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Abstract: Wind turbine power upgrades have recently become a debated topic in wind energy
research. Their assessment poses some challenges and calls for devoted techniques: some reasons are
the stochastic nature of the wind and the multivariate dependency of wind turbine power. In this
work, two test cases were studied. The former is the yaw management optimization on a 2 MW wind
turbine; the latter is a comprehensive control upgrade (pitch, yaw, and cut-out) for 850 kW wind
turbines. The upgrade impact was estimated by analyzing the difference between the post-upgrade
power and a data-driven simulation of the power if the upgrade did not take place. Therefore,
a reliable model for the pre-upgrade power of the wind turbines of interest was needed and, in this
work, a principal component regression was employed. The yaw control optimization was shown
to provide a 1.3% of production improvement and the control re-powering provided 2.5%. Another
qualifying point was that, for the 850 kW wind turbine re-powering, the data quality was sufficient for
an upgrade estimate based on power curve analysis and a good agreement with the model result was
obtained. Summarizing, evidence of the profitability of wind turbine power upgrades was collected
and data-driven methods were elaborated for power upgrade assessment and, in general, for wind
turbine performance control and monitoring.
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1. Introduction

The wind capacity worldwide is impressively growing and furthermore many multi-megawatt
wind turbines have been operating for years. The production optimization therefore has two main
directions as regards each single wind turbine: On the one side, diminishing the unavailability time
through condition-based maintenance strategies. For example, it is estimated that the unavailability
time of a modern wind turbine is currently of the order of 3% [1] and can further diminish. On the other
side, the technology update of wind turbines in their operational lifetime has been flourishing in the
latest years and has been producing non-negligible improvements of wind kinetic energy conversion
efficiency: the assessment and the methodologies for studying these wind turbine power upgrades
constitute the topic of the present work.

For completeness, it should be said that production optimization can be conceived also at the
wind farm level and there is very interesting scientific research devoted to layout optimization [2–6],
wind farm control [7–9], and yaw active control for wake interactions management [10–14].

There are basically two types of wind turbine power upgrades that are currently employed in
operating wind turbines: aerodynamic and control upgrades, or possibly a combination of the two.
Examples of aerodynamic retrofitting of the blades are installation of vortex generator, passive flow
control devices, Gurney flaps and so on [15–23]. Control upgrades typically deal with pitch [24,25],
rotor revolutions per minute [26], and yaw management. The increase of production can be achieved
also by modifying the wind speed cut-out management, as discussed, for example, in [27–29].
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It likely happens that wind farm manufacturers and wind farm owners cooperate as regards to
the technology improvement of operating wind turbines with forms of profit sharing of wind turbine
power upgrades. This fact has considerably stimulated the high-level analysis of operational data in
the industry and the collaboration with academia. Actually, there are several critical points about the
assessment of wind turbine power upgrades:

• The wind source is stochastic and it does not make sense to compare the cumulative production
before and after a power upgrade.

• It is difficult to account for the multiple dependency of wind turbine power on climate and
operating conditions.

• It can be difficult to reliably know the wind conditions on site, in general because nacelle
anemometers are mounted behind the rotors of the wind turbines and in particular because
cup anemometers might not provide adequate measurement precision.

On these grounds, the power curve study might be a reliable tool for assessing power upgrades
only when considerably long datasets are available, in order to avoid the effect of seasonal biases due
to the variation of climate conditions on site. If, as commonly happens, wind farm practitioners aim
at obtaining an estimate after just few months of upgrade operation, more complex and powerful
methods are needed. A certain amount of literature has been flourishing about this problem and some
interesting methods have recently been proposed. The common ground is the following idea:

• After the upgrade, of course, the power production is known if operation data are available.
• The production improvement is the difference between the measured production post-upgrade

and a simulation of how much the wind turbine would have produced, in the same conditions,
if the upgrade did not take place.

• The simulation must be achieved with a model based on pre-upgrade.

Chronologically, the first relevant study is [24]: in that work, a modification of the Gaussian kernel
regression method is proposed to account for the multivariate dependency of the power of the wind
turbine. Two upgrade test cases are studied: one is aerodynamic (vortex generator installation) and
is studied through the analysis of operation data and the other regards the control of the pitch and
is studied artificially because the pitch behavior is simulated and data are synthesized accordingly.
In [30], another critical point of this kind of problems is discussed in depth: the statistical significance
and the dataset dimensionality. The proposed solution is the use of time-resolved operation data,
rather than Supervisory Control And Data Acquisition (SCADA) data. The former kind of data actually
has sampling time of the order of the second, while the latter kind of data has sampling time of some
minutes (typically, ten). In [30], it is shown that, using the time-resolved data, it is possible to obtain
results that are similar to the ones from the Kernel-plus of [24], but with a much simpler method: it is
the so-called power–power or side-by-side and it is based on the study of the power difference between
the target (upgraded) wind turbine and a reference wind turbine, before and after the upgrade of the
wind turbine of interest. In [25], three test cases of wind turbine power curve upgrades are considered:
pitch angle optimization near the cut-in, vortex generators and passive flow control devices installation,
cut-out management optimization. The first two test cases are studied by modeling the pre-upgrade
power of the wind turbines of interest using an Artificial Neural Network (ANN) model having as
input some operation variables of the nearby wind turbines. A control upgrade, dealing with the rotor
revolutions per minute optimization in order to reach the most appropriate induction level, is studied
in [26]: in that work, the power-power method is generalized by modeling the power of the upgraded
wind turbine through a multivariate linear, employing as input variables some operation parameters
of the nearby wind turbines. For other issues regarding this topic, see also [31–33].

