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Abstract: Mutual inductance between finite-length coaxial helical filaments and tape coils are
presented analytically. In this paper, a mathematical model for finite-length coaxial helical filaments
is established, and subsequently, the mutual inductance of the filaments is derived in a series form,
containing a one-dimensional integral. The mutual inductance expression of the filaments is then
generalized for a tape conductor. When the tape conductor of each coil is closely wound, then the
inverse Mellin transform is further utilized for transforming the generalized integral in the mutual
inductance expression into a series involving hypergeometric functions, for increasing the calculation
speed. Finally, the obtained expressions are compared numerically with the existing analytical
solutions and finite-element simulation in order to verify the correctness and general applicability
of the results. In this paper, as all the mutual-inductance analytical expressions are concise with
fast convergence, it is easy to obtain the numerical results in software, such as Mathematica. The
expressions presented in this paper are applicable to any corresponding geometric parameter, and
are thereby more advantageous compared to the existing analytical methods. In addition, evaluation
by these expressions is considerably more efficient, as compared to finite element simulation.

Keywords: helical coils; modified Bessel functions; mutual inductance; magnetic field; inverse
Mellin transform

1. Introduction

Helical coils are common wire structures, which are extensively used in a variety of electrical
devices [1]. They include, for example, superconducting power transmission cables [2–5], twisted
power cables [6–8], wireless power transmission coils [9,10], and the low-voltage windings of
high-power transformers [11,12]. Among them, the low-voltage winding of a high-power transformer
uses wide tape conductor to carry large currents; simultaneously, to facilitate heat dissipation, the
conductor is wound into coaxial helical tape solenoids. While examining the inductance of these
solenoids, which is of practical importance, the influence of the pitch length of the helical conductor
cannot be ignored. Currently, several inductance calculations are related to circular coils with zero pitch
length [13–15], whereas research on helical coils is relatively less. Research on helical conductors with
pitch length focus mainly on infinite-length coaxial helical coils [16–18]. However, in many practical
applications, such as the helical coils in the above-mentioned transformer, the end effect of the coils
cannot be neglected in the inductance calculation, and therefore need to be considered as coaxial helical
tape coils of finite length. Few studies address this inductance calculation. In this regard, T. Tominaka
approximately deduced the analytical expressions of the mutual inductance of finite-length coaxial
helical coils using Neumann’s formula [19,20]. However, as the study was limited to end-aligned
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coils and used approximate processing under certain conditions in the derivation process, the results
cannot be universally applied to coaxial helical coils with arbitrary geometric parameters. Apart from
the analytical expressions, the finite-element method can also be used to calculate the inductance of
finite-length coaxial helical coils. Although this type of numerical method is generally applicable
for coils with arbitrary geometric parameters, it differs from the analytical expressions, which are
accurate, efficient, and easy to use. For finite-length coaxial helical tape coils, which are asymmetric
three-dimensional structures, the finite-element method requires considerable computing resources
and is inefficient. Therefore, it is of great theoretical and practical significance to derive the analytical
expressions of the inductance for finite-length coaxial helical coils with arbitrary geometric parameters.

As the first scholar to study the analytical calculation of the magnetic field and the inductance of
finite-length helical coils, H. Buchholz derived the magnetic vector potential induced by the current of a
finite-length helical filament [21,22], and then calculated the self-inductance of a helical tape conductor,
as shown in Figure 1. The key step in this derivation is the application of the series expansion of the
reciprocal distance to separate the various geometric parameters convolved together in the integrand;
therefore, the integrand can be easily integrated in the axial and angular directions to obtain relatively
simple formulas. As there is no approximation under certain conditions, these formulas can be applied
to any geometric parameter of a finite-length helical coil. Inspired by H. Buchholz’s works, several
papers have examined the magnetic field distribution of helical coils in specific situations, but have
not addressed the calculation of the mutual inductance [23–26].
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Figure 1. Tape-conductor finite-length helical coil with arbitrary pitch length (h).

In this paper, using the series expansion of the reciprocal distance described above, the mutual
inductance of finite-length coaxial helical tape coils with arbitrary geometry parameters is deduced.
This work is based on the relevant theories of [21] and [22]. Section 2 first introduces the basic
mathematical model of a finite-length helical filament and then, presents the analytical expressions
of its magnetic vector potential. Section 3 uses the integration of the vector potential along the
curve of another filament to obtain the mutual inductance between two finite-length coaxial helical
filaments. Section 4 is the generalization of the mutual-inductance calculation for tape conductors. In
Section 5, the inverse Mellin transform is used for calculating the mutual inductance of closely-wound
tape conductors [22,27]. The generalized integral in the expression is converted into a series
of hypergeometric functions in order to avoid the numerical integral process, when executed in
mathematical software. Section 6 presents the comparison and simulation verification. Table 1 lists the
special functions used in this paper.
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Table 1. Special functions and mathematical symbols.

Functions/Symbols Name

Iλ(x) Modified Bessel function of the first kind
Kλ(x) Modified Bessel function of the second kind
Γ(x) Gamma function

2F1(a, b; c; x) Gauss hypergeometric function

2F(1,0,0,0)
1 (a, b; c; x)

First-order differentiation of the Gauss
hypergeometric function with respect to a

2F(0,1,0,0)
1 (a, b; c; x)

First-order differentiation of the Gauss
hypergeometric function with respect to b

<e(x) Real part of x
N∗ Positive integers

2. Establishment of a Mathematical Model and the Magnetic Vector Potential of a Finite-Length
Helical Filament

In order to derive the mutual-inductance expression for finite-length coaxial helical tape coils, we
first need to obtain the mutual-inductance expression between finite-length coaxial helical filaments.
The well-known expression of the mutual inductance, M12, for two filaments is as follows:

