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Abstract: Reynolds-stress closure modeling is critical to Reynolds-averaged Navier-Stokes (RANS)
analysis, and it remains a challenging issue in reducing both structural and parametric inaccuracies.
This study first proposes a novel algebraic stress model named as tensorial quadratic eddy-viscosity
model (TQEVM), in which nonlinear terms improve previous model-form failure due to neglection
of nonlocal effects. Then a data-driven regression model based on a fully-connected deep neural
network is designed to determine the TQEVM coefficients. The well-trained data-driven model
using high-fidelity direct numerical simulation (DNS) data successfully learned the underlying
input-output relationships, further obtaining spatial-dependent optimal values of these coefficients.
Finally, detailed validations are made in wall-bounded flows where nonlocal effects are expected
to be significant. Comparative results indicate that TQEVM provides improvements both for the
stress-strain misalignment and stress anisotropy, which are clear advantages over linear and quadratic
eddy-viscosity models. TQEVM extends to the scope of resolution to the wall distance y+ ≈ 9 as
well as provides a realizable solution. RANS simulations with TQEVM are also carried out and
the obtained mean-flow quantities of interest agree well with DNS. This work, therefore, results
in a high-fidelity representation of Reynolds stresses and contributes to further understanding of
machine-learning-assisted turbulence modeling and regression analysis.

Keywords: turbulence modeling; nonlocal effects; machine learning

1. Introduction

There are many kinds of turbulence phenomena in energy engineering, e.g., the wake meandering.
To understand these complicated flow behavior, turbulence simulation and modeling is an important
and useful tool, which has been extensively investigated and comprehensively reviewed [1–5].
Although more accurate scale-resolving simulations, e.g., large-eddy simulation (LES) and direct
numerical simulation (DNS), are increasingly popular, Reynolds-averaged Navier-Stokes (RANS)
analysis remains a widely used option in computational fluid dynamics due to its efficiency [3] and is
expanding into new stages [5,6]. However, RANS analysis relies heavily on accurate closure model
for Reynolds stresses, including structural (model-form) and parametric (model-parameter) adequate
representations of real physics.

Various Reynolds-stress closures have been proposed. Most popular are still the linear
eddy-viscosity models (EVMs), mainly including the Spalart-Allmaras model [7], SST k-ω model [8]
and Realizable k-ε model [9]. A number of improvements have been made on these models aiming at
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improving sensitivity to curvature and/or rotation effects, such as introducing corrections into the eddy
viscosity equation [10], the dissipation rate equation [11], the specific dissipation rate equation [12], and
introducing corrections into eddy-viscosity coefficient [12,13]. However, none of the essential changes
occur in the baseline framework of closure modeling. Obviously, the variant closure coefficients
cannot improve the inherent limitations due to the underlying model-form inaccuracy rooted in
Boussinesq hypothesis.

Linear stress-strain relationship origins from the Boussinesq hypothesis that turbulence react locally
to the changes of mean-flow behavior in equilibrium flows. However, that is not really the case. In most
turbulent flows, there exists a large misalignment in stress-strain response which has been repeatedly
confirmed with high-fidelity DNS investigation [14–16]. In view of pressure-strain correlations in the
exact Reynolds-stress transport equations, the stress-strain misalignment is theoretically generated
from the nonlocal response of the pressure to the entire flow field through Green’s functions [17].
As a result, the in-phase type EVMs certainly experience failure, especially in flows with strong
spatial inhomogeneity (e.g., rotation/curvature [10,18], three-dimensionality [19], secondary-flow [20],
etc.). These flow effects make changes in the mean shear (i.e., spatial inhomogeneity) and turbulence
structures [21–23], further enhancing nonlocality on the stress-strain misalignment. Hamlington and
Dahm [24] also observed that EVMs over-predict shear stresses and give inappropriate isotropic
normal stresses even in simple parallel shear flows, and further explained the failure as a neglection
of nonlocal effects. Edeling, et al. [25] argued that the failure of EVMs is attributed to the lack of
physical interpretation of stress-strain misalignment. Although recent progress in representation of
shear-stress-strain misalignment (see, e.g., [26,27]) has been made by three-equation EVMs (as an
aside, misrepresentation of real physics [19,28] and increasing computational cost), these variants
still fail in predictions of normal stresses, which are closely related to turbulent structures in channel
flows [29] and secondary motions in non-circular ducts [30]. Model-form inaccuracy cannot be reduced
by corrections of model-parameter inaccuracy.

Nonlinear eddy-viscosity models (NLEVMs), referring to the second class of RANS closure in
Figure 1b, is a generalization of the Boussinesq hypothesis, which was first proposed by Lumley [31]
and investigated in a systematic way by Pope [32]. A step forward over EVMs is that NLEVMs
have the potential to improve normal stresses through added nonlinear terms (e.g., a k-ω2 model
of Wilcox and Rubesin [33]). However, no further improvements in shear stresses (same as EVMs)
are obtained in most flows. According to RANS equations, the predictions of normal stresses also
depend on the axial-flow motion which is controlled by the dominant shear stresses. Therefore, the
key to improvements at a given NLEVM model-form returns to model-parameter optimization as
EVMs do. At this point, this problem is not easy to settle down through conventional regression
analysis due to following reasons (more details in Section 3): (i) lack of prior knowledge about how
to select features as arguments, (ii) strong nonlinearity, resulting in difficulty in design of functional
forms, (iii) high-dimensionality and computational cost, and (iv) spatial independence of the obtained
coefficients. For quadratic eddy-viscosity models (QEVMs) commonly used, for instance, different
values of closure coefficients [34–38] were introduced, however, no further improvements are obtained
in most flows.