On these grounds, the objective of the present work was furnishing further contributions to the
topic of wind turbine power curve upgrades assessment. For doing this, two test cases were considered:

• The first test case deals with the yaw management optimization on a 2 MW wind turbine. There is
a considerable literature about the potentiality of wind turbine efficiency improvement through
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the advances in yaw management (see, for example, [34]), but, at this stage, the available studies
mainly deal with simulation estimates (for example, recently, in [35], a yaw control strategy based
on reinforced learning is designed). To the best of the authors knowledge, the study in this work
is the first in the literature that is based on wind turbines in operation.

• The second test case deals with a control upgrade on a 850 kW wind turbine. Since the technology
of this kind of device is gradually becoming obsolete, the re-powering on this wind turbine
has been more impacting and has dealt with pitch, yaw, and cut-out management optimization.
An interesting point about this upgrade is that the measuring chain was improved, through the
installation of a sonic anemometer. Furthermore, the wind farm manufacturer arranged a testing
period of the upgrade for some months, by alternating half-hour intervals characterized by the
operation with the pre- and post-upgrade control logic. Therefore, it was possible to compare the
two power curves quite reliably, because the wind speed data have good quality and because the
data were collected in the same period and seasonal biases were therefore avoidable. This gives
the possibility of verifying the model-based estimate of the production improvement through
another, independent, approach.

The two above test cases were studied with particular attention to the methodology. The selected
model for the power of the wind turbines of interest was a multivariate linear and it was decided that
several operation parameters of the nearby wind turbines could in principle be input variables for the
model. This can be considered a generalization of the concept of rotor-equivalent wind speed [36]:
the conditions on site can be described, for example, through the blade pitches, the rotor revolutions per
minute, and the power output of the wind turbines constituting the wind farm. As discussed in detail
throughout the manuscript, remarkable collinearity between the possible covariates of the models was
observed and for this reason a principal component regression [37] was employed, differently with
respect, for example, to [33], where a stepwise regression algorithm [38] was used for input variables
selection for an ordinary least squares regression. This approach is general and does not depend on
the test case: therefore, it can be considered a contribution to the methodologies for wind turbine
performance control and monitoring.

As regards the selected test cases, the results of this work are that the yaw control optimization
on the 2 MW wind turbine provided a production improvement of 1.3% of the AEP; and the 850 kW
wind turbine re-powering provided an improvement of 2.5% of the AEP.

The structure of the manuscript is as follows. In Section 2, the test cases and the datasets are
described. Section 3 is devoted to the methods: the employed model is discussed in general and
implemented in particular for the two selected test cases. In Section 4, the results for the production
improvement are collected and discussed. Section 5 is devoted to the conclusions and to some further
directions of the present work.

2. The Test Cases and the Datasets

One wind turbine for each test case wind farm underwent the corresponding upgrade (WTG02 in
Wind Farm 1 and WTG022 in Wind Farm 2). Actually, the wind farm owner has been adopting the
following approach as regards power upgrades: selecting some test wind turbines and, after some
months of operation, assessing the impact of the upgrade on the grounds of studies such as the present
one. Subsequently, the wind farm owner decides if it is worth extending the upgrade to the other wind
turbines in the wind farm.

The employed datasets were obtained from the SCADA collected databases of the wind turbines.
Their quality was checked as follows:

• Data were filtered on the request that all wind turbines in the wind farm were productive.
This was done using the appropriate operation time counter available in the dataset.

• The quality of the anemometer data was crosschecked overall for each wind turbine through
the analysis of the average power curve against the theoretical one and no relevant anomalies
were detected.



Energies 2019, 12, 1503 4 of 20

• The quality of the data for each time step for each wind turbine was crosschecked by comparing
the actual power production for the measured nacelle wind speed against the theoretical power
curve. If a deviation larger than 30% was detected, the measurement was rejected.

2.1. Test Case 1: Yaw Control Optimization, 2 MW Wind Turbine

The wind farm of interest is composed of six horizontal-axis three-bladed wind turbines having
2 MW of rated power each and the rotor diameter is 92.5 m. The cut-in is 3.5 m/s and the cut-out is
25 m/s. The nominal wind speed is 14.5 m/s.

The layout of the wind farm is reported in Figure 1 and the wind turbine of interest (WTG02) is
indicated in red. The wind farm is sited onshore in a gentle terrain in southern Italy. The inter-turbine
distances go from the order of 7 rotor diameters (between nearest neighbors) up to the order of
19 rotor diameters.