M12 =
1
I1

∫
A1ds2, (1)

where A1 is the vector potential due to current, I1, of a filament and s2 is the path of the other
filament. Therefore, so as to obtain the mutual inductance of finite-length coaxial helical filaments, a
mathematical model should be established, and the vector potential generated by the current of the coil
should be derived. A mathematical model for finite-length coaxial helical filaments is established in
the cylindrical coordinate system, as shown in Figure 2. The conductors of coils- 1 and 2 are infinitely
thin. The radius of coil-1 is a, the height is 2c1, the number of turns is N1, and the pitch length is h1;
then, N1 · h1 = 2c1. I1 is the current in coil-1. The midpoint (a, 0, 0) of the conductor of coil-1 is located
on the plane, z = 0; the coordinates (a, ϕ′, z′) of an arbitrary point on this coil have the following
relationship:

ϕ′ = 2πz′/h1 = cot ψ1z′/a. (2)

The constant, ψ1 in Equation (2), is the climb angle of coil-1, which is related to a and h1 as follows:

cot ψ1 = 2π · a/h1. (3)

According to the reference direction of I1 in Figure 2, when ψ1 ∈
(
0, π2

]
, the following calculations

render h1 > 0; on the contrary, when ψ1 ∈
(
π
2 ,π

)
, h1 < 0. The corresponding parameters of coil-2

are similar.
The magnetic vector potential at an arbitrary point (r, ϕ, z) in space due to I1 is given by a definite

integral of the current element, I1 · ds(a, ϕ′, z′) and the reciprocal distance, 1
R(a,ϕ′ ,z′ ;r,ϕ,z) , over the entire

length of coil-1 [28]:

A(r, ϕ, z) =
µ0 I1

4π

c1∫
−c1

ds(a, ϕ′, z′)
R(a, ϕ′, z′; r, ϕ, z)

, (4)

where
R
(
a, ϕ′, z′; r, ϕ, z

)
=

√
(z− z′)2 + r2 + a2 − 2ra cos(ϕ− ϕ′). (5)
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Assuming that the unit vector of the current element at point (a, ϕ′, z′) is t(a, ϕ′, z′), ds(a, ϕ′, z′) =
ds(a, ϕ′, z′) · t(a, ϕ′, z′) = t(a, ϕ′, z′) · dz′/sin ψ1 is substituted in Equation (4):

A(r, ϕ, z) =
µ0 I1

4π sin ψ1

c1∫
−c1

t(a, ϕ′, z′) · dz′

R(a, ϕ′, z′; r, ϕ, z)
. (6)

As the current at any point in the coil does not have a radial component in the cylindrical
coordinate system, t(a, ϕ′, z′) can be expressed using the orthogonal unit vectors, ζϕ and ζz:

t
(
a, ϕ′, z′

)
= cos ψ1ζϕ + sin ψ1ζz, (7)

where ζϕ and ζz represent the angular, ϕ, and z-axis directions, respectively. Substituting Equation (7)
in Equation (6), the magnetic vector potential in different directions is easily obtained as follows:

Az(r, ϕ, z) =
µ0 I1

4π

c1∫
−c1

dz′

R(a, ϕ′, z′; r, ϕ, z)
, (8)

Aϕ(r, ϕ, z) + iAr(r, ϕ, z) =
µ0 I1

4π
eiϕ cot ψ1

c1∫
−c1

e−i cot ψ1·z′/a · dz′

R(a, ϕ′, z′; r, ϕ, z)
. (9)

In the above equations, components Aϕ(r, ϕ, z) and Ar(r, ϕ, z) are expressed in a complex form
for simplicity. To solve the definite integral in Equations (8) and (9), we need to express 1

R(a,ϕ′ ,z′ ;r,ϕ,z)
as a series of modified Bessel functions by the series expansion of the reciprocal distance [22], for
separating the variables (ϕ’ and z’) in the integrand:

1
R(a, ϕ′, z′; r, ϕ, z)

=
∞

∑
λ=−∞

cos
[
λ
(

ϕ′ − ϕ
)]
· fλ

(
a, r, z′, z

)
. (10)
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When r ≥ a,

fλ

(
a, r, z′, z

)
=

2
π

∞∫
0

Iλ(va)Kλ(vr) cos
[
v
(
z′ − z

)]
dv. (11)

With Equations (10) and (11), the definite integrals in Equations (8) and (9) can be performed as
follows [21,22]:

Az(r, ϕ, z) =
µ0 I1

π2

∞

∑
λ=−∞

∞∫
0

cos(λϕ− vz)
sin
[
c1

(
v− λ 2π

h1

)]
v− λ 2π

h1

Iλ(va)Kλ(vr)

dv(r ≥ a), (12)

Aϕ(r, ϕ, z) + iAr(r, ϕ, z) = µ0 I1
2π2 cot ψ1

∞
∑

λ=−∞

∞∫
0

{
sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
ei(λϕ−vz) Iλ−1(va)Kλ−1(vr)
+e−i(λϕ−vz) Iλ+1(va)Kλ+1(vr)

]}
dv(r ≥ a). (13)

Note that, when z’ is integrated in Equations (8) and (9), ϕ’ also participates in the integral as a
function of z’. Equations (12) and (13) are the magnetic vector potential expressions of an arbitrary
point (r, ϕ, z) in space, generated by I1 of coil-1. And then z-component of the magnetic field of I1 is
derived by H. Buchholz:

Bz(r, ϕ, z) = − µ0 I1
π2 cot ψ1

∞
∑

λ=−∞

∞∫
0

{
v cos(λϕ− vz)

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
. (14)

In the above equation, I′λ(va) and K′λ(va) present the first-order differentiation of the modified
Bessel function of the first and second kind with respect to va. Equation (14) is defined as a piecewise
function. For r ≥ a, I′λ(va)Kλ(vr) is used; and for r ≤ a, Iλ(vr)K′λ(va) is used. With Equation (14), the
magnetic scalar potential can be easily obtained from B = −µ0gradVm:

Vm(r, ϕ, z) = − I1
π2 cot ψ1

∞
∑

λ=−∞

∞∫
0

{
sin(λϕ− vz)

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
. (15)

Then the other two components of magnetic field in cylindrical coordinate can be deduced as
follows:

Br(r, ϕ, z) = µ0 I1
π2 cot ψ1

∞
∑

λ=−∞

∞∫
0

{
v sin(λϕ− vz)

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)K′λ(vr)
I′λ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
, (16)

Bϕ(r, ϕ, z) = µ0 I1
π2r cot ψ1

∞
∑

λ=−∞

∞∫
0

{
λ cos(λϕ− vz)

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
. (17)

The work in this section lays the foundation for the derivation of the expression of the mutual
inductance between helical filaments, in the next section.

3. Mutual Inductance of Finite-Length Coaxial Helical Filaments

In this section, the mutual inductance of finite-length coaxial helical filaments is obtained by the
integration of Equations (12) and (13) along the curve of coil-2. Different from the existing mutual
inductance approximation formula, the analytical expression deduced in this section is applicable to
the finite-length coaxial helical filaments with arbitrary geometric parameters. The radius of coil-2 in
Figure 2 is ρ, the height is 2c2, the pitch length is h2, the climb angle is ψ2, and the midpoint (ρ, θ, b) of
the conductor of coil-2 is located on the plane, z = b. The coordinates (ρ, ϕ, z) at an arbitrary point on
coil-2 have the following relationship:

ϕ = 2π(z− b)/h2 + θ = cot ψ2(z− b)/ρ + θ. (18)
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At (ρ, ϕ, z), the magnetic vector potential created by I1 along the tangential direction of the
conductor is

At(ρ, ϕ, z) = cos ψ2 Aϕ(ρ, ϕ, z) + sin ψ2 Az(ρ, ϕ, z). (19)

The mutual inductance can be obtained by integrating At(ρ, ϕ, z) along the curve of coil-2:

M12 =
1
I1

b+c2∫
b−c2

At(ρ, ϕ, z)
sin ψ2

dz. (20)

Equations (12), (13), (18), and (19) are substituted in Equation (20) to solve the definite integral.
Then, the analytical expression for the mutual inductance of finite-length coaxial helical filaments can
be obtained as follows:

M12 = µ0
π2

∞
∑

λ=−∞

∞∫
0

 cos(bv− θλ)
sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

sin
[
c2

(
v−λ 2π

h2

)]
v−λ 2π

h2

×{cot ψ1 cot ψ2[Iλ−1(va)Kλ−1(vρ) + Iλ+1(va)Kλ+1(vρ)] + 2Iλ(va)Kλ(vρ)}

dv(ρ ≥ a). (21)

Based on Equation (21), if coils- 1 and 2 are severally rotated by angles χ1 and χ2 around the z-axis,
the coordinates of the center points of the conductors become (a, χ1, 0) and (ρ, θ + χ2, b), respectively.
The following relationships exist:

ϕ′ − χ1 = 2πz′/h1, (22)

ϕ− χ2 = 2π(z− b)/h2 + θ. (23)

Then, Equation (21) becomes

Mχ1χ2 = µ0
π2

∞
∑

λ=−∞

∞∫
0

 cos[bv− λ(θ + χ2 − χ1)]
sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

sin
[
c2

(
v−λ 2π

h2

)]
v−λ 2π

h2

×{cot ψ1 cot ψ2[Iλ−1(va)Kλ−1(vρ) + Iλ+1(va)Kλ+1(vρ)] + 2Iλ(va)Kλ(vρ)}

dv(ρ ≥ a). (24)

Similar to Equation (24), when coil-1 rotated by angle χ1 around the z-axis, the magnetic field
generated by I1 is obtained as follows:

Br(χ1)
(r, ϕ, z) = µ0 I1

π2 cot ψ1
∞
∑

λ=−∞

∞∫
0

{
v sin[λ(ϕ− χ1)− vz]

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)K′λ(vr)
I′λ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
, (25)

Bϕ(χ1)
(r, ϕ, z) = µ0 I1

π2r cot ψ1
∞
∑

λ=−∞

∞∫
0

{
λ cos[λ(ϕ− χ1)− vz]

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
, (26)

Bz(χ1)
(r, ϕ, z) = − µ0 I1

π2 cot ψ1
∞
∑

λ=−∞

∞∫
0

{
v cos[λ(ϕ− χ1)− vz]

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
. (27)

4. Mutual Inductance of Finite-Length Coaxial Helical Tape Coils

Based on the derivations in Section 3, we can easily derive the mutual inductance of finite-length
coaxial helical tape coils. As shown in Figure 3, if coils- 1 and 2 in Figure 2 are respectively rotated
by angles ±α1 (0 < α1 ≤ π) and ±α2 (0 < α2 ≤ π) around the z-axis, the areas swept by the original
filaments are tape-conductor shaped. Figure 4 is the central region of the lateral surface of coil-1 in
Figure 3. The width of the tape conductor is D1, and the angular coordinates of the intersections in
which the two boundary lines intersect with the z = 0 plane are α1 and −α1, respectively.
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In this paper, only helical conductors with uniform helical current densities are discussed. If the
total current in the tape conductor is I1,

i1 =
I1

D1
. (28)

The climb angle, ψ1, and the pitch length, h1, are shown in Figure 4; the following relationships
exist:

sin ψ1 =
D1

2a · α1
, (29)

cot2 ψ1 =

(
2a · α1

D1

)2
− 1. (30)

