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Abstract: Finite set-model predictive control (FS-MPC) is used for power converters and drives having
unique advantages as compared to the conventional control strategies. However, the computational
burden of the FS-MPC is a primary concern for real-time implementation. Field programmable gate
array (FPGA) is an alternative and exciting solution for real-time implementation because of the
parallel processing capability, as well as, discrete nature of the hardware platform. Nevertheless, FPGA
is capable of handling the computational requirements for the FS-MPC implementation, however,
the system development involves multiple steps that lead to the time-consuming debugging process.
Moreover, specific hardware coding skill makes it more complex corresponding to an increase in system
complexity that leads to a tedious task for system development. This paper presents an FPGA-based
experimental implementation of FS-MPC using the system modeling approach. Furthermore,
a comparative analysis of FS-MPC in stationary αβ and rotating dq frame is considered for simulation
as well as experimental result. The FS-MPC for a three-phase voltage source inverter (VSI) system
is developed in a realistic digital simulator integrated with MATLAB-Simulink. The simulated
controller model is further used for experimental system implementation and validation using Xilinx
FPGA: Zedboard Zynq Evaluation and Development Kit. The digital simulator termed as Xilinx
system generator (XSG) provided by Xilinx is used for modeling-based FPGA design.

Keywords: field-programmable gate array; finite set-model predictive control; model-based design;
voltage source inverter; Xilinx system generator

1. Introduction

Model predictive control (MPC) possess appealing characteristics such as flexibility of simultaneous
handling of multiple constraints and easy inclusion of nonlinearities [1–4]. This leads to considerable
attention to exploit the characteristics of MPC for a wide variety of applications. However, it suffers
from the problem of high computation requirement that results in real-time implementation problems.
Despite the fact of high computational requirement, the real-time implementation of predictive
control for power converters is of considerable interest to improve the dynamic performance as well
as to optimize the entire system performance by including additional constraints. MPC has been
applied for two-level voltage source inverter (VSI) [5,6], three-level neutral-point clamped converter
(NPC) [2,7], active front end rectifier [8,9], cascaded H-Bridge inverter [10–12], asymmetric flying
capacitor converter [13], three-phase direct Matrix converters [14,15], predictive control for UPS
applications [16,17], predictive torque control (PTC), and field oriented control (FOC) of an induction
machine [2,18], to name a few.
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The fundamental approach behind the MPC is to have an appropriate plant or system model for the
prediction of the future behavior of control parameters. Finite set-model predictive control (FS-MPC),
also known as finite control set-MPC, is a classification of MPC which utilizes a discrete-time model of
power converter having a limited number of switching states for solving the optimization problem and
the control action can be directly applied to the converter without the need of external modulator [2,9].
This method reduces the computational loads up to some extent as compared to generalized MPC
method by considering the discrete nature of the power converter model. The optimization function
(cost function) for FS-MPC is designed considering the primary control objectives such as current,
voltage, or power and any additional constraints. In general, the cost function is formulated based
on the stationary αβ co-ordinates [19,20]. Considering current control with FS-MPC, the sinusoidal
future current references need to be predicted accurately using an extrapolation method, however,
the extrapolated reference causes unwanted oscillations that influence the transient response [7,9,19].
Considering the above issue, the cost function can be designed using a rotating dq frame that does not
require extrapolation method because of continuous current references [19]. However, the comparative
analysis based on design constraints and performance indices is required to be addressed for two
frames. Furthermore, the computational burden corresponding to each co-ordinate system is crucial
for practical system implementation.

Because of the computational requirements, practical implementations of predictive controls for
power converters mainly depend on the micro-processing solutions such as digital signal processor
(DSP) [3,4,18]. The computation required for the algorithm should strictly complete within a given
sampling interval. However, delay in the computation of optimum switching state is observed that
deteriorates the quality of waveforms [5,21]. To cope with this issue, delay compensation techniques
are necessary to compute optimum switching state within the specified sampling interval [22,23].
Nevertheless, delay compensation techniques encounter additional issues of increased computational
burden and an increased average switching frequency [22].

Field programmable gate array (FPGA) is a solution of choice because of parallel processing
capability and distributed on-chip logic resources [24–31]. The FPGA-based system implementation
makes the system compact, cost-effective for controller prototyping, and flexible for functional
interfacing of devices according to our own choices. FPGAs consist of configurable logic blocks that
can be utilized to realize various designs. One of the key features of FPGAs is its flexibility in hardware
programmability and addressing a broader application area [30]. However, the system implementation
using FPGA requires specific programming skill that is hardware description language (HDL) coding.
Designing HDL code for a particular application is a tedious and time-consuming process toward
controller development and considered more cumbersome with an increase in the level of controller
complexity [25,26,32].

