term

∮
(1− T0/Ta(t))

.
Qadt no longer

cancels out by construction. The intermediate discussion above shows that the distribution of the heat
flux

.
Qa(t) with respect to the fluctuations of Ta(t) has consequences on the energy efficiency. It is then

thermodynamically relevant to study whether this new term can be a loss of exergy and whether it can
be cancelled out.

4. Introduction of an Ideal Heat Storage and Reversible Process

For the integral
∮
(1− T0/Ta(t))

.
Qadt to be lost exergy, the integrand cannot be positive:

.
Qa and

(Ta(t) − T0) must have opposite signs. For consistency with the steady state analysis of Section 2, it
must also be insured that T0 = Ta when Ta is constant. T0 is then unambiguously defined as:

T0 = max(Ta(t)) f or processes with Qa > 0 ; T0 = min(Ta(t)) f or processes with
.

Qa < 0 (15)

Typically, the former case applies to heat pumps that extract heat from ambient air, while the
latter applies to processes which release heat to ambient air: engines, cooling machines, etc. It can
also be said that T0 takes the value of the ambient air temperature that is the most favorable to the
process under consideration. Seen as an exergy loss, the product [−(1− T0/Ta(t))

.
Qa] corresponds to

the transfer of the heat flux
∣∣∣∣ .
Qa

∣∣∣∣ between T0 and Ta(t). Although this transfer does not occur in the
process (the corresponding heat exchanger is not at T0), that loss of exergy can nevertheless be reduced
by exchanging as much heat as possible with ambient air when the distance

∣∣∣T0 − Ta(t)
∣∣∣ is minimal, and

as little heat as possible when that distance is maximal. This strategy improves the energy efficiency of
the process, as described in Section 3.3, and reduces the value of −

∮
(1− T0/Ta(t))

.
Qadt. It requires the

presence of a heat storage. When the process includes a heat storage, the circadian cycle can be divided
into two sub-periods. In the first one, when the distance

∣∣∣T0 − Ta(t)
∣∣∣ is globally large, the process is

isolated from ambient air. It nevertheless delivers its duty thanks to the heat storage. In the second
sub-period, when the distance

∣∣∣T0 − Ta(t)
∣∣∣ is globally small, the whole process exchanges with ambient
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air more heat than strictly required for delivering the duty because meanwhile, the heat storage must
recover its initial state.

The notion of ideal heat storage was introduced in Reference [26]: it is constantly maintained at
T0 along the whole cycle, and it transfers all the heat to be exchanged with ambient air at the exact
moment when Ta(t) = T0. With this ideal procedure, the integral −

∮
(1− T0/Ta(t))

.
Qadt cancels out.

Like for the Carnot cycle, this ideal heat storage, free from irreversibility, represents an unreachable
limit which can be approached by increasing both the heat transfer areas for storing or recovering heat,
and the thermal mass of the storage (i.e. its inertia) toward infinity.

In this framework, the total irreversibility of a real energy conversion process can be divided into
three parts. The first and usual one occurs in the basic process designed without considering heat
storage. This exergy loss is herein denoted as internal (with i as first index), although it encompasses
the heat transfer resistances with the external heat sources. The second part is due to the heat transfer
resistance between ambient air and the heat storage (finite transfer area for heat transfer with a non-zero
temperature difference; the first index is s). The third part (with a as first index), introduced by the
present analysis, is the term −(1− T0/Ta(t))

.
Qa. According to Equation (14), the summation of those

three exergy losses equates the difference between the power exergy supplied to the process and the
useful exergy it delivers. Those exergy losses are denoted with a second index: a for the case without
heat storage, and s for the case with heat storage.

This analysis is now applied to a heat pump operated in wintertime for heating a building.

5. Case Study: Heating a Building in Winter with a Heat Pump

Figure 1a presents a schematic of the heat pump: the evaporator receives the heat flux
.

Qa from
ambient air with fluctuating temperature, Ta(t), while the condenser delivers the heat flux ε

.
Qu (

.
Qu < 0)

to the building at Tu, and the compressor consumes the mechanical (electrical) power
.

W. Without any
loss of generality for the present purpose, some simplifying assumptions are adopted thanks to which
the solution of the problem is partially analytical:

• The ambient air temperature (outdoor) is a sine function minimal at 6:00 and maximal at 18:00,
i.e., Ta(t) = Ta + ∆Ta sin[ω(t− t∗)], with Ta = 5◦C, ∆Ta = 5 K, and t* = 43,200 s.