Different from the case of filaments, the climb angle, ψ1, of the tape conductor lies in the interval
[ψ1min, ψ1max]. ψ1min and ψ1max are the climb angles of the closely-wound conductor for h1 > 0 and
h1 < 0, respectively. Equations (29) and (30) can be expressed as follows:

sin ψ1min = sin ψ1max =
D1

2a · π , (31)
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cot2 ψ1min = cot2 ψ1max =

(
2a · π

D1

)2
− 1. (32)

Then, the corresponding pitch length is of the following form:

h2
min = h2

max =
D2

1

1−
(

D1
2a·π

)2 . (33)

Similarly, the parameters of coil-2 in Figure 4 have the same relationships as given above.
Therefore, the mutual inductance of finite-length coaxial helical tape coils can be expressed using
double integrals, with respect to the rotated angles, as follows:

M12band =
1

2α1 · 2α2

α1∫
−α1

α2∫
−α2

Mχ1χ2 dχ2dχ1. (34)

Substituting Equations (24) in (34) and performing the integrals in Equation (34),

M12band = µ0
π2

∞
∑

λ=−∞

∞∫
0


{

sin(α1λ)
α1λ

sin(α2λ)
α2λ cos(bv− θλ)

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

sin
[
c2

(
v−λ 2π

h2

)]
v−λ 2π

h2

}
×{cot ψ1 cot ψ2[Iλ−1(va)Kλ−1(vρ) + Iλ+1(va)Kλ+1(vρ)] + 2Iλ(va)Kλ(vρ)}

dv(ρ ≥ a), (35)

where θ is the angular coordinate difference of the center-line midpoints in Figure 3. Equation (35)
is derived from the mutual-inductance expression for filaments in Section 3. Thus, Equation (35) is
also suitable for finite-length coaxial helical tape coils with arbitrary geometric parameters. The only
difference is that the tape coil has a maximum and minimum climb angle depending on the width of
its wire.

Similar to Equation (34), the magnetic field generated by helical tape coil can be obtained by
definite integral with respect to χ1 of Equations (25)–(27) over interval [−α1, α1]:

Br(band)(r, ϕ, z) = µ0 I1
π2 cot ψ1

∞
∑

λ=−∞

∞∫
0

{
sin(α1λ)

α1λ v sin(λϕ− vz)
sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)K′λ(vr)
I′λ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
, (36)

Bϕ(band)(r, ϕ, z) = µ0 I1
π2r cot ψ1

∞
∑

λ=−∞

∞∫
0

{
sin(α1λ)

α1
cos(λϕ− vz)

sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
, (37)

Bz(band)(r, ϕ, z) = − µ0 I1
π2 cot ψ1

∞
∑

λ=−∞

∞∫
0

{
sin(α1λ)

α1λ v cos(λϕ− vz)
sin
[
c1

(
v−λ 2π

h1

)]
v−λ 2π

h1

[
I′λ(va)Kλ(vr)
Iλ(vr)K′λ(va)

]}
dv

(
r ≥ a
r ≤ a

)
. (38)

5. Mutual Inductance Calculation for Closely-Wound Tape Coils Using the Inverse Mellin
Transform

When both the finite-length coaxial helical tape coils are closely wound (α1 = α2 = π), we consider
h1 > 0 and h2 > 0; then, employing Equations (31)–(33) and (35) gives,

M12bandπ =
2µ0

π2

∞∫
0

{
cos(bv) sin(c1v)

v
sin(c2v)

v
×[cot ψ1 min cot ψ2 min I1(va)K1(vρ) + I0(va)K0(vρ)]

}
dv(ρ ≥ a). (39)

In Equation (39), there is a one-dimensional integral, which is difficult to tackle with the
analytical method because the integral is transcendental. Hence, instead of the numerical integration
method, inverse Mellin transform can be used to continue the integral analytically to the complex
plane; by contour deformation and the residue theorem, they can then be expanded to a series
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containing hypergeometric functions, which are easy to execute in common mathematical software
packages [22,27]. Therefore, Iλ(va)Kλ(vρ) can be expressed as follows [29]:

Iλ(va)Kλ(vρ) = 1
2πi

×
ε+i∞∫

ε−i∞

{
2t−2ρ−t

(
a
ρ

)λ Γ( t
2 )Γ( t

2+λ)
Γ(1+λ) 2F1

(
t
2 , t

2 + λ; 1 + λ; a2

ρ2

)
v−t
}

dt(<e(λ) ≥ 0, ε > 0, and ρ > a)
. (40)

The integration path is over a vertical line in the complex plane. Assigning λ = 0 and λ = 1,
substituting Equation (40) in Equation (39) and solving the infinite integration of v,

M12bandπ = µ0
16π3i

ε+i∞∫
ε−i∞


[
(c1 + c2 + b)t+1 + |c1 + c2 − b|t+1 − |c1 − c2 + b|t+1 − |c1 − c2 − b|t+1

]
× sin

(
πt
2
)( 2

ρ

)t
Γ(−t− 1)

[
Γ
( t

2
)]2

×
[

at
2ρ cot ψ1 min cot ψ2 min2F1

(
t
2 , t

2 + 1; 2; a2

ρ2

)
+ 2F1

(
t
2 , t

2 ; 1; a2

ρ2

)]
dt(0 < ε < 1 and ρ > a), (41)

where 0 < <e(t) < 1. The first term of the integrand in Equation (41) is defined as follows:

I1(t) =
[
(c1 + c2 + b)t+1 + |c1 + c2 − b|t+1 − |c1 − c2 + b|t+1 − |c1 − c2 − b|t+1

]
sin
(

πt
2
)( 2

ρ

)t
Γ(−t− 1)

[
Γ
( t

2
)]2

× at
2ρ cot ψ1min cot ψ2min2F1

(
t
2 , t

2 + 1; 2; a2

ρ2

)
(0 < ε < 1 and ρ > a)

. (42)