Figure 1. The layout of Wind Farm 1.

The data available were organized in two datasets as follows:

• The first dataset is denoted as Dbef and contains the data collected from 1 January 2017 to
20 August 2018. It is a period prior to the yaw control upgrade on turbine WTG02. It is composed
of 35,971 data.

• The second dataset is denoted as Daft and contains the data collected from 1 September 2018 to 1
January 2019. It is a period after the control optimization on turbine WTG02. It is composed of
9288 data.

In Figure 2, the normalized autocovariance of the power output of WTG02 is reported as a
function of the lag (up to 20) for the Dbef dataset. This was done to crosscheck the assumption that
each measurement can be considered independent with respect to the others.

The wind direction roses, measured at WTG02, during Dbef and Daft are reported in Figure 3 and
it arises that the distributions are very similar before and after the upgrade of the WTG02. Therefore,
it can be argued that, as far as can be analyzed from the data available, the model formulation and use
are not biased by differences in climatology. This is supported also by the fact that the ratio between
the average nacelle wind speeds at WTG02 during Dbef and Daft is 1.04.
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Figure 2. The normalized autocovariance of WTG02 power output (Dbef dataset) with maximum lag of 20.

Figure 3. The wind direction rose for Wind Farm 1 during Dbef and Daft.

The SCADA collected data have ten minutes of sampling time. The available validated
measurements are:

• nacelle wind speed;
• nacelle wind direction;
• nacelle position;
• temperature outside the nacelle;
• active power;
• rotor rotational speed;
• generator rotational speed; and
• reference blade pitch.

The effect of the control upgrade was an improvement of the yaw management, especially for low
and moderate wind intensities. This resulted in a decrease of the occurrence of high yaw misalignment.
Qualitatively, this was assessed as follows: the yaw misalignment of WTG02 was computed as the
difference between the wind direction measured at the nacelle and the position of the nacelle itself.
As a pre-requisite, data were filtered on the request that WTG02 was in production. The plot of the
yaw misalignment (in degrees) against the power is reported in Figure 4 for the datasets Dbef and Daft.
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Figure 4. WTG02 yaw angle misalignment as a function of the power, for datasets Dbef and Daft.

2.2. Test Case 2: Control Re-Powering, 850 kW Wind Turbine

The wind farm of interest is composed of twenty-three horizontal-axis three-bladed wind turbines
having 850 kW of rated power each and the rotor diameter is 58 m. The cut-in is 3 m/s and the cut-out
is 20 m/s. The nominal wind speed is 12.5 m/s.

The layout of the wind farm is reported in Figure 5 and the wind turbine of interest (WTG022) is
indicated in red. The wind farm is sited onshore in a gentle terrain in northern France. The inter-turbine
distances go from the order of four rotor diameters (between nearest neighbors) to the order of 100
rotor diameters. The wind direction rose on-site is quite uniform.

Figure 5. The layout of Wind Farm 2.

The data available were organized into two datasets as follows:
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• The first dataset is denoted as Dbef and contains the data collected from 1 February 2018 to
20 August 2018. It is a period prior to the control upgrade on turbine WTG022. It is composed of
15,353 data.

• The second dataset is denoted as Daft and contains the data collected from 24 August 2018 to
1 April 2019. It is a period after the control optimization on turbine WTG022. In this period,
half-hour intervals of operation according to the pre- and post-upgrade logic were alternated.
The former subset is indicated as Dnon−up

aft and is composed of 4245 data. The latter subset
is indicated as Dup

aft and is composed of 4265 data. Only Dup
aft is employed for the model-based

estimate of the upgrade, while both subsets are employed for the power curve study in Section 4.2.

In Figure 6, the normalized autocovariance of the power output of WTG022 is reported as a
function of a lag up to 20, for the Dbef dataset. This was done to crosscheck the assumption that each
measurement can be considered independent with respect to the others.
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Figure 6. The normalized autocovariance of WTG022 power output (Dbef dataset) with maximum lag of 20.

The wind direction roses, measured at WTG022, during Dbef and Daft are reported in Figure 7 and
it arises that the distributions are similar before and after the upgrade of the WTG022. Therefore, it can
be argued that, as far as can be analyzed from the data available, the model formulation and use are
not remarkably biased by climatology effects. This is supported also by the fact that the ratio between
the average nacelle wind speeds at WTG02 during Dbef and Daft is 0.96.

The SCADA collected data have ten minutes of sampling time. The available validated
measurements are:

• nacelle wind speed;
• temperature outside the nacelle; and
• active power.

It should be noticed that, after the upgrade intervention, WTG022 has a sonic anemometer at the
nacelle. As discussed in detail in Section 4.2, the operation of WTG022 during Daft was as follows:
half-hour intervals of operation according to the pre- and post-upgrade control logic were alternated.
Therefore, to assess the upgrade using the techniques proposed in Section 3, only the data in Daft
characterized by operation according to the upgraded control were selected. Instead, for the power
curve study of Section 4.2, all data in Daft were used, after dividing them according to the pre or post
upgrade behavior.
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Figure 7. The wind direction rose for Wind Farm 1 during Dbef and Daft.