Recently, machine learning algorithms may take a breakthrough for turbulence modeling.
Weatheritt and Sandberg [39] employed gene expression programming to calibrate the closure
coefficients of QEVMs. Zhu, et al. [40] approximated the eddy-viscosity coefficient only existed in
EVMs with a single-layer neural network and tested by flows around simple airfoils. The former
obtained algebraic models with explicit analytical forms, while the latter is a data-driven model. These
machine learning-based regression analyses are successful in reducing model-parameter inaccuracy.
Nevertheless, normal stresses cannot be predicted correctly using the model trained by Zhu, et al. [40]
because of the model-form inaccuracy of EVMs. Similarly, the model-form inaccuracy in QEVMs
proposed by Weatheritt and Sandberg [39] leads to the fact that not all dominant shear stresses can be
predicted correctly with the only sharing closure coefficient, thus resulting in failure in flows where



Energies 2020, 13, 258 3 of 21

there are different misalignments between shear components and corresponding mean strain (e.g.,
secondary flow [20] and three-dimensional boundary layer [41]). Therefore, an adequate model-form
representation of Reynolds stress is critical before using machine-learning-assisted regression analysis.
Ling, et al. [42] adopts a more general form of NLEVMs based on 10 independent tensor bases from
representation theory and then learns the closure coefficients using 5 invariants as inputs of the neural
networks. Testing results show that embedded invariance properties can improve significantly the
performance of the neural networks. Besides, Wang, et al. [43] applied machine learning to directly
predict the Reynolds stresses discrepancies (corresponding to nonlinear terms in NLEVMs) compared
to the truth, forming implicit algebraic NLEVMs. The main drawbacks of these implicit models are
poor interpretability of black-box models, numerical convergence and transfer (or generalization) to
another flow configuration [44]. Edeling, Iaccarino, and Cinnella [25] also argued that the complex
input-output mapping of black-box models are unable to increase confidence. A more comprehensive
overview of data-driven turbulence modeling has been presented in Refs. [5].
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Figure 1. A schematic showing the hierarchy of turbulence simulation and modeling at the level of
Navier-Stokes equations: (a) four classes of simulation methods based on modeling requirements and
computational cost, and (b) three classes of turbulence models for Reynolds-averaged Navier-Stokes
(RANS) closures which implied two sources of model inaccuracies due to structural (model-form) and
parametric (model-parameter) inadequate representations of real physics.

NLEVMs also can be derived by Reynolds-stress transport models (RSTMs), referring to the third
class of RANS closure in Figure 1b, and examples are models mentioned above (e.g., k-ω2 model
of Wilcox and Rubesin [33], and that of Hamlington and Dahm [24]). RSTMs are rarely used in
engineering due to the high computational cost and complexity, and not further reviewed here (refer
to [2–4]). Therefore, it is concluded that NLEVMs are increasingly popular for RANS-based turbulence
modeling, especially in the age of data.

This work seeks to reduce both structural and parametric inaccuracies with a novel proposed
NLEVM and machine-learning-assisted parameterization. The remainder of this article is organized
as follows: In Section 2, we develop a novel algebraic stress-strain relationship as RANS closures, in
which nonlinear terms can reduce model-form inaccuracy due to the stress-strain misalignment. Then
a machine learning strategy is applied to the symbolic regression of the coefficients in the closure
proposal in Section 3. Section 4 covers a prior validation in testing datasets and a posterior numerical
simulation to evaluate model performance and followed by conclusions in Section 5.

2. A Novel Stress Closure Proposal

It is increasingly important to develop an adequate model-form representation of real physics,
which helps to capture missed features in traditional models. As mentioned above, the failure of
EVMs and NLEVMs is mainly attributed to stress-strain misalignment due to nonlocal effects [24,25].
Spalart [2] also argued that modeled physics should be enhanced by nonlocal models which are
categorized into two types: (i) models incorporating a scalar involving entire information, e.g., the wall
distance (although it is not an invariant) in the Spalart-Allmaras model [7], and (ii) models involving
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high-order derivatives of the mean velocity. Here, to consider nonlocal effects with high accuracy,
a stress closure model is proposed, which should fall into the second type model.

The key idea here is to consider nonlocal effects on the anisotropy evolution of the Reynolds
stress tensor by constructing velocity fluctuations with nonlocal velocity gradients. Assume that the
velocity increment between every two locations contributes to velocity fluctuations with a two-point
correlation weight coefficient.

At an instantaneous time, the increment of flow velocity between two locations x̂ and x can be
expressed in terms of a Taylor series expansion with respect to the current location x,

ui(x̂, t) − ui(x, t) = rm
∂ui
∂xm
|x +

1
2

rprq
∂2ui
∂xp∂xq

|x + . . .+
1
n!
(rsrt . . .)

∂nui
∂xs∂xt . . .

|x (1)

where rm ≡ x̂m − xm.
From a physical point of view, turbulence develops as instability of shear layers, and the turbulent

fluctuations are closely related to the velocity gradients. Thus, the velocity increment between two
locations contributes to velocity fluctuations. The motion of fluid at any location in a turbulent flow
is always influenced by the motion at other locations through the pressure field, i.e., nonlocal effects
(see Appendix A). Then the contribution of velocities at other locations in the whole flow field to the
velocity at a reference location can be accounted for through weight coefficients. An expression of
velocity fluctuations u′i at current location x is given as

u′i (x, t) =
∑
r∈Λ

α(x, t; r)[ui(x̂, t) − ui(x, t)] (2)

where r ≡ x̂− x, the space Λ is taken to be theoretically infinite, and the dimensionless weight coefficient
α represents the influence intensity of location x̂ on reference location x, varying inversely with the
relative distance rm.

Substituting Equation (1) into Equation (2), we obtain:

u′i (x, t) =
∂ui
∂xm
|x · Lm +

∂2ui
∂xp∂xq

|x · L2
pq + . . .+

∂2ui
∂xs∂xt . . .

|x · Ln
st..., (3)

where
Ln

st...(x, t) ≡
∑
r∈Λ

[α(x, t; r)
1
n!
(rsrt . . .)]. (4)

The ensemble average of coefficients α in Equation (4) represents averaging influence intensity
between two points, and thus can be defined as a function of two-point correlation of flow quantities
(e.g., pressure fluctuation p′), i.e.,

α(x, t; r) = f [R(x, t; r)/R(x, t; 0)], (5)

where
R(x, t; r) = p′(x, t)p′(x + r, t). (6)

The coefficients Lm in Equation (4) represent equivalent influence distances or equivalent nonlocal
length scales. The ensemble averages of these coefficients are approximately equal to themselves, i.e.,
Lm ≈ Lm, because the summation over the whole domain nearly experiences all states in all realizations.
Other coefficients in Equation (3) also hold this property.