The controller development approach is crucial considering the FPGA-based real-time system
implementation with an aspect of the straightforward utilization of the product in industrial applications.
The digital simulator as a realistic virtual FPGA platform is advantageous considering the controller
development process that facilitates an automatic code generation through the developed system to
ease the FPGA-based system implementation. Moreover, model-based design (MBD) platform of
the digital simulator provides system visualization and easy debugging that is appealing for rapid
controller prototyping.

Xilinx system generator (XSG) as a digital simulator adopting MBD platform was used for
the step-by-step design and modeling of the FS-MPC algorithm in αβ-frame in [31] for the load
current control of three-phase VSI system. The performance of the FS-MPC was analyzed through the
simulations in the integrated platform of XSG and MATLAB-Simulink considering steady state response
and intermediate responses with the change in the sampling time. In [33], a hardware-in-the-loop (HIL)
simulation methodology was adopted for the verification of the XSG-based FS-MPC in αβ-frame for a
three-phase VSI system with motor load condition. The performance was tested for the step-by-step
verification through simulations considering the controller in MATLAB-Simulink, XSG, and HIL
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co-simulation. A comparative analysis was presented through the controller performance with the
effect of sampling time and reference tracking under dynamic conditions.

This paper presents the FPGA-based real-time implementation of FS-MPC for experimental
validation of controller modeled in the digital simulator (XSG). The FS-MPC is developed for a
three-phase VSI system with RL load using an optimization function consisting of current control
objectives considering both stationary αβ and rotating dq reference frames for comparative analysis.
The functionality of MBD platform is demonstrated through some intermediate responses for the
controller development in both frames. In addition, the change in reference current is considered for
transient behavior and dynamic response analysis. The computational requirements for both frames
based on an FPGA resource sharing are used for comparative analysis. The FPGA board used for the
experimental system is the Zedboard Zynq Evaluation and Development Kit.

Other sections of this paper are organized as follows: Section 2 describes the algorithm of FS-MPC
in both αβ and dq frames considering the discrete-time mathematical model of the three-phase VSI
system. In Section 3, the model-based design and development of controller in the digital simulator is
explained. Section 4 covers the simulation results with detailed discussion. The experimental setup and
the validation of the system performance are presented in Section 5. Finally, appropriate conclusions
are drawn in Section 6.

2. Finite Set-MPC

The power circuit of three-phase VSI with RL load is shown in Figure 1 where R is the load
resistance and L is the load inductance. The FS-MPC based on current control objective uses a
discrete-time model of the load current dynamic equation for the formulation of the control algorithm
and deals only with a limited number of possible switching states of the power converter. The switching
states of the converter are determined by the switching signals Sa, Sb, and Sc as shown in Table 1.
Considering all the possible switching combinations of the switching signals, eight switching states
S (S0–S7) and hence, eight voltage vectors vi (v0–v7) are obtained as shown in Table 2.
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Figure 1. Power circuit of three-phase VSI with RL load.

Table 1. Gating signals of the inverter power switches.

Leg ‘a’, Sa Leg ‘b’, Sb Leg ‘c’, Sc

G1 ON, 1 G3 ON, 1 G5 ON, 1
G2 OFF, 0 G4 OFF, 0 G6 OFF, 0
G1 OFF, 0 G3 OFF, 0 G5 OFF, 0
G2 ON, 1 G4 ON, 1 G6 ON, 1
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Table 2. Voltage vectors and switching states with index number.

Switching States Voltage Vectors
Index Number

S = [Sa Sb Sc] vi = [viα viβ]

S0 = [0 0 0] v0 = [0, 0] 0
S1 = [1 0 0] v1 = [2Vdc/3, 0] 4
S2 = [1 1 0] v2 = [Vdc/3,

√
3Vdc/3] 6

S3 = [0 1 0] v3 = [−Vdc/3,
√

3 Vdc/3] 2
S4 = [0 1 1] v4 = [−2Vdc/3, 0] 3
S5 = [0 0 1] v5 = [−Vdc/3,−

√
3Vdc/3] 1

S6 = [1 0 1] v6 = [Vdc/3,−
√

3Vdc/3] 5
S7 = [1 1 1] v7 = [0, 0] 7

The load current dynamics behavior can be described by the vector differential equation as below:

vi = RiL + L
diL

dt
(1)

where inverter output voltage vi is defined as a vector form in terms of the phase-to-neutral voltages
of three phases a, b, c and expressed as follows:

vi =
2
3

(
vaN + e j(2π/3)vbN + e j(4π/3)vcN

)
(2)