3. The Methods

This section presents the formulating of a reliable model for the pre-upgrade power of the wind
turbines of interest (WTG02 in Wind Farm 1 and WTG022 in Wind Farm 2). Section 4 is devoted
in detail to the use of these models for the performance improvement estimate. For the moment,
it is important to recall that a good model for the power of the wind turbines was needed because
it was trained with pre-upgrade data and validated against a pre-upgrade dataset; the upgrade was
quantified by simulating through the adopted model how the post-upgrade power would have been if
the upgrade did not take place. In other words, the performance improvement was elaborated from
how the residuals between measurements and model estimates changed after the upgrade with respect
to before.

As anticipated in Section 1, the critical point was selecting the model type and the input variables.
The discussion in [33], in relation to the work in [25], indicates that a linear model can be adequate for
this objective. In other words, the general sense is that it is possible to approximate reliably the power
of a wind turbine as a linear function of operation variables measured at the nearby wind turbines
in the farm. This makes sense, not only by a statistical point of view, but also by the point of view of
wind energy practice: actually, since a wind turbine acts as a filter to the wind fluctuations, the blade
pitch, the rotor revolutions per minute and the active power of a wind turbine can likely be used for
accounting for the on-site wind conditions [36].

The possible variables fed as input to the model are those indicated in Section 2.1 for Test Case 1
and those indicated in Section 2.2 for Test Case 2, for all the wind turbines in the wind farms except
the upgraded ones. The decision of excluding the variables of the upgraded wind turbines as input
variables to the model was motivated by the fact that the wind sensors might change after the upgrade
(as in Test Case 2, see Section 2.2), or the upgrade might affect the measuring chain of the wind
conditions (as discussed in [25,33]), or in general the relation between the power and the control (pitch,
rotor revolutions per minute, etc) might change as a consequence of the upgrade. Therefore, since
for the employed method one must assume that the input variables to the model are “probes” of
the external conditions whose behavior does not change after the upgrade of the wind turbine of
interest, it is straightforward that the variables of the upgraded wind turbine can only be the target
(i.e., the output) of the model.

Similar to Astolfi et al. [33], a linear model was considered adequate for the objectives of this work.
The critical point is the input variables selection: Tables 1 and 2 indicate that the possible covariates of
the model can be highly correlated and this would lead to a non-optimal standard linear regression.
On these grounds, Principal Component Regression (PCR) [39] was selected for this study. The use of
this method for control and monitoring purposes in wind energy has been growing [40]. The procedure
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is as follows. Let Yn,1 = (yi, . . . , yn)T be the vector of measured output and Xn,p = (xi, . . . , xn)T be
the matrix of covariates. n is the number of observations and p is the number of covariates. In the
following, it is assumed that X is normalized such that each covariate has zero mean.

The standard least squares regression poses that

Y = Xβ + ε, (1)

where β is the vector of regression coefficients that must be estimated from the data and ε is a vector
of random errors. The ordinary least squares estimate of β is given by

βols =
(

XTX
)−1

XTY (2)

The principal component estimate of β is obtained as follows. The principal component
transformation of the covariates matrix can easily be expressed in terms of the singular value matrix
factorization. Therefore, let

X = U∆V T (3)

be the singular value decomposition of X. This means that the columns of U and V are orthonormal sets
of vectors denoting the left and right singular vectors of X and ∆ is a diagonal matrix, whose elements
are the singular values of X. This allows decomposing XXT as:

XXT = VΛV T , (4)

where Λ = diag
(
λ1, . . . , λp

)
and λ1 ≥ · · · ≥ λp ≥ 0.

XVi is the ith principal component and Vi is the ith loading corresponding to the ith principal
value λi. Therefore, W = XV can be viewed as a new covariates data matrix and the principal
component regression basically is an ordinary least squares regression between Y and W . A powerful
aspect of the principal component regression is that the decomposition in Equation (4) indicates a
sort of regularization scheme: namely, the matrix W can be truncated including a desired number of
principal components. This regularization addresses the problem of multicollinearity of covariates,
because, when two or more covariates are highly correlated, X tends to lose its full rank and this
implies that XXT has some eigenvalues tending to 0: excluding the principal components associated
to the smallest eigenvalues λi means regularizing the covariates matrix in order that it has full rank.

Finally, the PCR estimate of β is given as

βPCR = V
(

W TW
)−1

W TY , (5)

where it is assumed that the matrices can be truncated to a desired number of columns, i.e.,
principal components.