As shown in Figure 5, I1(t) gives the simple poles, t = −2k . . . − 4,−2,−1, 0, 1, 3 . . . 2m −
1 (k, m ∈ N∗), in the complex t-plane. According to the Cauchy integral theorem, the integration path
of µ0

16π3i

∫ ε+i∞
ε−i∞ I1(t)dt can be deformed to others, one of which starts from +∞ beneath the real axis,

encircles the pole, t = 1, clockwise and then, moves toward +∞ again (see Figure 5). By this procedure,
the poles, t = 1, 3 . . . 2m− 1 (m ∈ N∗), are surrounded by V in a clockwise manner. Furthermore,
by bending the integration path leftward, the simple poles, t = −2k . . .− 4,−2,−1, 0 (k ∈ N∗), are
encircled by the contour, W. The residue theorem gives the series under different paths, respectively:

µ0
16π3i

ε+i∞∫
ε−i∞

I1(t)dt = µ0a
4πρ

×


1
2

[
(c1 + c2 + b + |c1 + c2 − b| − |c1 − c2 + b| − |c1 − c2 − b|)
×2F1

(
0, 1; 2; a2

ρ2

)
cot ψ1min cot ψ2min

]

+
∞
∑

n=1


[
(c1 + c2 + b)1−2n + |c1 + c2 − b|1−2n − |c1 − c2 + b|1−2n − |c1 − c2 − b|1−2n

]
×
(

2
ρ

)−2n (−1)n+1Γ(2n−1)
Γ(n)Γ(n+1) 2F1

(
−n, 1− n; 2; a2

ρ2

)
cot ψ1 min cot ψ2 min




(0 < ε < 1, ρ > a, and W)

, (43)

µ0
16π3i

ε+i∞∫
ε−i∞

I1(t)dt = µ0a
8π2ρ

×
∞
∑

n=1


[
(c1 + c2 + b)2n + (c1 + c2 − b)2n − (c1 − c2 + b)2n − (c1 − c2 − b)2n

]
×
(

2
ρ

)2n−1 (−1)n+1Γ(n− 1
2 )Γ(n+ 1

2 )
Γ(2n+1)

×2F1

(
n− 1

2 , n + 1
2 ; 2; a2

ρ2

)
cot ψ1 min cot ψ2 min

(0 < ε < 1, ρ > a, and V)

. (44)
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∫ ε+i∞
ε−i∞ I1(t)dt and the poles on the real axis.

These two series cover most regions of the coil’s geometric parameters. In general, Equations (43)
and (44) are suitable for c1 + c2 + b ≥ ρ and c1 + c2 + b < ρ, respectively. The region of convergence
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is difficult to determine precisely; however, the series can be selected by substituting the actual
parameters, with numerical checking.

The second term of integrand in Equation (41) is defined as follows:

I2(t) =
[
(c1 + c2 + b)t+1 + |c1 + c2 − b|t+1 − |c1 − c2 + b|t+1 − |c1 − c2 − b|t+1

]
× sin

(
πt
2
)( 2

ρ

)t
Γ(−t− 1)

[
Γ
( t

2
)]2

2F1

(
t
2 , t

2 ; 1; a2

ρ2

)
(0 < ε < 1 and ρ > a)

. (45)

As shown in Figure 6, I2(t) gives the simple poles, t = −2k . . . − 4,−2,−1, 1, 3, . . . 2m −
1 (k, m ∈ N∗), together with a second-order pole, t = 0, in the complex t-plane.
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µ0
16π3i

ε+i∞∫
ε−i∞

I2(t)dt = µ0
4π

×




(c1 + c2 + b + |c1 + c2 − b| − |c1 − c2 + b| − |c1 − c2 − b|)
×
[
ln 2

ρ − 1 + 1
2 2F(0,1,0,0)

1

(
0, 0; 1; a2

ρ2

)
+ 1

2 2F(1,0,0,0)
1

(
0, 0; 1; a2

ρ2

)]
+(c1 + c2 + b) ln(c1 + c2 + b) + |c1 + c2 − b| ln|c1 + c2 − b|
−|c1 − c2 + b| ln|c1 − c2 + b| − |c1 − c2 − b| ln|c1 − c2 − b|


+

∞
∑

n=1


[
(c1 + c2 + b)1−2n + |c1 + c2 − b|1−2n − |c1 − c2 + b|1−2n − |c1 − c2 − b|1−2n

]
×
(

2
ρ

)−2n (−1)nΓ(2n−1)
[Γ(n+1)]2 2F1

(
−n,−n; 1; a2

ρ2

)



(0 < ε < 1, ρ > a, and W)

, (46)

µ0
16π3i

ε+i∞∫
ε−i∞

I2(t)dt = µ0
8π2

×
∞
∑

n=1


[
(c1 + c2 + b)2n + (c1 + c2 − b)2n − (c1 − c2 + b)2n − (c1 − c2 − b)2n

]
×
(

2
ρ

)2n−1 (−1)n+1[Γ(n− 1
2 )]

2

Γ(2n+1) 2F1

(
n− 1

2 , n− 1
2 ; 1; a2

ρ2

)
(0 < ε < 1, ρ > a, and V)

. (47)

Similar to Equations (43) and (44), approximately, the convergence regions of Equations (46)
and (47) are c1 + c2 + b ≥ ρ and c1 + c2 + b < ρ, respectively. As a result, Equation (39) can be
expressed as the addition of two convergent series, belonging to the first and the second terms of the
integrand, respectively.