Similarly, three-phase load currents iL can be expressed in terms of line currents iLa, iLb, iLc of three
phases as given below:

iL =
2
3

(
iLa + e j(2π/3)iLb + e j(4π/3)iLc

)
(3)

2.1. Discrete-Time Predictive Model

The discrete-time model of the load current dynamics (1) for a sampling time TS represents the
predictive model. It will be used to predict the future value of load currents considering all voltage
vectors. The discrete-time model can be obtained by an approximation of load current derivative diL/dt
using the forward Euler discretization method given as:

diL

dt
≈

iL(k + 1) − iL(k)
TS

(4)

After substituting (4) into (1), an expression of predicted future load current at sampling interval k+1,
is obtained for each of the seven different voltage vectors vi(k) in αβ frame as:

ipLα(k + 1) = k1iLα(k) + k2viα(k)

ipLβ(k + 1) = k1iLβ(k) + k2viβ(k)
(5)

where k1 =
(
1− RTS

L

)
, k2 =

TS
L . ip

Lα,β(k+1), and iLα,β(k) denotes the predicted future load currents at time
k + 1 and the measured load currents at instant k, respectively, in αβ-frame. The coordinate transforms
from abc to αβ are computed using mathematical relation defined by Clarke transformation as:

[
xα
xβ

]
=

 1 0 0
0 1

√
3
−

1
√

3




xa

xb
xc

 (6)

where x can be any quantity voltage or current.
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The predicted load currents in rotating dq-frame considering feed-forward terms for the decoupling
of the d and q components of the current using forward Euler discretization is given below:

ipLd(k + 1) = k1iLd(k) + k2
{
vid(k) + k3iLq(k)

}
ipLq(k + 1) = k1iLq(k) + k2

{
viq(k) − k3iLd(k)

} (7)

where k1 =
(
1− RTS

L

)
, k2 =

TS
L , k3 = ω∗L, ω* is the angular frequency of the current reference.

The voltages vid, viq and currents iLd, iLq can be computed using Park transformation relation to get dq
from αβ components given as: [

xd
xq

]
=

[
cosθ∗ sinθ∗

− sinθ∗ cosθ∗

][
xα
xβ

]
(8)

where θ* is the reference phase angle for the coordinate conversion.

2.2. Selection Criteria

To select the optimum switching state according to optimum voltage vector in each sampling and
to minimize the error between the predicted and reference variables, a selection criteria is required to
be defined considering desired control objectives. A cost function is formulated by incorporating error
between each predicted and reference control variables as well as any constraints.

A simple cost function considering current control objective is usually defined in terms of the
orthogonal αβ coordinates as follows:

gαβ =
∣∣∣i∗Lα(k + 1) − ipLα(k + 1)

∣∣∣ + ∣∣∣∣i∗Lβ(k + 1) − ipLβ(k + 1)
∣∣∣∣ (9)

where i*Lα and i*Lβ are the real and imaginary components of the reference current. The future reference
current value required by (9) has to be predicted using Lagrange extrapolation formula [5]. However,
for sufficient small TS, a simple approximation i*L(k + 1) ≈ i*L(k) can be used and no extrapolation is
required. The same approximation is considered in this paper.

The cost function to control d and q components of the load current is formulated as:

gdq =
∣∣∣i∗Ld(k + 1) − ipLd(k + 1)

∣∣∣ + ∣∣∣∣i∗Lq(k + 1) − ipLq(k + 1)
∣∣∣∣ (10)

where i*Ld and i*Lq are the reference currents for d and q components, respectively.
In order to demonstrate the implementation methodology of the FS-MPC in two different

coordinates, the schematic diagram of the load current control using FS-MPC with stationary αβ and
rotating dq reference frames are depicted in Figure 2a,b, respectively.

3. Model-Based Design of FS-MPC

Model-based design of the FS-MPC is divided into three steps: computation of cost function,
selection of optimum switching state, and generation of switching signals. The steps for modeling of
the controller are described in the following subsections.