The selection of an adequate number of principal components for the regression is performed
through K-fold cross-validation [41]. Dbef is divided randomly in two fractions: (K − 1)/K of the
data are used for training and the remaining 1/K are used for validation. K was selected to be 10 for
this study. The training data are employed for estimating β through principal component regression
(Equation (5)) and the model estimate of the validation data is given by

Ŷvalid = XvalidβPCR (6)

For each fold selection, the root mean square error is used as a metric for the goodness of the
regression: it is given in general by
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RMSE =

√√√√ 1
nvalid

nvalid

∑
i=1

(ŷi − yi)
2, (7)

where nvalid is the number of rows of Xvalid. The RMSE values are subsequently averaged on the folds
selection and, therefore, for a given number j of principal components included in the regression,
one can obtain a unique metric RMSEj for estimating the quality of the regression. The final selection
of the number of principal components to be kept is performed as follows: given RMSEj, the error
estimate for the model with j principal components, if RMSEj − RMSEj+1 < 10%, k is selected.
It should be noticed that, as discussed in Section 4, the results for both test cases do not depend
sensibly on this choice, as long as a certain minimum number of principal components are included in
the model.

A test can be formulated for inquiring the statistical significance of the fact the performance of the
wind turbine of interest has changed after the upgrade. One can pose that the output can be modeled
through a linear model before and after the upgrade and inquire to whether there has been a structural
change, i.e. if the linear models before and after the upgrade are different. Suppose therefore that{

ybe f = Xbe f βbe f + εbe f

ya f t = Xa f tβa f t + εa f t,
(8)

where X is the matrix of explanatory variables, β is the vector of regression coefficients and ε are
vectors of random errors.

The hypothesis test about the structural change of the regression regards the null hypothesis:

H0 : βbe f = βa f t. (9)

This is known as the Chow test and is based on the fact that, indicated with RSS the residuals
sum of squares between measurements and model estimates, the quantity

Fchow =
RSSbe f − RSSa f t

RSSa f t

N − 2K− 2
K

(10)

is distributed as F(K, N − 2K − 2), where K is the number of covariates and N is the number of
data points.

Practically, the Chow test is performed as follows. The covariates matrices and the output vectors
before and after the upgrade are vertically juxtaposed to form a total covariates matrix XTOT and a
total output vector YTOT . The test is performed with the assumption that the break point where the
structural change can happen occurs when the data before the upgrade end and the data after the
upgrade start.

3.1. Test Case 1

In Table 2, some sample results are reported for supporting the selection of the principal
component regression: the correlation coefficients between the rotor rotational speeds of WTG01
and WTG03–WTG06 are reported. These covariates were selected because the rotor basically acts as
a filter, smoothing the fluctuations caused by the turbulence, and it is therefore likely that in a wind
farm the rotor speeds of nearby wind turbines are highly collinear.
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Table 1. Matrix of model input variables correlation coefficients.

WTG 01 03 04 05 06

01 1 0.82 0.90 0.89 0.79
03 0.82 1 0.86 0.80 0.94
04 0.90 0.86 1 0.91 0.85
05 0.89 0.80 0.91 1 0.80
06 0.79 0.94 0.85 0.80 1

The structure of the model for the test case of interest was selected as follows. The output Y is
the power of WTG02; the covariates matrix X was selected to be composed of power, rotor rotational
speed, generator rotational speed, blade pitches, nacelle position and ambient temperature at each
wind turbine of the wind farm, except WTG02. Therefore, if one considers the filtered Dbef dataset,
Y is a vector of 25,044 data and X is a matrix having 24,055 rows and 30 columns (six variables for five
wind turbines).

The results for the model K-fold cross-validation are reported in Figure 8 and, with the criterion
exposed in Section 3, five principal components were selected. It should be noticed that a sensitivity
analysis was carried and it was observed that the results do not change substantially by including
more than five principal components.

1 2 3 4 5 6 7 8 9 10

Number of principal components

80

100

120

140

160

180

200

220

240

260

280

R
M

S
E

Figure 8. Average RMSE as a function of the number of principal components included in
the regression.

As regards the Chow Test, the matrix XTOT is composed of 31,392 rows (25,044 before upgrade and
6348 after upgrade) and 30 columns, and the vector YTOT is composed of 31392 elements. The break
point position for the Chow test is 25,044 and the computed p-value is lower than 10−32. This clearly
indicates that the linear relation between covariates matrix and the target has a structural change after
the upgrade of WTG02.

3.2. Test Case 2

In Table 2, the correlation coefficients between some sample covariates are reported. The powers
of WTG018–WTG021 and WTG023 was selected for reporting in Table 2: these covariates was selected
for readability of the table and mostly because those wind turbines are the nearest to the target
WTG022 and therefore those covariates are likely to be selected for a standard least squares regression.
The remarkably high values reported in Table 2 support the selection of the principal component
regression as model type.
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Table 2. Matrix of model input variables correlation coefficients.