• The operation is perfectly cyclic, with the period ∆tD = 86,400 s.

• The delivered heating power, ε
.

Qu, is constant and equal to 10 kW.
• The heat pump control succeeds in maintaining the indoor temperature constant (Tu = 20 ◦C).
• At any moment, the heating COP of the heat pump is proportional to the Carnot COP given by

the current temperatures of the heat sources. The heat pump extracts heat from ambient air or
from the heat-storage. The ratio HCOP/HCOPrev may then take two values, η̃ia or η̃is respectively,
in order to account for possibly different heat transfer parameters in either case. The same value
(0.4) is, however, adopted herein.

• Temperature is assumed uniform in the heat storage.
• For heat pumping, the most favorable value of the ambient temperature is its maximum, then

T0 = Ta + ∆Ta = 10◦C.
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Figure 1. Schemes of the heat pump in the building, and when operated with the heat storage. (a) The
condenser heats the building while the evaporator is outside. (b) During the first sub-period, the
evaporator receives heat from the storage only. (c) During the second sub-period, the evaporator
receives heat from ambient air, and so does the heat storage when it is colder than ambient air.

5.1. Heat Pump without Heat Storage

This configuration, where the heat pump extracts heat from ambient air only, is denoted with the
index a. The electrical power consumed by the compressor and the heat flux received from ambient air,

.
Wa and

.
Qa1 in Equation (17), are deduced from the heating COP given by:

HCOPa = η̃ia
Tu

Tu − Ta(t)
(16)

.
Wa = ε

.
Qu

Tu − Ta(t)
η̃iaTu

;
.

Qa1 = ε
.

Qu
Ta(t) − (1− η̃ia)Tu

η̃iaTu
(17)

The internal irreversibility in the heat pump itself,
.
B

L
ia, is obtained from the usual entropy

balance once multiplied by T0 and where
.

Qa1 is given by Equation (17). The term −(1− T0/Ta(t))
.

Qa1

commented above,
.
B

L
aa, is also deduced from Equation (17). As there is no heat storage, the total exergy

loss only involves the two terms:

.
B

L
ia = ε

.
Qu

(1− η̃ia)

η̃ia

(
T0

Ta(t)
−

T0

Tu

)
;

.
B

L
aa = ε

.
Qu

Ta(t) − (1− η̃ia)Tu

η̃iaTu

(
T0

Ta(t)
− 1

)
(18)

5.2. Heat Pump Operated with Heat Storage

The following conventions are adopted for describing the cycle. At t = tA, the first sub-period
begins: the heat pump is isolated from outdoor air and extracts heat from the heat storage alone, see
Figure 1b. At t = tB, that first sub-period ends and the second one begins: the heat pump now extracts
heat from outdoor air and so does the heat storage as long as it is colder than ambient air, see Figure 1c.
The moment when the storage temperature equates the ambient one is denoted as tC. Depending
on the storage design, this moment may occur either before the beginning of the next sub-period, or
simultaneously. The order relationships are then: tA < tB < tC ≤ tA + ∆tD. Figure 2 shows examples of
temperature evolution and helps in understanding the following descriptions.

5.2.1. First Sub-Period, tA → tB

During this sub-period, the whole process is isolated from ambient air,
.

Qa = 0, and the heat pump
extracts the flux

.
Qs from the heat storage. The Equations (17) are adapted to this situation:

.
Ws = ε

.
Qu

Tu − Ts(t)
η̃isTu

;
.

Qs = ε
.

Qu
Ts(t) − (1− η̃is)Tu

η̃isTu
(19)
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The evolution of the storage temperature, Ts, is given by:
.

Qs = −MCs(dTs/dt). A combination
with the second Equation (19) leads to a differential equation, the integration of which, under the
assumption of constant MCs, results in:

Ln
(

TsA − (1− η̃is)Tu

TsB − (1− η̃is)Tu

)
= (tB − tA)

ε
.