Obviously, nonlocal effects are involved in Equation (3) along with closure coefficients. The linear
expansion in Equation (3) is suitable for flows in which the variations of the velocity gradients are
not too large. When very strong spatial inhomogeneity exists (e.g., a three-dimensional turbulent
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boundary layer), a second-order expansion may be needed. Terms up to quadratic velocity gradients
in Equation (3) are sufficient for the vast majority of turbulent flows. Thus, Equation (3) reduces to:

u′i = Lm
∂ui
∂xm

+ L2
pq

∂2ui
∂xp∂xq

. (7)

Applying an ensemble average to products of any two fluctuating components in Equation (7), the
corresponding form for Reynolds stress is derived and further expressed with Reynolds decomposition
of the flow variables into ensemble mean and fluctuating components as:

u′i u
′

j =
(
u′i u
′

j

)
I
+

(
u′i u
′

j

)
II
+

(
u′i u
′

j

)
III

+
(
u′i u
′

j

)
IV

, (8)

where (
u′i u
′

j

)
I
= LmLn

∂ui
∂xm

∂u j

∂xn
+ LmLn

∂u′i
∂xm

∂u′j
∂xn

, (9)

(
u′i u
′

j

)
II
= L2

pqL2
kl
∂2ui
∂xp∂xq

∂2u j

∂xk∂xl
+ L2

pqL2
kl

∂2u′i
∂xp∂xq

∂2u′j
∂xk∂xl

, (10)

(
u′i u
′

j

)
III

= LmL2
kl
∂ui
∂xm

∂2u j

∂xk∂xl
+ LmL2

kl

∂u′i
∂xm

∂2u′j
∂xk∂xl

, (11)

(
u′i u
′

j

)
IV

= L2
pqLn

∂2ui
∂xp∂xq

∂u j

∂xn
+ L2

pqLn
∂2u′i
∂xp∂xq

∂u′j
∂xn

. (12)

The first term in Equation (9) accounts for direct effects of mean velocity gradients on the anisotropy
evolution, which corresponds to the rapid part Πr

i j relating to nonlocal effects due to variations in
the mean shear (see Appendix A), the second term represents turbulence-turbulence interactions and
forces the turbulence to become isotropic, which corresponds to the slow part, Πs

i j. Similar to Πs
i j, the

second term can be split into a purely local contribution (i.e., Ekεi j/ε) and the remaining nonlocal part.
The former plays a dominant role in the second term in Equation (9), while the latter is relatively small
and can be incorporated in the first term. Equation (9) can be rewritten as

(
u′i u
′

j

)
I
= [LmLn

∂ui
∂xm

∂u j

∂xn
+ (LmLn

∂u′i
∂xm

∂u′j
∂xn
− 2νE

k
ε

∂u′i
∂xk

∂u′j
∂xk

)] + E
k
ε
εi j, (13)

where E is a coefficient and ε is the dissipation rate of k. All of the terms inside the square brackets on
the right side of Equation (13) represent nonlocal effects due to spatial variations in the mean shear
(including local contributions of the mean shear) and the adjustment of turbulence itself.

Equation (13) can be expressed with a decomposition of the velocity gradients into symmetric and
antisymmetric parts, as follows:(

u′i u
′

j

)
I

= Bmn(SimS jn −
1
3 SkmSknδi j)

+Cmn[SimΩ jn + ΩimS jn −
1
3 (SkmΩkn + ΩkmSkn)δi j]

+Dmn(ΩimΩ jn −
1
3 ΩkmΩknδi j) + E k

εεi j

(14)

where the closure coefficients are defined as:

Bmn ≡
LmLn(SimS jn + S′imS′jn) − 2νE k

ε S′ikS′jk

SimS jn −
1
3 SkmSknδi j

, (15)
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Cmn ≡
LmLn(SimΩ jn + ΩimS jn + S′imΩ′jn + Ω′imS′jn ) − 2νE k

ε (S
′

ikΩ′jk + Ω′ikS′jk)

SimΩ jn + ΩimS jn −
1
3 (SkmΩkn + ΩkmSkn)δi j

, (16)

Dmn ≡
LmLn(ΩimΩ jn + Ω′imΩ′jn) − 2νE k

ε Ω′ikΩ′jk

ΩimΩ jn −
1
3 ΩkmΩknδi j

, (17)

where S′i j ≡ (∂u′i /∂x j + ∂u′j/∂xi)/2 and Ω′i j ≡ (∂u′i /∂x j − ∂u′j/∂xi)/2, the closure coefficients Bmn, Cmn,
and Dmn involve nonlocal length scales Lm, k, ε, and/or mean strain and rotation rate tensors.

Now we discuss the last term in Equation (14). Since the dissipation is in reality anisotropic (but
relatively weak), particularly close to solid boundaries, a form of εi j similar to the formula proposed by
Hanjalić and Launder [45] is chosen, in which the weakly anisotropic part is related to stress anisotropy
modeled by linear EVMs. Thus,

εi j =
2
3
εδi j + ε(−2

νt

k
Si j). (18)

Furthermore, to guarantee that the trace of u′i u
′

j is 2k, it gets E = 1 (for incompressible flows,

Skk = 0). Thus, the general formulation of Equation (14) simplifies to(
u′i u
′

j

)
I

= 2
3 kδi j − 2νtSi j + Bmn(SimS jn −

1
3 SkmSknδi j)

+Cmn[SimΩ jn + ΩimS jn −
1
3 (SkmΩkn + ΩkmSkn)δi j]

+Dmn(ΩimΩ jn −
1
3 ΩkmΩknδi j)

(19)

A similar analysis can be applied to Equations (15)–(17). Here, the local contribution from
turbulence itself to the anisotropy can be neglected due to its small contribution. Then, we obtain:(

u′i u
′

j

)
II

= Bpqkl(
∂Sip
∂xq

∂S jk
∂xl
−

1
3
∂Smp
∂xq

∂Smk
∂xl

δi j)

+Cpqkl[
∂Sip
∂xq

∂Ω jk
∂xl

+
∂Ωip
∂xq

∂S jk
∂xl
−

1
3 (
∂Smp
∂xq

∂Ωmk
∂xl

+
∂Ωmp
∂xq

∂Smk
∂xl

)δi j]

+Dpqkl(
∂Ωip
∂xq

∂Ω jk
∂xl
−

1
3
∂Ωmp
∂xq

∂Ωmk
∂xl

δi j)

(20)

(
u′i u
′

j

)
III

= Bmkl(Sim
∂S jk
∂xl
−

1
3 Snm

∂Snk
∂xl
δi j)

+Cmkl[Sim
∂Ω jk
∂xl

+ Ωim
∂S jk
∂xl
−

1
3 (Snm

∂Ωnk
∂xl

+ Ωnm
∂Snk
∂xl

)δi j]

+Dmkl(Ωim
∂Ω jk
∂xl
−

1
3 Ωnm

∂Ωnk
∂xl

δi j)

(21)

(
u′i u
′

j

)
IV

= B′pqn(
∂Sip
∂xq

S jn −
1
3
∂Smp
∂xq

Smnδi j)

+C′pqn[
∂Sip
∂xq

Ω jn +
∂Ωip
∂xq

S jn −
1
3 (
∂Smp
∂xq

Ωmn +
∂Ωmp
∂xq

Smn)δi j]

+D′pqn(
∂Ωip
∂xq

Ω jn −
1
3
∂Ωmp
∂xq

Ωmnδi j)

(22)

where Bpqkl, Cpqkl, Dpqkl, Bmkl, Cmkl, Dmkl, B′klm, C′klm, and D′klm are closure coefficients. Obviously, all
coefficients in Equations (19)–(22) satisfy

Bmn = Bnm, Cmn = Cnm, Dmn = Dnm,
Bpqkl = Bklpq, Cpqkl = Cklpq, Dpqkl = Dklpq,
Bmkl = B′klm, Cmkl = C′klm, Dmkl = D′klm.