WTG 018 019 020 021 023

018 1 0.94 0.93 0.92 0.87
019 0.94 1 0.93 0.93 0.90
020 0.93 0.93 1 0.95 0.90
021 0.92 0.93 0.95 1 0.93
023 0.97 0.90 0.90 0.93 1

The structure of the model for the test case of interest was selected as follows. The output Y is the
power of WTG022. The covariates matrix X is composed of the available validated measurements:
nacelle wind speed, power and ambient temperature at each wind turbine of the wind farm, except
WTG022. Therefore, if one considers the filtered Dbef dataset, Y is a vector of 15,353 data and X is a
matrix having 15,353 rows and 66 columns (three variables for 22 wind turbines).

The results for the model K-fold cross-validation are reported in Figure 9 and, through the criterion
exposed in Section 3, the number of selected principal components results to be six. It should be
noticed that the results do not change significantly by including more than six principal components
in the model.
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Figure 9. Average RMSE as a function of the number of principal components included in
the regression.

As regards the Chow Test, the matrix XTOT is composed of 19,618 rows (15,353 before upgrade
and 4265 after upgrade) and 66 columns, the vector YTOT is composed of 19,618 elements. The break
point position for the Chow test is 15,353 and the computed p-value is lower than 10−32. This clearly
indicates that the linear relation between covariates matrix and the target has a structural change after
the upgrade of WTG022.

4. The Results

The procedure for assessing the upgrade Was based on the following idea. After an upgrade
installation, through the SCADA collected data, it is possible to know the power production of the
upgraded wind turbine. To estimate the impact of the upgrade, one should know how much the wind
turbine would have produced if the upgrade did not take place. The most reliable and practical way
to obtain this kind of estimate is through a data-driven model, based on the pre-upgrade datasets.
A reliable model was achieved (Section 3) and it was used for the upgrade assessment presented below.

The procedure is as follows. The datasets available were organized in this way:
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• Dbef was randomly divided in two subsets: D0 ( 2
3 of the data) and D1 ( 1

3 of the data). D0 was used
for training the model and constructing the weight matrix W and D1, the pre-upgrade dataset,
was employed for validating the model.

• Daft, the post-upgrade dataset, was employed for estimating the power upgrade. For notation
consistency, it is also referred to equivalently as D2.

Notice that, for Test Case 2, the dataset Dup
aft was employed as D2.

The residuals between the measurement y and the simulation ŷ, for the datasets D1 and D2,
were studied. The focus was in how the residuals varied after the upgrade. Therefore, consider
Equation (11) with i = 1, 2.

R(xi) = y(xi)− ŷ(xi). (11)

A Student’s t-test was performed to inquire if there was any statistically significant change in the
turbine output after the upgrade. The t statistic is computed as

t =
R̄2 − R̄1

σR

√
1

N1
+ 1

N2

. (12)

In Equation (12), N1 and N2 are the numbers of data in, respectively, D1 and D2; R̄1 and R̄2 are
the average residuals in datasets D1 and D2 respectively; and σR is given in Equation (13):

σR =

√
(N1 − 1) S2

2 + (N2 − 1) S2
2

N1 + N2 − 2
, (13)

where S1 and S2 are the standard deviations of the residuals in datasets D1 and D2, respectively.
As regards the upgrade estimate, for i = 1, 2, one computes

∆i = 100 ∗ ∑x∈Di (y(x)− ŷ(x))
∑x∈Di y(x)

(14)

and
δi =

1
Ni

∑
x∈Di

y(xi)− ŷ(xi), (15)

where Ni is the number of data points in the datasets D1 and D2, respectively. Notice that, if the model
is reliable, one should have that δ1 ' 0 and ∆1 ' 0, differently with what should happen as regards δ2

and ∆2 if the upgrade is really effective. Finally, the quantity

∆ = ∆2 − ∆1 (16)

can be taken a percentage estimate of the production improvement. In the case the datasets D1 and D2
are characterized by considerably different y distributions, it might be appropriate to take this into
account by renormalizing Equation (16): a reasonable correction factor can be the ratio between the y
averages in datasets D2 and D1.

The above procedure can be repeated several times to synthesize experiment repetition: at each
run of the model, a different D0 (training set) and therefore D1 (pre-upgrade validation dataset) can be
selected. Notice that this basically corresponds to repeating the K-fold cross-validation. The difference
with respect to the procedure described in Section 3 is that in this case the model structure was always
the same and it was exactly the one selected on the grounds of the discussion in Section 3. The way the
pre-upgrade data were divided was also changed with respect to Section 3. The selection of D0 and D1
actually corresponded to K = 33.3̄. This was done because it agrees with most of the rule of thumbs
for data partition for this kind of tasks and because, with this selection, the dimensions of D1 and D2
(the post-upgrade dataset) have the same order of magnitude.
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Therefore, the ∆ estimate varied at each run of the model, because the training data changed
and, therefore ∆1 and ∆2 changed. In principle, it could be possible to select randomly a subset of
D2 as post-upgrade simulation dataset, but in this work this choice was avoided. The reason was
that typically D2 is shorter than D0 and D1, because for practical reasons an upgrade is assessed as
soon as possible with good reliability. The above bootstrap technique therefore allowed having several
estimates of ∆ with the same data: the final estimate was always the average and it is presented below
with its standard deviation. This corresponds to the procedure of Section 3 with J repetitions: for this
part of the study, J was selected based on when the ∆ average and standard deviation became fairly
stable. It was observed that J = 30 is sufficient for this task.