It should be noted that in a few cases, Equation (43) or (46) cannot be evaluated directly using
Mathematica. This problem can be intuitively seen; if c1 + c2 − b or c1 − c2 + b or c1 − c2 − b is zero,
the calculation program will report an error because the corresponding exponent is negative. This
can be solved by substituting the specific geometrical parameters in Equation (39) and reusing the
inverse Mellin transform. For example, for closely-wound coaxial helical tape coils for which h1 > 0,
h2 > 0, and c1 + c2 + b ≥ ρ, when c1 = c2 and b = 0, Equations (43) and (46) are invalid; we obtain the
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following expression for the mutual inductance by substituting c1 = c2 and b = 0 in Equation (39) and
deriving the series, as follows:

M12bandπ = µ0c1
π



a
ρ cot ψ1min cot ψ2min

∞
∑

n=1


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4c1
ρ

)−2n (−1)n+1Γ(2n−1)
Γ(n)Γ(n+1) 2F1

(
−n, 1− n; 2; a2

ρ2

)
+ 1

2 2F1

(
0, 1; 2; a2

ρ2

)
−
(

4c1
ρ

)−1

2F1

(
− 1

2 , 1
2 ; 2; a2

ρ2

)


+
∞
∑

n=1


(

4c1
ρ

)−2n (−1)nΓ(2n−1)
[Γ(n+1)]2 2F1

(
−n,−n; 1; a2

ρ2

)
+ 2
(

4c1
ρ

)−1

2F1

(
− 1

2 ,− 1
2 ; 1; a2

ρ2

)
+ ln

(
4c1
ρ

)
− 1 + 1

2 2F(0,1,0,0)
1

(
0, 0; 1; a2

ρ2

)
+ 1

2 2F(1,0,0,0)
1

(
0, 0; 1; a2

ρ2

)



. (48)

It can be easily observed that Equation (48) is also composed of two parts, wherein each part is a
convergent series belonging to the first and the second term of the integrand, respectively. Although the
expression obtained by Mellin transform is generally more complex than the original Equation (39), the
integral in Equation (39) is transformed into a series more rapidly, when evaluated using Mathematica.
The special functions contained in this series can be easily called by the numerical calculation software
and the function values can be rapidly obtained. Therefore, compared to Equation (39), which must
be numerically integrated during evaluation, the results in this section can considerably improve the
computational efficiency.

6. Numerical Comparison and Simulation Verification

In this section, the obtained expressions are verified, using the existing analytical solutions and the
finite element method (FEM). All the analytical calculations were implemented using Mathematica [30].
The FEM results were obtained using CST EM Studio software. In the FEM, the electrical boundary
conditions (Et = 0) were applied and the distance from the boundary to the coil model was about
1.2 times the model height. Annealed copper was used as the coil material, and the current ports
were utilized as the excitation sources. Tetrahedral mesh generation for the model was performed
automatically, on the commencement of the magnetostatic solver. During the solver run, several mesh
refinement passes were performed automatically, until the deviation of the energy value did not exceed
the criterion, 2 × 10−2, between two subsequent passes.

6.1. Comparison with Respect to Finite-Length Coaxial Helical Filaments

Four different calculation methods are utilized in the following comparisons: Equation (21) of
this paper, Equation (24) of [20], FEM, and Equation (38) of [13]. As it is impossible to establish an
infinite thin conductor model for calculating the apparent inductance matrix in FEM, the filaments
were approximately replaced by coils with small square cross-sections. The edge length of the square
was 10 mm and the center point of the square was located on the original filament. Furthermore, as
the helical coil is an open-circuit, instead of a closed circuit like the circular coil, in order to avoid
error report in the FEM program, the terminal leads were assembled on the model to connect the end
of the coil with the boundary, as shown in Figure 7. The cross-section of the terminal lead was also
a square with an edge length of 10 mm. The terminal leads of coils- 1 and 2 were perpendicular to
each other. All these above measures were undertaken to guarantee that the FEM program is solvable
and to minimize the errors in calculation, when the computing power of the computer is limited.
Equation (38) of [13] was used for the approximate calculation of the mutual inductance. The helical
coils were reduced to finite continuous solenoids (circular coils), with the same height and number of
turns as the helical coils.



Energies 2019, 12, 566 12 of 20

Energies 2018, 11, x FOR PEER REVIEW  14 of 22 

 

the computer is limited. Equation (38) of [13] was used for the approximate calculation of the 
mutual inductance. The helical coils were reduced to finite continuous solenoids (circular coils), 
with the same height and number of turns as the helical coils.  

 

Figure 7. Finite element method (FEM) model of the filaments. 

The geometric parameters are listed in Table 2, for the first comparison, in which 0b =  and 
the two coils are aligned at the ends. The pitch-length (h) dependence of the mutual inductance is 
presented in Figure 8. 

Table 2. Geometric parameters of the coils in Figure 2 (1st comparison). 

Parameters Coil-1 Coil-2 
Number of turns 10 10 
Pitch length (m) h h 
Coil length (m) 10 h×  10 h×  

Angular coordinate of the  
midpoint of the conductor (rad) 

0 0 

Radius (m) 0.4 0.5 

 
Figure 8. Pitch length (h) dependence of the mutual inductance ( 12M ). 

From Figure 8, it is seen that Equation (21) of this paper is in good agreement with the FEM, 
for each pitch length (h). Equation (38) of [13] is only valid for a small pitch-length, whereas, 
Equation (24) of [20] is more suitable for long coils. 

Figure 7. Finite element method (FEM) model of the filaments.

The geometric parameters are listed in Table 2, for the first comparison, in which b = 0 and
the two coils are aligned at the ends. The pitch-length (h) dependence of the mutual inductance is
presented in Figure 8.

Table 2. Geometric parameters of the coils in Figure 2 (1st comparison).

Parameters Coil-1 Coil-2

Number of turns 10 10
Pitch length (m) h h
Coil length (m) 10× h 10× h

Angular coordinate of the
midpoint of the conductor (rad) 0 0

Radius (m) 0.4 0.5
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Figure 8. Pitch length (h) dependence of the mutual inductance (M12).