(23)

Combining Equations (19)–(22) and Equation (23), we have:(
u′i u
′

j

)
I
=

(
u′ju
′

i

)
I
,
(
u′i u
′

j

)
II
=

(
u′ju
′

i

)
II

,
(
u′i u
′

j

)
III

=
(
u′ju
′

i

)
IV

. (24)



Energies 2020, 13, 258 7 of 21

Substituting Equations (19)–(22) into Equation (8), we obtain a model that satisfies symmetry and
contraction requirements. Theoretically, the corresponding coefficients can be determined through
calibrations with either experimental or numerical data with the incorporation of physical consistency
constraints. Rather than a “shared” coefficient as in previous models, each term of the proposed model
has its unique coefficient, indicating greater ability to describe the Reynolds-stress anisotropy.

If only linear expansion is adopted in Equation (3) the nonlinear formulation for Reynolds stresses
is expressed as Equation (19). On dimensional grounds, all of the coefficients (except for νT) can be
expressed in terms of the length scale k3/2/ε. Thus, a new nonlinear k-ε model can be obtained as:

u′i u
′

j = 2
3 kδi j − 2νtSi j + bmn

k3

ε2 (SimS jn −
1
3 SkmSknδi j)

+cmn
k3

ε2 [SimΩ jn + ΩimS jn −
1
3 (SkmΩkn + ΩkmSkn)δi j]

+dmn
k3

ε2 (ΩimΩ jn −
1
3 ΩkmΩknδi j)

(25)

where bmn, cmn, and dmn are dimensionless closure coefficients, and the eddy-viscosity coefficient νt

here is represented by a two-equation formulation,

νt = Cµk2/ε, (26)

where Cµ is a dimensionless coefficient. In the standard k-ε model, Cµ = 0.09.
According to Equation (13), the linear terms in Equation (25) describe the local relaxation of the

turbulence toward isotropy while the nonlinear terms with the closure coefficients reflect nonlocal
effects on anisotropy due to spatial variations in the mean shear (including local contributions of the
mean shear) and turbulence itself. The mechanism of nonlocal effects incorporated in Equation (25) is
clearly understood during its derivation. The variations in the mean shear are directly represented by
the nonlinear terms as the products of mean strain and rotation rate, while the differences of turbulence
structure scales in three directions lead to differences of nonlocal length scales in Equation (4), which
can be realized by the coefficients with different values in Equation (25).

In particular, a set of scalar coefficients can be used to replace the tensor coefficients when they are
identical. Furthermore, when cross terms (m , n) are neglected, the proposed model in Equation (25)
degenerates into a generalization of previous QEVMs (see, e.g., [34–38]),

u′i u
′

j =
2
3 kδi j − 2νtSi j + c1

k3

ε2 (SikS jk −
1
3 SklSklδi j)

+c2
k3

ε2 (SikΩ jk + ΩikS jk) + c3
k3

ε2 (ΩikΩ jk −
1
3 ΩklΩklδi j)

(27)

where c1, c2, and c3 are dimensionless closure coefficients.
It is noted that the nonlinear k-ε model in Equation (25) is a first-order version of the proposed

model, which has a similar structure to previous QEVMs in Equation (27), but with a set of tensor
coefficients and extra cross terms (m , n). Therefore, the tensorial quadratic eddy-viscosity model
(denoted as TQEVM, hereafter) in Equation (25) has a greater ability to describe the anisotropy. By
contrast, nonlocal effects on the anisotropy are inadequately considered in previous QEVMs and
therefore TQEVM reduces model-form inaccuracy.

3. Model Training and Coefficients Regression

Although the proposed TQEVM has clear advantages over EVMs and QEVMs, its accuracy still
depends on adequate representations of closure coefficients. When classical regression tools are applied
to Equation (25), the coefficients are kept constant, e.g., spatial independence. Traditionally, different
coefficients are optimized with different flow configurations. For instance, a typical value 0.09 of
Cµ in Equation (26) is determined using high-fidelity data in narrow regions close to the channel
centerline. In this flow, EVMs and QEVMs return −u′1u′2/k = 2Cµ

(
S12k/ε

)
, and therefore only Cµ

needs to be determined. The residual coefficients could be determined in other flow configurations.
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However, the method fails when the number of coefficients in a closure model exceeds the number
of nonzero independent Reynolds stresses, which just exists in the case with our proposed closure
model. In addition, these coefficients are not globally optimal. Considering the superiority of machine
learning algorithms, a deep neural network (DNN) is designed as an advanced regression tool to
determine the closure coefficients in Equation (25).

The channel flow is a good alternative for training and testing the DNN-based regression model
because several high-fidelity DNS databases are available. In this work, five databases at various
Reynolds numbers (based on the friction velocity uτ and half-channel height h) are used to determine the
closure coefficients and validate the proposed model: (i) Reτ = 590 from Moser et al. [46], (ii) Reτ = 650
from Iwamoto et al. [47], (iii) Reτ = 950, 2000, 4200 from Hoyas and Jimenez [48], (iv) Reτ = 1000, 2020,
4100 from Bernardini et al. [49], and (v) Reτ = 1000, 1990, 5200 from Lee and Moser [50]. The data
at Reτ = (1000, 1990, 2020, 4100) is used to train the DNN-based data-driven model for coefficients
regression. Then the spatial-dependent optimal coefficients are applied to the proposed model to
evaluate its performance by comparisons with DNS results at Reτ = [590, 650, 950, 2000, 4200, 5200].