4.1. Test Case 1

Since the effect of the upgrade regards especially the low-moderate wind intensity, data were
filtered on the request that the power of WTG02 is less than 1 MW. After this further filter, the number
of data was 25,044 for Dbef and 6348 for Daft.

The t-statistic (Equation (12)) was computed to be of the order of 10−10 and this indicates that the
probability that the upgrade was ineffective was correspondingly low.

Table 3 reports the results for the average (over the J model runs) ∆i and δi with i = 1, 2 (Equations
(14) and (15)). From these results, it arises that the upgrade could be detected as an average absolute
increase of 13.5 kW in the difference between WTG02 power measurements and model estimates.
Notice that the average value of the residuals for datasets D1 was extremely low (0.1 kW) and,
correspondingly, the average estimate of ∆1 (Equation (16)), i.e. the percentage error on the cumulative
production, was extremely low as well. This indicates that the model was particularly reliable as
regards the simulation of the pre-upgrade behavior of the WTG02.

In Figure 10, the plot of R(x1) and R(x2) on a sample model run is reported. The data were
averaged in power production intervals, whose amplitude was 5% of the rated. From this plot,
the effect of the upgrade can be read as an increase of the difference between the WTG02 power
measurements and the WTG02 power model estimates.

Table 3. Average absolute and percentage residuals between measurement and model estimation.

Residual δ (kW) ∆ (%)

R(x1) 0.1 0.009
R(x2) 13.5 4.1

0 100 200 300 400 500 600 700 800 900 1000

Measured power output (kW)

-40

-20

0

20

40

60

80

100

120

R
 (

k
W

)

Difference between measurement and simulation.

Figure 10. The average difference R between power measurement y and estimation ŷ (Equation (11)).
Datasets: D1 and D2. Sample run of the model.
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From the results in Table 3 and Equation (14), the average production improvement was estimated
as ∆ = 4.3%, with a standard deviation of 0.4%: in other words, with the proposed method it was
computed that WTG02, during the dataset D2, produced below 1 MW, the 4.1% more than it would have
done if the upgrade had not been adopted. A reference long-term power or wind speed distribution
can be employed to estimate how much this corresponds in terms of annual energy production and
the average result is ∆AEP = 1.3± 0.1%. This result is consistent with the test case studies in [25]: the
order of magnitude of the impact of multi-megawatt wind turbine control optimization can typically
be estimated as 1% of the AEP. It is interesting notice that, to the best of the authors knowledge, this is
the first estimate in the literature based on operation data of the impact of yaw control optimization.

4.2. Test Case 2

The t-statistic (Equation (12)) was computed to be of the order of 10−15 and this indicates that the
probability that the upgrade was ineffective was correspondingly low.

Table 4 reports the results for the average (over the J model runs) ∆i and δi with i = 1, 2
(Equations (14) and (15)). It arises that the upgrade could be detected as an average absolute increase
of 3.9 kW in the difference between WTG022 power measurements and model estimates. The average
value of the residuals for datasets D1 was very low (0.2 kW) and correspondingly, the average estimate
of ∆1 (Equation (16)), i.e. the percentage error on the cumulative production, was extremely low as
well. This indicates that the model was reliable as regards the simulation of the pre-upgrade behavior
of the WTG022.

Table 4. Average absolute and percentage residuals between measurement and model estimation.

Residual δ (kW) ∆ (%)

R(x1) 0.2 0.009
R(x2) 3.9 2.5

In Figure 11, the plot of R(x1) and R(x2) on a sample model run is reported. The data were
averaged in power production intervals, whose amplitude was 10% of the rated. From this plot,
the effect of the upgrade can be read as an increase of the difference between the WTG022 power
measurements and the WTG022 power model estimates, especially for moderately low wind intensities
and approaching rated power.
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Figure 11. The average difference R between power measurement y and estimation ŷ (Equation (11)).
Datasets: D1 and D2. Sample run of the model.
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From the results in Table 3 and Equation (14), the average production improvement was estimated
as ∆ = 2.5%, with a standard deviation of 0.2%: in other words, with the proposed method it was
computed that WTG022, during the dataset D2, produced 2.5% more than it would have done if the
upgrade had not been adopted.

Power Curve Analysis

As anticipated in Section 2, the post-upgrade operation during dataset Daft was as follows:
half-hour intervals were alternated, during which WTG022 was operating, respectively, according to
the pre- and post-upgrade control logic. This was done to assess practically in real time the effect of
the upgrade. With these data available and taking into account that, during Daft, a sonic anemometer
was collecting data at WTG022 nacelle, it was reasonable to study the power curve.