Qu

η̃isTuMCs
(20)

with Ts• = Ts(t•). The moment when this first sub-period takes end, tB, is defined by equality of the
power rates

.
Ws and

.
Wa (it is not worth using the storage afterwards), i.e., when:

Ts(t) = Tu + (Tu − Ta(tB))(η̃is/η̃ia) = TsB (21)

5.2.2. Second Sub-Period, tB → tC → tA + ∆tD

As the heat pump extracts heat from ambient air, the Equations (17) apply. Moreover, as long as
Ts<Ta, the heat storage also extracts heat from ambient air. Its temperature, Ts, is then ruled by the
differential equation: MCs(dTs/dt) =

.
Qa2 = UAs(Ta(t) − Ts(t)). Assuming that UAs is constant, the

solution has the form:

Ts(t) = Ta + ∆Tss sin(ωt) + ∆Tsc cos(ωt) + ∆Tse exp(−t/τs) (22)

with ∆Tss = ∆Ta[cos(ωt∗) − τsω sin(ωt∗)]/(1 + τs
2ω2), ∆Tsc = ∆Ta[− sin(ωt∗) − τsω cos(ωt∗)]/(1 +

τs
2ω2), τs = MCs/UAs, and ∆Tse such that Ts(t) given by Equation (22) at t = tB, equates TsB

given by Equation (21). This heat exchange proceeds until the moment tC defined by the equality
Ts(tC) = Ta(tC) = TsC, i.e.,:

[∆Tss − ∆Ta cos(ωt∗)] sin(ωtC) + [∆Tsc + ∆Ta sin(ωt∗)] cos(ωtC) + ∆Tse exp(−tC/τs) = 0 (23)

When the conductance UAs is the limiting factor, the next first sub-period begins at t = tC =

tA + ∆tD, see the curve Ts1 in Figure 2. In this case, only one pair (tA, tB) makes the conditions (20) to
(23) satisfied. When the heat capacity MCs is the limiting factor, tC is strictly smaller than tA + ∆tD: it
takes less time than a full cycle for using the heat storage and reloading it. Between tC and tA + ∆tD,
the heat storage is isolated from the heat pump and ambient air, in order to maintain its temperature:
TsA = TsC. However, the delay between tC and tA + ∆tD is not given a priori and must be determined.
Keeping in mind the concern of energy efficiency, that delay is herein chosen for minimizing the total
energy consumed by the compressor. As can be guessed from the discussion above, this procedure
substitutes the heat storage to ambient air when the temperature of the latter is the coldest (when the
distance

∣∣∣T0 − Ta(t)
∣∣∣ is maximal), herein almost symmetrically around 06:00. Such a case is described

by the curve Ts2 in Figure 2.
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6. Exergy Analysis of the Whole Process, Heat Pump + Storage

6.1. The Three Sources of Irreversibility

When introducing the Boolean function δa1, equal to 0 when tA< t < tB and to 1 otherwise, and
when adapting the expression (18) of BL

ia to heat extraction from the storage when δa1 = 0, the internal
loss of exergy with heat storage is described by:

.
B

L
is = ε

.
Qu

[
(1− δa1)

(
1− η̃is

η̃is

)(
T0

Ts(t)
−

T0

Tu

)
+ δa1

(
1− η̃ia

η̃ia

)(
T0

Ta(t)
−

T0

Tu

)]
(24)

The second kind of exergy loss takes place in the heat transfer from ambient air to heat storage
when tB < t < tC. Introducing the Boolean function δa2 equal to 1 when tB < t < tC and to 0 otherwise,
this heat flux is

.
Qa2 = δa2UAs(Ta(t) − Ts(t)), and the second exergy loss is:

.
B

L
s = δa2UAs(Ta(t) − Ts(t))

(
T0

Ts(t)
−

T0

Ta(t)

)
(25)

The exergy loss of the third kind is −(1− T0/Ta(t))
.

Qa. As mentioned above,
.

Qa = 0 during the
first sub-period, and

.
Qa =

.
Qa1 +

.
Qa2 during the second one. The flux

.
Qa can be developed as:

.
Qa = δa1ε

.
Qu

Ta(t) − (1− η̃ia)Tu

η̃iaTu
+ δa2UAs(Ta(t) − Ts(t)) (26)

which is introduced into the third exergy loss:

.
B

L
as =

.
Qa(T0/Ta(t) − 1) (27)

6.2. Non-Dimensionalization and Time Integration

In the following, the amounts of work consumed by the compressor and the exergy losses are
non-dimensionalized with respect to the mechanical power consumed by the reversible process:

.
Wrev = ε

.
Qu(1−T0/Tu). The non-dimensional notations are

.
w for power rates, and

.
b for rates of exergy

losses:
.

w =
.

W/
.