The fully-connected DNN architecture used herein is shown in Figure 2a, which is a cascade
of several hidden layers of nonlinear processing units. The dimensional shear parameters
Sk/ε = (2SikSik)

1/2k/ε as mean-flow invariants at various Reτ are selected as initial inputs x0 and
the final outputs ynL = (Cµ, bmn, cmn, dmn) are the closure coefficients. Each successive layer uses the
outputs from the previous layer as inputs, thus resulting in a hierarchical representation of learned
features. Finally, a data-driven model is established to represent the mapping relationship between the
closure coefficients and mean-flow quantities, viz,

x0 7→ ynL
= Fσ(x0;θ) , θ = [wi, bi]

nL
i=1, (28)

where Fσ is the equivalent function representing the overall nL-layer DNN-based data-driven model
and θ denotes all learned parameters, including the weights wi and the basis bi in each layer.
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Figure 2b shows a complete optimization procedure to train this DNN-based data-driven model,
which is controlled by the loss function:

L(θ) =
1

4N
Σ||τ̂ − τ||22 + λ||w||22, (29)

where τ and τ̂ are the real stress vector and reconstructed stress vector according to Equation (25),
respectively, and λ is a regularization coefficient to prevent overfitting. N is the number of training
samples. The rectified linear unit (ReLU) is used as the activator. The Adam (adaptive-moment-
estimation) algorithm [51] is adopted to update parameters θ. Other hyper-parameters are set to
λ= 10−3 and ϕ =10−5 (the step size). The number of hidden layers is set to 9, and the number of
nonlinear units in each layer is 12, 18, 21, 27, 32, 35, 30, 28, and 27, respectively. After 5000 training
epochs, iterative calculations are stopped when the tolerance error converges to δ =10−4.

To improve the smoothness of input-output pairs, the explicit analytic forms of Fσ : x0 7→ ynL is
further given in Figure 3, which enhances the robustness of RANS-based numerical simulations. In
traditional pointwise-based trainings (e.g., Wang et al. [43]), numerical convergence may be a problem
due to the spatial non-smoothness of Reynolds stresses. In addition, the derivatives of Reynolds
stresses are used in RANS equations, therefore, the smoothness is more important than the pointwise
accuracy. The explicit re-parameterization adopted herein is very important otherwise alternative
methods are taken to improve the smoothness.Energies 2020, 13, x 10 of 22 
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Figure 3. Closure coefficients as a function of dimensionless shear parameter Sk/ε in fully-developed
turbulent channel flow: (a) coefficients appearing in the Reynolds shear stress Cµ, b21 and d21, and
(b) coefficients appearing in the normal Reynolds stress b11, b22, c11, c22, d11 and d22. The wall distance
reduces with increasing Sk/ε when Sk/ε < 18.

To reduce the sensitivity to re-parameterization coefficients, we select proper function forms based
on three rules below: (i) That Reynolds stresses can become infinite for any possible Sk/ε should be
avoided [52]. For example, a quadratic function is unsuitable for Cµ. As an approximate alternative, the
negative exponential function of Sk/ε is selected. (ii) To avoid numerical instabilities due to the high
sensitivity to strain-dependent coefficients, the nested transcendental functions should be averted [53].
For an exponential function, ea/ea+δ

≈ 1 for a limited small δ. (iii) All coefficients should reduce to
non-zero values at the high level of Sk/ε to preclude numerical instability [53]. According to the rules
above, we select the negative exponential function, of which the advantages have been confirmed by
Weatheritt and Sandberg [54]. Finally, these coefficients in the Reynolds shear stress reads

Cµ =
α

β+ exp(γSk/ε)
+ C0, b21 = 0.10Cµ, d21 = −0.06Cµ, (30)

where the values of α, β, γ and C0 are 30.8, 250, 1.0, −0.03 and 0.22, 0, 0.41, 0.02 for Sk/ε < 5.0 and
Sk/ε ≥ 5.0, respectively. The coefficients in the normal Reynolds stress obey
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ξmn =

{
α1 exp(β1Sk/ε) + α2 exp(β2Sk/ε) + γ0, Sk/ε ≥ 1.4
aSk/ε+ b, otherwise

(31)

where ξmn stands for the learned closure coefficients b11, b22, c11, c22, d11, d22 and the values of α1, β1, α2,
β2, γ0, a and b are shown in Table 1.

Table 1. Values of α1, β1, α2, β2, γ0, a, and b as parameters appearing in closure coefficients.

α1 β1 α2 β2 γ0 a b

b11 0.12 −0.51 0.87 −2.28 0.11 −0.24 0.53
b22 0.10 −0.18 1.82 −1.71 0.03 −0.53 1.00
c11 0.07 −0.17 1.11 −1.92 0.15 −0.36 0.75
c22 1.30 −1.52 0.10 −0.30 0.02 −0.53 0.95
d11 0.09 −0.57 0.46 −1.88 0.19 −0.26 0.61
d22 0.93 −1.54 0.07 −0.29 0.01 −0.36 0.67

The learned Cµ agrees well with 0.09 in narrow regions far from the wall, which is the optimal
value of Cµ in traditional QEVMs as well as the slope of shear stress-strain corresponding to the
regions Sk/ε ≤ 2.2 ∼ 3.2 in Figure 4. It can be, to some extent, used as an indicator of the success of
the DNN-based regression model in Figure 2. Besides, Figure 3 shows that the closure coefficients
related to shear stresses perform strong linear correlations (Figure 3a), and the closure coefficients
related to normal stresses behavior in a very similar pattern (Figure 3b). The fact that linear coefficient
Cµ reduces with increasing Sk/ε (corresponding to the reduction of the wall distance) indicates an
increase in the nonlinearity of shear stress when close to the wall.
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Figure 4. Dimensionless Reynolds shear stress−u′1u′2/k as a function of dimensionless shear parameter
Sk/ε for (a) Reτ = 590, (b) Reτ = 650, (c) Reτ = 950, (d) Reτ = 2000, (e) Reτ = 4200, and (f) Reτ = 5200
predicted by DNS, EVM, QEVM-S, QEVM-RB, QEVM-SZL, and the proposed TQEVM.
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4. Model Validation and Evaluation

4.1. Prior Validation and Comparisons

The performance of proposed TQEVM itself is validated using prior testing on datasets at Reτ =
(590, 650, 950, 2000, 4200, 5200). For comparisons, results of linear EVM (with the standard k-ε model),
previous QEVMs (QEVMs proposed by Speziale [34], Rubinstein and Barton [37], and Shih, Zhu and
Lumley [38] are denoted as QEVM-S, QVEM-RB, QEVM-SZL, respectively) are also given.