In Figure 12, the two power curves measured during Daft are reported. Data were averaged in
wind speed intervals having 0.5 m/s of amplitude. In Figure 13, the difference between these two
curves is plotted. In Figure 13, it can interestingly be observed that the upgraded operation mode
indeed lost performance around 10 m/s: the same situation was observed from the residuals presented
in Figure 11. Since this study was performed with only few months of data in Daft, it is plausible to
expect that this situation was adjusted in the following, to obtain a performance improvement along
the whole power curve.
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Figure 12. WTG022 power curve during Daft.
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The production improvement was estimated as follows: the power curve, according to the
pre-upgrade logic in Figure 12, and the power difference in Figure 13, were weighted against the
wind distribution during the whole Daft dataset. The ratio between these two quantities provided
an estimate of how much the production would have improved during Daft if the power curve was
always the improved one, with respect to the production that would have been obtained if the power
curve was always the non-improved one. The improvement computed in this way amounted to 2.3%
of the production. Even though it was computed with a different approach, it is interesting to notice
that it agreed fairly well with the estimate reported in Section 4.2.

5. Conclusions

In this study, two test cases of wind turbine power curve upgrades were analyzed: the common
ground between them is that the upgrade regards the control of the wind turbines. The difference
between the two test cases is that one wind turbine (Test Case 1) has a quite recent technology (it is a
2 MW wind turbine) and the control upgrade deals only with one aspect (the management of the yaw);
the other wind turbine under investigation (Test Case 2) belongs instead to a less recent technology
(the rated power is 850 kW) and the upgrade has consequently involved several aspects of the control
(yaw, pitch, and cut-out) and included the update of the anemometer sensors at the nacelle.

Despite being organized as a test case discussion, this study was strongly characterized by a
methodological approach. Actually, the point with the study of wind turbine power curve upgrades
is that it is difficult to assess them reliably using operation data analysis techniques such as the
power curve, because of the multivariate dependence of the power of a wind turbine on climate
conditions and working parameters. The problem of wind turbine power curve upgrades study
therefore translates into the following question: how can the power of a wind turbine be modeled
reliably? It is evident that the answer to this question can be exploited for several problems regarding
the control and monitoring of wind turbines and, in general, of complex systems. As regards wind
turbines, for example, similar approaches are employed in [42] for the study of how much the pitch
misalignment impacts on the performance.

The turning point for the present study was practically adopting the other wind turbines in the
wind farm as probes of on-site conditions. This somehow generalized the concept of rotor-equivalent
wind speed, discussed, for example, in [36]: since the wind turbine acts as a filter, some working
parameters such as active power, blade pitches, rotor or generator revolutions per minute can robustly
describe the wind farm at the micro-scale level. Therefore, the idea of this study was modeling the
power of the wind turbines of interest, according to their pre-upgrade behavior, as a linear function
of the wind and operation conditions measured at the nearby wind turbines: this can basically be
considered a generalization of the so-called power–power method, adopted, for example, in [30].
Since for the test cases considered in this work the possible covariates for a linear model displayed a
remarkable collinearity, a principal component regression was adopted.

Using this modeling technique, the impact of the upgrades could be elaborated from how the
residuals between power measurements and power model estimates vary after the upgrade with
respect to before. The results for the selected test cases are the following: the yaw control optimization
on the 2 MW wind turbine was estimated as 1.3% of the AEP; and the re-powering on the 850 kW
wind turbine was estimated as 2.5% of the AEP.

There are at least two other remarkable aspects as regards the selected test cases. To the best of
the authors knowledge, Test Case 1 is the first assessment in the literature of yaw control optimization
using operation data and the obtained results indicate that the yaw management optimization is a
promising direction for improving the power production of wind turbines. It is therefore valuable to
push forward this line of research, as recently done, for example, in [35]. As regards Test Case 2, it was
possible to obtain another estimate of the impact of the upgrade using the power curve study. Actually,
with the re-powering, the anemometer sensors were updated and a sonic anemometer was installed.
Furthermore, in the post upgrade period examined for this study, the operation of the wind turbine
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was alternated: half an hour according to the pre-upgrade logic and half an hour according to the
post-upgrade logic, and so on. The quality of the data and the fact that they were collected in the same
period (avoiding seasonal biases) allowed studying the power curve reliably and the improvement
estimate was shown to be in good agreement with the computation from the multivariate model.

There are several further directions of the present work. Currently, some test cases are at study
for which a linear model is not adequate, probably because of complex climatology conditions on site.
Therefore, it is planned to investigate nonlinear approaches for this kind of studies and to inquire
what site characteristics call for nonlinearity. An interesting development is the use of the methods
of this work for other control and monitoring issues related to wind turbine operation: for example,
monitoring the effect of blade pitches re-alignment according to the technique proposed in [43],
or monitoring the operation of the wind turbines [40]. Furthermore, a very promising direction of the
studies about wind turbine power curve upgrades is the use of time-resolved data, having sampling
time of the order of second: this kind of data have considerable potentiality for performance control
and monitoring [44], but their time scale calls for more advanced time-series analysis [45].
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