From Figure 8, it is seen that Equation (21) of this paper is in good agreement with the FEM, for
each pitch length (h). Equation (38) of [13] is only valid for a small pitch-length, whereas, Equation (24)
of [20] is more suitable for long coils.

Maintaining the alignment of the coils and b = 0, the angular coordinate (θ) dependence of the
mutual inductance is presented in Figure 9. The geometric parameters are listed in Table 3, for a fixed
pitch length (0.629 m).
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Table 3. Geometric parameters of the coils in Figure 2 (2nd comparison).

Parameters Coil-1 Coil-2

Number of turns 10 10
Pitch length (m) 0.629 0.629
Coil length (m) 6.29 6.29

Angular coordinate of the midpoint of the conductor (rad) 0 θ
Radius (m) 0.4 0.5

From Figure 9, it is observed that Equation (21) in this paper is consistent with the FEM result;
Equation (24) of [20] is similar to the other two, but some errors continue to exist. Equation (38) of [13]
is not suitable for this comparison because it is unaffected by the variation in θ.

The geometric parameters of coils of the third comparison are shown in Table 4. The ends of
the both coils are aligned and the radii are the same. The angular coordinates (θ) of the midpoints
of conductor center lines are 0 and π, respectively, and the wires are arranged in a similar manner
to the twisted pairs which are common in practice. The pitch-length (h) dependence of the mutual
inductance is presented in Figure 10.

Table 4. Geometric parameters of the coils in Figure 2 (3rd comparison).

Parameters Coil-1 Coil-2

Number of turns 10 10
Pitch length (m) h h
Coil length (m) 10× h 10× h

Angular coordinate of the midpoint of the conductor (rad) 0 π

Radius (m) 0.5 0.5Energies 2018, 11, x FOR PEER REVIEW  16 of 22 
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When the two coil radii are the same, Equation (38) of [18] cannot be used because the coils are
approximated as two overlapping solenoids when using this equation, which leads to calculation
program error. It can be seen from Figure 10 that the results of Equation (21) of this paper and FEM are
basically the same, and the Equation (24) of [20] is only applicable to the case where the pitch length (h)
is large. It is worth noting that the numerical integration of Equation (21) in this comparison converges
slowly, which is determined by the intrinsic properties of the modified Bessel functions (Iλ(va) and
Kλ(vρ)).

In the fourth comparison, b = 0 and the coils remain aligned at the ends. The pitch-length of
coil-2 is twice that of coil-1, as specified in Table 5. The mutual inductances are shown in Figure 11, on
varying h.

Table 5. Geometric parameters of the coils in Figure 2 (4th comparison).

Parameters Coil-1 Coil-2

Number of turns 10 5
Pitch length (m) h 2h
Coil length (m) 10× h 5× 2h

Angular coordinate of the midpoint of the conductor (rad) 0 π
Radius (m) 0.4 0.5
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In the case of unequal pitch lengths, the expressions related to the angular coordinates in Equation
(24) of [20] are eliminated. When h is large and the angular coordinates of the midpoint of the
conductors are 0 (coil-1) and π (coil-2), as shown in Table 5, the result of Equation (24) in [20] is similar
to those obtained from Equation (21) of this paper and the FEM. However, if coil-2 is rotated by a
certain angle around the z-axis, different from Figure 9, the result of Equation (24) in [20] will not
change with θ. The general applicability of this formula is lesser than Equation (21) of this paper.
Equation (38) of [13] is valid, only when h is small.

Finally, we consider filaments with different heights. One end of each coil is aligned at plane,
z = −6.29/2, and b = 5× h− 6.29/2. The other geometric parameters are listed in Table 6. The pitch-
length (h) dependence of the mutual inductance is presented in Figure 12.

Table 6. Geometric parameters of the coils in Figure 2 (5th comparison).

Parameters Coil-1 Coil-2

Number of turns 10 10
Pitch length (m) 0.629 h
Coil length (m) 6.29 10× h

Angular coordinate of the midpoint of the conductor (rad) 0 0
Radius (m) 0.4 0.5
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When the heights of the coils are different, Equation (24) of [20] cannot be used. From the other
results, it can be observed that Equation (21) of this paper is in good agreement with the FEM results,
and Equation (38) of [13] is valid, only when h is small. The curve of Equation (21) of this paper is not
smooth, which is an interesting phenomenon. This is because the helical conductors approach and
move away, in turn, from each other, as coil-2 is lengthened. The validity of Equation (21) of this paper
is verified from the above five comparisons, demonstrating that this equation is suitable for the mutual
inductance calculation of finite-length coaxial helical filaments for any geometrical parameter.

6.2. Comparison with Respect to Finite-Length Coaxial Helical Tape Coils and the Effect of the Inverse Mellin
Transform

The geometric parameters of the coils in Figure 3 are listed in Table 7, for comparison between
Equation (35) of this paper, Equation (41) of [20], and the FEM. The ends of the coils are aligned, and
the angles related to the width of the tape are equal (α1 = α2 = α). The tape-width (α) dependence of
the mutual inductance is presented in Figure 13. Similar to the FEM model in Section 6.1, the radial
thickness of the coil model for the tape coils is 10 mm, and the radial mid-points of the model are
located on the tape conductors, which are treated by analytical calculations. Moreover, as shown in
Figure 14, the terminal leads are connected to the ends of the coil center lines.

Table 7. Geometric parameters of the coils in Figure 3 (6th comparison).

Parameters Coil-1 Coil-2

Number of turns 10 10
Pitch length (m) 0.629 0.629
Coil length (m) 6.29 6.29

Angular coordinate of the midpoint of the center lines (rad) 0 0
Radius (m) 0.4 0.5
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Figure 14. Tape-coil FEM model.