Wrev and
.
b =

.
B

L
/

.
Wrev.
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Figure 3 presents the curves of the internal and total exergy losses occurring in the whole process,
first without (dashed lines), and then with heat storage (solid lines calculated for the configuration Ts2

of Figure 2). Without storage, the exergy loss of the third kind, shown by the area between the dashed
curves ‘i’ (internal) and ‘t’ (total), is non-negligible in the total budget. The heat storage permits to
significantly reduce the internal irreversibility during the first sub-period from A to B (solid lines),
while cancelling out the exergy loss of the third kind (no difference between the ‘i’ and ‘t’ curves).
When the heat storage extracts heat from ambient air (first part of the second sub-period), the exergy
loss of the second kind adds to the other ones (area between the two ‘t’ curves from B to C). This extra
loss is, however, much smaller than the gain during the sub-period AB. From C to A, both processes
behave the same.
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Time integration over the whole cycle leads to the total non-dimensional energy consumption, w,
and exergy losses, bL. The two equations here-under describe ws and the internal exergy loss, bL

is. The

non-dimensional exergy losses bL
s and bL

aa are similarly deduced from the expressions of
.
B

L
s and

.
B

L
aa,

respectively. The total exergy loss is then easily obtained:

ws =
1

∆tD(Tu − T0)

[
1
η̃ia

∮
δa1(Tu − Ta(t))dt +

1
η̃is

∮
(1− δa1)(Tu − Ts(t))dt

]
(28)

bL
is =

Tu

∆tD(Tu − T0)

[(
1− η̃ia

η̃ia

)∮
δa1

(
T0

Ta(t)
−

T0

Tu

)
dt +

(
1− η̃is

η̃is

)∮
(1− δa1)

(
T0

Ts(t)
−

T0

Tu

)
dt

]
(29)

Lastly, the design parameters of the heat storage, MCs and UAs, are non-dimensionalized as mc
and ua. The reference heat storage is arbitrarily chosen such that it is used from 22:00 (tC = 79,200 s)
to 10:00 (tB = 36,000 s) with a temperature amplitude half that of ambient: TC = Ta + ∆Ta/2 = TA
and TB = Ta − ∆Ta/2. This case is shown by the thin dot-dashed curve TsRef in Figure 2. Numerical
calculations have been done with values of mc and ua ranging from 0.01 to 100.

Figure 4 shows how the total exergy loss, bL
tot,s, depends on mc and ua in the main region of interest.

The two axes are the locus for the system without storage, for which the total exergy loss equals 2.75
according to the equation: bL

tot,a =
[(

T0 − Ta
)
/(Tu − T0) − 1 + η̃ia

]
/η̃ia.
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In the ideal case of heat storage kept at T0, the minimal exergy loss (internal loss) equals 1.5
according to: bL

tot,0 = (1− η̃is)/η̃is. In the vicinity of the mc axis (respectively ua axis), the dependence of
bL

tot,s on ua (respectively on mc) is quasi linear and uniform, except when approaching the line ua = 2mc.
Beyond the limits of this graph, approaching the asymptotic value of 1.5 requires extreme values of mc
and ua, as shown in Table 1.

Table 1. Thermal capacity of the heat storage for five values of the total exergy loss, with ua = 2 mc.

bL
tot,s 1.9 1.8 1.7 1.6 1.55

mc = ua/2 2.9 4.95 10 32 97.5

In the framework of this second approach, the design of the heat storage (choice of mc and ua)
can be included into the procedure for optimizing the process described in the Appendix. Indeed, the
data of Figure 4 give way to the partial derivatives (∂bL

tot,s/∂mc)
Qu

and (∂bL
tot,s/∂ua)

Qu
, which are the

exergy version of the derivatives (∂SP
tot/∂Zi)Eu

in Equation (A1). When complemented with economic
data about investment cost, which are far beyond the scope of the present work, these two parameters
mc and ua can be compared to other design parameters of the heat pump in order to globally optimize
the whole process of heat pump + storage.

6.3. Verification

The purpose of this section is to check whether the statements above about agreement between
energy efficiency and exergy analysis are verified by the present numerical calculations. The power
energy for heat pumping is electricity. It can thus be stated that (i) the exergy Bp consumed by the
process is identical to the power energy Ep, also denoted as W herein, and (ii) this power energy is
expected to decompose into W = Wrev + BL

tot, where the reversible power energy Wrev should equate
the exergy supplied to the user (−Bu).

6.3.1. Verification for the First Approach with the Exergy Function B1 = E− Ta(t)S

In the first approach, the actual exergy balance is: B1p = −B1u + BL
1tot +

∮
dB1sys, see Equation (11).