4.1.1. Reynolds Stress

Figure 4 shows that Reynolds shear stress offered by all models except for QEVM-SZL falls
almost exactly on the DNS results within the range of approximately Sk/ε ≤ 2.2 ∼ 3.2. However, once
2.2 ∼ 3.2 < Sk/ε ≤ 18 ∼ 19, the Reynolds shear stress by EVM and QEVMs seriously deviates from
DNS results, while TQEVM still shows good agreement.

EVM and previous QEVMs give the same prediction for the Reynolds shear stress as −u′1u′2/k =

Cµ(Sk/ε) where Cµ = 0.09 (except for QEVM-SZL). However, the TQEVM provides −u′1u′2/k =

Cµ(Sk/ε) + (b21 − d21)(Sk/ε)2/4, in which the nonlinear terms improve predictions in the near-wall
region where nonlocal effects are significant due to spatial inhomogeneity. Figure 5 shows the
dimensionless shear parameter Sk/ε, and dimensionless quadratic mean velocity gradient ∂2u1/∂x2

2
as functions of dimensionless wall distance y+. Within Sk/ε ≤ 2.2 ∼ 3.2, which corresponds to a
narrow region far from the wall, the variation of ∂u1/∂x2 (u1 is the axial mean velocity and x2 is the
direction normal to the wall) is small, resulting in weak nonlocal effects. Therefore, the in-phase
stress-strain relationships in EVM and QEVMS achieve good performance in this region. However,
in the range of 2.2 ∼ 3.2 < Sk/ε ≤ 18 ∼ 19, which corresponds to a near-wall region, the dominant
component ∂u1/∂x2 of the mean velocity gradients vary dramatically, resulting in the large stress-strain
misalignment due to nonlocal effects induced by strong spatial variations in the mean shear. As a
result, the nonlinear terms in TQEVM play a significant role and improve predictions of shear stress,
by contrast, EVM and QEVMs fail.
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2 as functions of dimensionless wall distance y+ in channel flow at Reτ = 650, 1000,
2000 and 5200. u1 and is the axial mean velocity, and x2 is the direction normal to the wall.

The normal Reynolds stress determined by various turbulence models are shown in Figures 6–8.
TQEVM agrees well with DNS results in a large range of y+. EVM always gives the same value of 2k/3
for the normal Reynolds stress components. However, the normal stresses are in reality anisotropic
even very close to the centerline of the channel. Therefore, EVM always fails. QEVM-S and QEVM-SZL
offer nearly identical results with EVM, while QEVM-RB provides a slight improvement. All QEVMs
under-predict the axial component of the normal Reynolds stress and over-predict the other two
components. When close to the wall, the difference between normal stresses increases rapidly and the
predictions by QEVMs seriously deviate from DNS results. Therefore, previous QEVMs only achieve
slightly better performance than linear EVM.
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where ′ and  are the Reynold stress and mean strain tensors, respectively. For symmetric tensors, : ∶ = , ‖ ‖=	( ) ⁄  and ‖ ‖	=	( ) ⁄ . Therefore,  is a number between 0 and 1. =	1 represents in-phase relationships between  and  (an alignment behavior), while = 0 
corresponds to a “perpendicular” state (maximum misalignment between  and ). Accordingly, 

 can be used to characterize the validity of turbulence models. For example, EVM always returns 
modeled = 1 , therefore, EVM is valid only in the regions of a turbulent flow where the 
corresponding real values are = 1 . When  is far from 1, the simple linear relationships 
between the stress and strain are no longer satisfied, thus nonlinear terms must be added to 
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Figure 8. Dimensionless normal Reynolds stress u′23
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obtained from DNS, EVM, QEVM-S, QEVM-RB, QEVM-SZL, and the proposed TQEVM.

4.1.2. Stress-Strain Misalignment

Here we further evaluate the validity of turbulence models using modeled stress-strain
misalignment. Analogous to the cosine of the angle between vectors, a new indicator βRS is introduced
as a measure of the alignment trend between the Reynolds stress and mean strain tensors, viz,

βRS =
R : S
‖R‖ · ‖S‖

, (32)

where R′ and S are the Reynold stress and mean strain tensors, respectively. For symmetric tensors,
R :: S = Ri jSi j, ‖R‖= (Ri jRi j)

1/2 and ‖S‖= (Si jSi j)
1/2. Therefore, βRS is a number between 0 and 1.

βRS = 1 represents in-phase relationships between R and S (an alignment behavior), while βRS = 0
corresponds to a “perpendicular” state (maximum misalignment between R and S). Accordingly,
βRS can be used to characterize the validity of turbulence models. For example, EVM always
returns modeled βRS = 1, therefore, EVM is valid only in the regions of a turbulent flow where the
corresponding real values are βRS = 1 When βRS is far from 1, the simple linear relationships between
the stress and strain are no longer satisfied, thus nonlinear terms must be added to turbulence models
to correct the predicted alignment trend.

Figure 9 shows alignment indicators βRS(y+) obtained from DNS result and predicted by previous
QEVMs and TQEVM in channel flow at various Reτ. The stress-strain alignment gradually improves
as y+ increases, however, it suddenly becomes worse after y+ reaches a very large value, which
corresponds to the region very far from the wall (around the centerline of the channel). Also, the
minimum phase lag (corresponding to the maximum value of βRS) for Reynolds stress is no less than
π/4, and the value gradually increases as the Reynolds number increases. Therefore, there is a clear
stress-strain misalignment in a flow.
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Figure 9. Alignment indicators βRS(y+) for (a) Reτ = 590, (b) Reτ = 650, (c) Reτ = 950, (d) Reτ = 2000,
(e) Reτ = 4200, and (f) Reτ = 5200 obtained from DNS, QEVM-S, QEVM-RB, QEVM-SZL, and the
proposed TQEVM. Note that βR′S(y+ ) to represent the alignment trend between the total stress and
mean strain tensors are defined similarly.

Previous QEVMs always provide in-phase relationships for the Reynolds shear stress as EVM
(nonlinear terms in QEVMs have no effects on the shear stress) and a mild separation of the normal
Reynolds stress. Consequently, these QEVMs cannot accurately predict βRS. However, the results from
TQEVM agree well with DNS, owing to nonlinear relationships both for the Reynolds shear stress and
the normal Reynolds stress.