From Figure 13, it can be observed that Equation (35) of this paper is in good agreement with the
FEM; however, there are still certain deviations between Equation (41) of [20] and the above-mentioned
two methods. It is worth noting that, when α approaches zero, the calculation result should approach
the mutual inductance (14.82 µH) of the filaments, with h = 0.629 m, in Figure 8. However, Equation
(41) in [20] does not exhibit this property. In addition, when the mutual inductance of the helical
tape coils was derived by integrating the rotation angle of the expression for the mutual inductance
of helical filaments, the applicability of the latter Equation (21) to the coil’s geometric parameters
was inherited by the former Equation (35); therefore, from the comparisons in Section 6.1, we can see
that Equation (35) of this paper has the most general applicability for different geometric parameters,
similar to Equation (21).

For twisted pairs of tape conductors which are common in practice, let both coils of Figure 3
have the same radius and the ends aligned, the angles related to the width of the wires are equal to π

2
(α1 = α2 = π

2 ). All the geometric parameters are shown in Table 8. Similar to the third comparison
in 6.1, the angular coordinates (θ) of the midpoints of the centerlines are 0 and π, respectively, then
the coils are closely wound together. The pitch-length (h) dependence of the mutual inductance are
presented in Figure 15.

Table 8. Geometric parameters of the coils in Figure 3 (7th comparison).

Parameters Coil-1 Coil-2

Number of turns 10 10
Pitch length (m) h h
Coil length (m) 10× h 10× h

Angular coordinate of the midpoint of the center lines (rad) 0 π
Radius (m) 0.5 0.5
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In order to demonstrate the characteristics of the series obtained by inverse Mellin transform,
Table 10 gives the calculation results and time consumption of Equations (39) and (48) at some typical
points in Figure 16. Among them, the “AccuracyGoal” of the numerical integration was set to 10 in
Mathematica, and the series terms selected for sums are: only the first term, the 3 first terms, the 5
first terms and the 10 first terms, all the mutual inductance results were rounded to 10 significant
figures. The computer running the analytical calculations has an Intel® Core™ i5-5257U processor
with 1866-MHz DDR3 memory (MacBook Pro, Apple Inc., Cupertino, California, U.S.). From Table 10,
we can see that the series in Equation (48) only needs to take the 10 first terms to achieve the same as
the first 9 or 10 digits of the numerical integration result, and when the h is large, only 3 terms of the
series are required to provide a number which is consistent with the first 10 significant digits of the
numerical integration result. It is worth noting that, in most cases, only the first term of the series can
lead to a result which fulfills the accuracy requirements of the practical engineering application. The
reason why Equation (48) has such a characteristic is that this equation is an asymptotic series with
extremely fast convergence. In aspects of time consumption, although the numerical integration has a
very high calculation speed (about 200 ms), the series with the same accuracy is faster (about 5 ms)
owing to the intrinsic property of itself. Compared to the first two analytical calculation methods, as
shown in Table 11, FEM is extremely time consuming, especially when the coil length is long. The FEM
was running on a workstation configured as an Intel® Xeon® Silver 4110 processor and 2666-MHz
DDR4 memory (Precision 7820, Dell Inc., Round Rock, Texas, U.S.), however, the solution time was
greater than 25 h and computing resources were considerably occupied.

Table 10. Pitch length (h) dependence of the time consumption and calculation result between methods
of integral and series with different partial sum of the terms.

Pitch Length h (m) 0.223 0.315 0.445 0.629 0.888

Equation (39) of this paper Time (ms) 212.6 222.2 217.0 224.6 220.7
Value (µH) 23.87046728 18.47706415 14.61415102 12.25892005 11.43827601

Equation (48) of this paper
(n = 1)

Time (ms) 4.104 4.359 5.733 5.172 4.369
Value (µH) 23.88430910 18.47956070 14.61459156 12.25899553 11.43828841

Equation (48) of this paper
(n = 3)

Time (ms) 5.271 4.710 5.854 5.639 4.213
Value (µH) 23.87051615 18.47706641 14.61415112 12.25892005 11.43827601

Equation (48) of this paper
(n = 5)

Time (ms) 4.704 4.654 5.397 4.603 5.450
Value (µH) 23.87046768 18.47706416 14.61415102 12.25892005 11.43827601

Equation (48) of this paper
(n = 10)

Time (ms) 4.977 4.875 6.529 5.025 4.745
Value (µH) 23.87046729 18.47706416 14.61415102 12.25892005 11.43827601

Table 11. Pitch length (h) dependence of the time consumption of FEM method.

h (m) 0.223 0.315 0.445 0.629 0.888

FEM (h) 1.286 2.588 3.965 7.256 25.56

7. Conclusion

Unlike an ordinary circular coil, a helical coil has arbitrary pitch length. The current in its
conductor has components in both the angular and z-axis directions, in a cylindrical coordinate
system. In this paper, the actual current direction in helical coils is considered. The mutual inductance
of finite-length coaxial filaments was obtained, and the mutual inductance calculation was then
generalized for coaxial tape conductors. These expressions were formulated as a series of a single
integral of modified Bessel functions, using the series expansion of the reciprocal distance. As there is
no approximate processing in the derivation, it is better than the other analytical calculation methods
because the expressions presented in this paper are applicable to any corresponding geometric
parameters. The direct evaluation of the expressions in this paper is less time-consuming, in
software such as Mathematica, which is considerably advantageous compared to FEM. In the case of
closely-wound tape conductors, in particular, the series-form expressions of the mutual inductance
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obtained by inverse Mellin transform can be calculated more rapidly. It was also confirmed that the
results obtained in this paper are in good agreement with those obtained by other analytical calculation
methods and FEM. The mutual inductance expressions obtained in this paper can be applied in various
fields related to helical coils. More generally, the theoretical derivation work in this paper provides
valuable tools as a starting point for the analysis of the magnetic field and inductance of helical
conductors with other cross-sectional shapes.
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