The difference with the usually accepted exergy balance (B1p = −B1u + BL
1tot) is here-under

non-dimensionalized as: ∆b1 =
∮

dB1sys/(−B1u) where
∮

dB1sys = −
∮

Ta(t)dSsys (see Section 3.2).
As the only inertia accounted for in the present simulation is that of the heat storage, one has herein:
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dSsys = MCsdLn(Ts(t)). Figure 5 displays the values of ∆b1 versus w as dashed curves calculated in
the same mc-ua domain as in Figure 4. Firstly, as ∆b1 is negative, it cannot be a loss of exergy. Actually,
∆b1 acts as a correction that reduces an overestimated sum (−B1u + BL

1tot). Secondly, this correction
may be not negligible at all, even when the size of the heat storage is limited. Lastly, it grows when the
storage design approaches the ideal one (large values of mc in Figure 5). Any exergy analysis following
this first approach should therefore include that correction.
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6.3.2. Verification for the Second Approach with the Exergy Function B2 = E− T0S

In this approach, the non-dimensional version of W = Wrev + BL
tot is: w = 1 + bL

tot,s, with a total
exergy loss calculated as described in Section 6.2. The values of (w− 1− bL

tot,s) calculated in the same
domain as above are plotted in Figure 5 (symbols +). The deviation from zero does not exceed 10−4,
which is consistent with the fact that time is discretized in elements of 10 s. This second approach thus
offers a framework where (i) a reversible process can be defined, also when the ambient temperature
fluctuates, and (ii) all the exergy losses are clearly identified and in such a way that minimizing their
sum does maximize the energy efficiency of the process. Lastly, it does not need any correction.

6.3.3. Comparison of Two Examples of Dimensional Exergy Balances

In order to show the practical entailments of the two approaches, dimensional exergy balances
established for the case of the reference heat storage (mc = ua = 1) are further detailed. In the present case
of heat pumping, comparison is simplified thanks to the equality W = −B1p = −B2p. The concern is:

how does the energy (W = 97.14 MJ) consumed for supplying the heating rate ε
.

Qu = 10kW decompose?
In the first approach, the balance of interest is: W = −B1u + BL

1tot +
∮

dB1sys (see Section 3.2). In the
second approach, the balance is: W = Wrev + BL

is + BL
s + BL

as (see Sections 3.4 and 6.1), where BL
as is the

unusual exergy loss of the third kind introduced herein, Equation (27).
The numerical values are given in Table 2. First of all, the two approaches disagree about the

exergy supplied to the user, i.e., the amount of exergy assumed to be ever minimal for supplying
the prescribed duty. Indeed, one has −B1u = (εQu)

(
1− Ta/Tu

)
and Wrev = −B2u = (εQu)(1− T0/Tu).

The ratio −B1u/Wrev, always larger than 1, equals 1.5 herein (Tu = 20 ◦C, T0 = 10 ◦C, and Ta = 5 ◦C). The
second approach does give way to the most efficient reversible process (that equipped with the ideal
heat storage), when the process considered in the first approach, although reversible, is less efficient
for not using thermal inertia as efficiently as possible. When following the distinction introduced by
Tsatsaronis and Park [37], the first approach includes into the supplied exergy an exergy loss that
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can be avoided. Herein, the over-evaluation is significant. As the exergy losses BL
1tot and BL

is + BL
s do

not significantly differ, the over-evaluation due to the first approach must be compensated by the
non-negligible negative corrective term related to thermal inertia inside the process. On the contrary,
the second approach adds an irreversibility due to heat exchanges with ambient air that tends to vanish
when the design approaches the ideal one.

Table 2. Terms of the exergy balance in either approaches (in MJ), with mc = ua = 1 and W = 97.14 MJ.

First approach: −B1u = 44.21 MJ BL
1tot = 61.12 MJ

∮
dB1sys = −8.19 MJ

Second approach: Wrev = 29.47 MJ BL
is + BL

s = 59.01 MJ BL
as = 8.66 MJ

6.3.4. Case with Non-Constant Heating Duty

When assuming a constant heat duty
.

Qu, part of the resolution is analytical. However, this
assumption is unrealistic in building energy management. The numerical calculations have thus been
done with a function

.
Qu linearly dependent on the difference T0 − Ta(t) and with an average of 10 kW.

The ratio between the extremal values of
.

Qu is 2. The results are presented in Figures 6 and 7.
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.