4.1.3. Realizability Constraints

Also, the realizability of turbulence models are examined using the barycentric map [55], which
is a linear domain providing a non-distorted visual representation of anisotropy, as an advantage
over commonly used anisotropy invariant map [56]. The eigen decomposition of the Reynolds stress
tensor reads

u′i u
′

j = 2k(
1
3
δi j + vikΛklvl j), (33)

where vik are eigenvectors and Λkl= diag(λ1,λ2,λ3) is the diagonal matrix of eigenvalues (λ1 ≥ λ2 ≥ λ3,
λ1 + λ2 + λ3 = 0). Here, turbulent kinetic energy, eigenvectors, and eigenvalues represent the
magnitude, orientation, and shape of the Reynolds stress, respectively. In the anisotropy phase
space of the barycentric map, any anisotropy state is located as a point such that the linear
relationship holds: (x, y) = C1C(x1C, y1C) + C2C(x2C, y2C) + C3C(x3C, y3C), where (x1C, y1C), (x2C, y2C),
and (x3C, y3C) correspond respectively to one component (1C), two-component axisymmetric (2C-axis),
and three-component isotropic (3C-iso) states. The corresponding weights (C1C, C2C, C3C) are entirely
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determined by the eigenvalues λi as C1C = λ1 − λ2, C2C = 2(λ2 − λ3), and C3C = 3λ3 + 1. Thus, the
weights are used herein to characterize the degree of stress anisotropy and any realizable turbulence
should satisfy 0 ≤ C1C, C2C, C3C ≤ 1. Note that weights are very sensitive to a slight difference of
Reynolds stress components, especially the values of C2C and C3C (amplitude modulation with a
multiplier of 2 or 3).

In Figure 10, all the QEVMs except for the proposed TQEVM give unrealizable solutions for
Reynolds stresses with C2C > 1 and C3C < 0 when close to the wall. Moreover, QEVMs fail in most
regions with large discrepancies of C1C between prediction and truth, and they also provide a larger
C3C in low Reynolds numbers and a larger C2C in high Reynolds numbers. When close to the channel
centerline, all models return to a 3C-iso state with modeled C3C = 1 as the strain vanishing, which
conflicts with a mild anisotropic state in reality. As a result, a corresponding sudden descent of
stress-strain misalignment in Figure 9 arises. It is noted that this circumstance is encountered in all
algebraic models (not limited to models mentioned here), but fortunately, the influence can be ignored
because of extremely low anisotropic degree and only a small region existing (shown in Figures 6–8).
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Figure 10. Weights (C1C, C2C, C3C) of anisotropy states at a given point for Reτ = 650 (left) and
Reτ = 5200 (right) obtained from DNS, EVM, QEVM-S, QEVM-RB, QEVM-SZL, and the proposed
TQEVM. The first three rows correspond to C1C, C2C, and C3C, respectively.

Form the above discussion, it can be concluded that the proposed TQEVM has clear advantages
over EVM and previous QEVMs. TQEVM offers a more approximate description both for stress-strain
misalignment and stress anisotropy as well as extends the scope of the resolution.
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4.2. A Posterior Numerical Simulation

Four cases of fully-developed channel flows are selected for numerical comparisons: Case I
with Reτ = 650 [46], Case II with Reτ = 1000 [49], Case III with Reτ = 5200 [50] and Case IV with
Reτ = 8000 [57]. Case I and III are investigated to show the Reynolds-number extrapolation for which
DNS data are readily available to examine the prediction performance. Case IV is chosen to demonstrate
the capability of the proposed TQEVM at higher Reynolds number where DNS is computationally
expensive and high-fidelity data are extremely rare. Besides, Reτ = 8000 is such a special case that
the logarithmic region of the streamwise Reynolds stress exists and does not overlap with that of the
axial mean velocity [57]. In the mean velocity profile, an incipient logarithmic region appears until
Reτ = 4000 and an unambiguous logarithmic region at Reτ = 5200.

Two-dimensional RANS simulations with TQEVM are performed using structured meshes due
to homogeneity in the spanwise direction. The incompressible flow solver simpleFOAM [58] based
on OpenFOAM (an open-source package) is adopted. The height of the computation domain is 2h
and the length is 8πh (h is the half-channel height). Figure 11 shows the predicted axial mean velocity
profile, where all quantities are normalized by the half-channel height and axial mean velocity at the
channel centerline. The mean velocity here is averaged over three locations randomly selected in the
streamwise direction. The results show that the axial mean velocity predicted by TQEVM is basically
consistent with DNS results.
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Figure 11. Comparison of solved axial mean-velocity U by TQEVM (dash line) and DNS (solid line) for
four different cases of channel flow: Reτ = 650, Reτ = 1000, Reτ = 5200 and Reτ = 8000 (from left to
right), where h is the half-height of the channel and Uc is axial mean velocity at the channel centerline.

Furthermore, skin friction coefficients predicted by TQEVM agree well with DNS as shown in
Table 2. Note that the skin friction coefficients at Reτ = 650, 1000 and 5200 are from DNS of Schultz
and Flack [59] and that of Reτ = 8000 is estimated according to classical Prandtl’s smooth flow formula
with a set of log-law coefficients suggested by Bernardini, Pirozzoli and Orlandi [49], viz,√
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where C f = 2τw/(ρu2
b

)
, Reb = Reτ(2ub/uτ), ub =

∫ 2h
0 udy/(2h), κ = 0.386 and C = 4.30.

Table 2. Comparison of skin friction coefficients by TQEVM and DNS for four given cases.

Case I: Reτ=650 Case II: Reτ=1000 Case III: Reτ=5200 Case IV: Reτ=8000

DNS 0.00612 0.00519 0.00351 0.00320
TQEVM 0.00556 0.00493 0.00329 0.00309
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5. Conclusions

In the work, we present a machine learning strategy to assist the development of RANS
closure modeling, aiming at reducing both structural (model-form) and parametric (model-parameter)
inaccuracies. First, a novel algebraic Reynolds stress model named as TQEVM is developed, where
nonlocal effects on the anisotropy evolution of Reynolds stresses are accounted for by nonlinear terms
with corresponding coefficients, thus achieving a more appropriate description of Reynolds stresses.
The proposed TQEVM also guarantees the symmetry and contraction requirements. Furthermore,
a data-driven model by fusion of a fully-connected DNN architecture is designed to determine the
coefficients of the proposed TQEVM. The well-trained data-driven model using high-fidelity DNS
data at various Reynolds numbers successfully learned the underlying relationships between the
closure coefficients and mean-flow quantities, resulting in spatial-dependent optimal values of these
coefficients. The learned coefficient related to the linear terms Cµ agrees well with the real slope of shear
stress-strain in regions close to the channel centerline. Thus, machine-learning-assisted regression
analysis used herein offers a new route to reducing model-parameter inaccuracy, further advancing the
performance of a given model.

Finally, a complete validation including a prior and posterior testing is performed in detail
to evaluate the performance of TQEVM. Comparative results show that the proposed TQEVM has
clear advantages over traditional EVM and QEVMs in predictions both for the Reynolds shear stress
and normal Reynolds stress by a wide margin. Besides, the proposed TQEVM extends the scope
of resolution to y+ ≈ 9 as well as provides a realizable solution. Nonlocal effects due to spatial
inhomogeneity are significant in the near-wall region, resulting in a large stress-strain misalignment
and strong stress anisotropy. Linear EVM and previous QEVMs misrepresent the real misalignment
trend and under-predict the anisotropy magnitude. The failure is in large part due to insufficient
consideration of nonlocal effects, which is a key source of error in previous RANS models. By contrast,
the effects of nonlinear terms in the proposed TQEVM are dramatic, which contributes to improvements
both for stress-strain misalignment and stress anisotropy. Accurate mean-flow quantities of interest
are also obtained using numerical simulations with the proposed TQEVM.

It should be noted that TQEVM is expected to achieve improved predictions in other flows
with strong spatial inhomogeneity, such as flows with secondary motion, three-dimensionality or
curvature/rotation. TQEVM will be tested in these flows in the near future. Also, our model brings a
new vision about how to select input features of a data-driven model for directly predicting Reynolds
stresses: the second and higher-order derivatives of the mean velocity field should be introduced
as supplements.
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Appendix A. Nonlocal Effects on Stress Anisotropy

For incompressible flows, the exact Reynolds-stress transport equations are written as

Du′i u
′

j

Dt
= −u′i u

′

k

∂u j

∂xk
− u′ju

′

k
∂ui
∂xk
− εi j + Πi j +

∂
∂xk

(ν
∂u′i u

′

j

∂xk
−Ci jk), (A1)
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where D/Dt ≡ ∂/∂t + uk∂/∂xk is the material derivative; the overbar denotes an ensemble average;
ui and u′i are the respective mean and fluctuating velocity components in the xi direction; p′ is the
kinematic pressure; ν is the kinematic viscosity; and the viscous dissipation tensor εi j, pressure-strain
correlation tensor Πi j and turbulent-transport tensor Ci jk are defined as

εi j ≡ 2ν
∂u′i
∂xk

∂u′j
∂xk

, Πi j ≡ p′(
∂u′i
∂x j

+
∂u′j
∂xi

), Ci jk ≡ u′i u
′

ju
′

k + p′u′iδ jk + p′u′jδik. (A2)

The pressure fluctuation p′ appearing in Πi j is governed by a Poisson equation:

∇
2p′ = −2

∂ui
∂x j

∂u′j
∂xi
−

∂2

∂xi∂x j

(
u′i u
′

j − u′i u
′

j

)
. (A3)

Thus, the pressure p′ can be obtained by an integral over the entire spatial domain of the flow
with Green’s functions. The integral results in the pressure at a given point being influenced by the
whole flow field, i.e., nonlocal effects. It indicates that nonlocality is intrinsic for incompressible
flows, i.e., the pressure field responds nonlocally to changes in the flow to maintain incompressibility.
Furthermore, the pressure p′ in Equation (A3) is obviously influenced by three parts: mean-flow field,
turbulence itself and solid-wall boundaries. These correspond to “rapid”, “slow” and wall parts as
p′ ≡ p′(r) + p′(s) + p′(w), governed by their respective Poisson equations:

∇
2p′(r) = −2

∂ui
∂x j

∂u′j
∂xi

, ∇2p′(s) = −
∂2

∂xi∂x j

(
u′i u
′

j − u′i u
′

j

)
, ∇2p′(w) = 0. (A4)

The effect of wall proximity from p′(w) is significant only in the very near-wall region [60], which
is neglected here.

Based on the “rapid” and “slow” parts, the rapid and slow terms in the pressure-strain correlation
Πi j [17] are:

Πr
i j(x) =

1
2π

∫
Λ

∂uk
∂x̂l

∂u′i
∂x j

+
∂u′j
∂xi

∂u′l
∂x̂k

d3x̂
|x− x̂|

, (A5)

Πs
i j(x) =

1
4π

∫
Λ

∂u′i
∂x j

+
∂u′j
∂xi

∂2u′ku′l
∂x̂k∂x̂l

d3x̂
|x− x̂|

. (A6)

The slow part Πs
i j represents changes caused by changes in turbulence itself and reflects “slow”

relaxation of the turbulence towards isotropy. The most common representation for Πs
i j is the

return-to-isotropy [61], which has a linear relation. Sarkar et al. [62] argued that the additional
quadratic terms should be included in Πs

i j, while it has also been pointed out that these terms are
small [63]. Therefore, the nonlocal effects in Πs

i j have little influence on the anisotropy.
The rapid part Πr

i j depends on the mean velocity gradients ∂uk/∂x̂l, whose variations directly
affects Reynolds stress. The spatial variations of the mean velocity gradient Akl(x̂) ≡ ∂uk/∂x̂l can be
expressed in terms of a local Taylor expansion at Akl(x) ≡ ∂uk/∂xl:

Akl(x̂) −Akl(x) = rm
∂Akl
∂xm

+
1
2

rmrp
∂2Akl
∂xm∂xp

+ . . .+
1
n!
(rmrp . . .)

∂nAkl
∂xm∂xp . . .

, (A7)

where rm ≡ x̂m − xm. It is common to consider the mean velocity gradients sufficiently homogeneous
(i.e., Akl(x̂) ≈ Akl(x)) to be brought outside the integral [17,64–66]. However, due to strong spatial
variations of mean-flow quantities in the wall-normal direction, nonlocal effects in Πr

i j depends on

resulting from p′(r) are considerable in wall-bounded flows. Other inhomogeneous flows (e.g., free
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shear flows) also have a certain degree of nonlocality. Thus, Akl(x̂) −Akl(x) in Equation (A7) is not
equal to zero and generates nonlocal effects on flow behaviors.

Based on the analysis above, the pressure-strain correlation Πi j in Equation (A3) is not a localized
process. The nonlocality of pressure has effects on the anisotropy evolution of the Reynolds-stress
tensor, and Πr

i j contributes much more than the other two parts to nonlocal effects on the anisotropy.
Therefore, a more accurate anisotropy representation of Reynolds stresses should incorporate nonlocal
effects due to spatial variations in mean shear.
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