Qu.

These figures are very similar to Figures 4 and 5, except for the numerical values that change by
5%–10% due to non-linear effects. This shows that the conclusions of the present study do not rely on
the constancy, or time variation, of the heating rate.

7. Conclusions and Perspectives

When the ambient temperature fluctuates, exergy should be defined by dB = dE−T0dS, where T0

is a constant temperature that takes the most favorable value of the ambient temperature with respect
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to energy efficiency of the process under consideration. In this framework (i) the so-defined function B
is a state function, (ii) the notion of ideal heat storage (always maintained at T0 while exchanging heat
reversibly) adds to that of reversible cycles, and (iii) the total exergy loss does sum up all the causes of
irreversibility, including an unusual one related to the heat exchanges with ambient air. This unusual
exergy loss accounts for the effect of non-ideality and finite size of the heat storage and is maximal
in cases without heat storage. The so-obtained exergy balances are robust and can be safely used for
global optimization of the whole process, including the heat storage.

As perspectives, it will be interesting to explore cases closer to reality, e.g., that would account for
complex heating demands or actual values of the ambient temperature. However, the most interesting
perspective for the theory of Second Law will consist of introducing the following piece of reality. In the
process modelled herein, the moment when the first sub-period AB begins is decided by maximizing
the benefit of using the heat storage instead of ambient air. In reality, such an optimum can never be
calculated exactly, because the future evolution of the ambient temperature is still unknown when the
decision must be taken: the actual decision will therefore always be uncertain. Only once the cycle is
achieved will it be possible to know which decision would have been optimal, and the subsequent loss
of efficiency. This introduces a fourth kind of exergy loss (and entropy production), the one due to
uncertainty. This will bridge the gap between energy analysis (usually quite deterministic) and the
profound meaning of entropy as a lack of information.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Usual notations (such as T for temperature, t for time, Q for heat, etc.) are not recalled here. Dotted quantities are
time-derivatives, e.g., Q is a heat quantity (J) and

.
Q is a heat flux (W).

b Non-dimensional exergy (-)
B Exergy (J)
BL Exergy loss (J)
E Energy (J)
mc Non-dimensional heat capacity (-)
MC Heat capacity of the heat storage (J·K−1)
S Entropy (J·K−1)
SP Entropy production (J·K−1)
Ta Mean ambient temperature (K)
T̃a Mean entropic ambient temperature (K)
∆Tsc, ∆Tse, ∆Tss Parameters in Equation (22) (K)
∆tD Day duration = 86,400 s
ua Non-dimensional conductance (-)
UA Global conductance between ambient air and storage (W·K−1)
w Non-dimensional work (-)
W Work (J)
X Entropy coefficient (K−1)
Greek Letters
δ Boolean function = 0 or 1
ε Parameter = −1 or +1, with same sign as Eu

η Energy efficiency (-)
η̃ Second Law or exergy efficiency (-)
τ Time constant (s)
ω = 2π/86, 400 (s−1)
Indexes
0 Reference state
1, 2 Numbers
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a Ambient
B Exergy
A, B, C refer to points in Figure 2 when applied to time and temperature
i Internal
p Power
Ref Reference storage
rev Reversible
s Storage
S Second Law, or entropy
sys System
tot Total
u Utility∮
•dt Integration of • over the 24-hour cycle

Appendix A. Optimization of Energy Conversion Processes

The generic process described above is optimized when the power flux,
.
Ep, is minimized under both

constraints of prescribed duty, ε
.
Eu, and given total investment cost I, i.e., I = I0. From Equation (3), simple algebra

shows that
.
Ep is minimized when the total entropy production,

.
S

P
tot, is minimized too. The Lagrangian of the

problem is then:
.
S

P
tot + Λ(I − I0). Canceling out any of its partial derivatives with respect to the non-discrete

design parameter, Zi, and at constant,
.
Eu, leads to the optimal design via the relations:

(∂
.
S

P
tot/∂Zi)Eu

(∂I/∂Zi)Eu

=
(∂

.
S

P
tot/∂Z j)Eu

(∂I/∂Z j)Eu

= −Λ, ∀(i, j) (A1)

These relations also prescribe the common value of the Lagrange multiplier Λ. Equation (A1) just states
that the process is optimized when a small extra investment cost, ∆I, induces exactly the same reduction of the
total entropy production regardless of the parameter which is modified. The Second Law contributes to process
optimization via the dependence of the total entropy production to any design parameter.
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