3.1. Computation of Cost Functions

The cost function is computed using the predictive model that is modeled using discrete-time
mathematical equations described in Section 2. The computation of cost function corresponding to
a voltage vector (for ex. v3) is shown by the block diagram in Figure 3a,b for FS-MPC in αβ and dq
frames, respectively. The modeling for the computation of predicted load currents and the cost function
is represented for the FS-MPC in αβ-frame (Figure 3a) using (5) and (9) respectively. Similarly, the
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model-based design for the load current prediction and the cost function computation is performed
using (7) and (10) respectively for the FS-MPC in dq-frame (Figure 3b).
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Although only a single voltage vector (v3) is considered for the demonstration of the modeling
steps during the computation of cost function, the cost functions need to be computed for each inverter
voltage vectors (v0–v7) defined for corresponding switching states (Sa, Sb, Sc) as given in Table 2 to
select minimum cost function in each sampling interval.

3.2. Selection of Optimum Switching State

The block diagram for the selection of an optimum switching state Sopt corresponding to the
minimum cost function gmin for each sampling interval is shown in Figure 4. A simple pipelining
method is used to find the minimum among the computed cost functions. A logic to select a minimum
between the two consecutive cost functions is developed using a comparator (C) and a 2:1 multiplexer
(M). The output of the comparators (binary digit “0” or “1”) are used as select lines (sel0–sel6) for the
multiplexers in the combined C&M (C&M0 ~ C&M6) to select the minimum cost function (gm0–gm6)
out of the two as shown in Figure 4a. Similar to the selection of gmin, an optimum switching state Sopt

is selected using the corresponding select lines (sel0–sel6) fed to the multiplexers (M0 ~ M6) by taking
consecutive two switching states as shown in Figure 4b.
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3.3. Generation of Switching Signal and Index Number

The switching signals corresponding to selected Sopt is also generated through modeling. The 3-bit
binary combination of Sopt is sliced to generate switching signals for respective upper switches (G1, G3,
G5), and complementary switching conditions are applied to lower switches (G2, G4, G6).

An index number is considered for an in-depth analysis purpose corresponding to eight possible
voltage vectors (v0–v7) as mentioned in Table 2. The index numbers are defined considering the
decimal equivalent of the binary values of Sa, Sb, Sc. For example, the index number is defined as “4”
corresponding to v1 having {Sa, Sb, Sc} as {1, 0, 0}. The Sopt corresponding to the gmin is used to select
an index number that replicates the definite switching state selection in each sampling time.

The digital logic for the selection of gmin, selection of the Sopt, and the implementation of Sopt to
inverter through the model-based XSG (digital simulator) diagram was demonstrated in [31] based on
the block diagram shown in Figure 4.

4. Simulation Results

To demonstrate the development approach of the controller in αβ as well as dq frames, a simulation
methodology is represented in Figure 5. The power circuit of three-phase VSI is developed in MATLAB-
Simulink using simscape power systems toolbox, whereas the controller is developed in the digital
environment of XSG using XSG toolbox. A fixed-point number representation approach was adopted
for the development of FS-MPC in both frames. The parameters considered for the simulation are as
follows; supply DC voltage (Vdc): 145 V, load resistor (R): 10 Ω, load inductor (L): 10 mH, sampling
time (TS): 50 µs.
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Figure 5. Block diagram representation for modeling and simulation.

4.1. System Performance

The three-phase load currents (iLa, iLb, iLc) in Figure 6a,b are presented to validate the system
performance with the FS-MPC implemented in αβ and dq frames, respectively. In order to investigate
the dynamic performance of the FS-MPC for the three-phase VSI system, two step changes in reference
current are considered for current tracking during the transients. The tracking performance of the load
current is demonstrated for change in reference current from 2.5 A to 4 A at instant 0.062 s and from 4 A
to 2.5 A at instant 0.14 s for the FS-MPC in αβ-frame (Figure 7a) and dq-frame (Figure 7b), respectively.
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Figure 7. Simulation result: tracking performance of load current for the FS-MPC in (a) αβ-frame and
(b) dq-frame.

In the case of dq-frame, the step changes are applied in the d-axis component of the reference
current, keeping q-axis reference current zero. The harmonic content in the load current is also
analyzed considering both the frames. A higher percentage THD is observed for current reference
of 2.5 A (5.28% in αβ-frame and 5.61% in dq-frame) as compared to reference current of 4 A having
percentage THD 3.54% in αβ-frame and 3.74% in dq-frame. The THD for lower current reference is
not the same in αβ and dq frames, however, the THD is almost the same for higher reference current
condition. The slight difference in THD may be due to the different mathematical computation for αβ
and dq frames.
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4.2. Intermediate Response

The intermediate responses are vital not only for the design and development of the controller,
but also for in-depth analysis. In this paper, the performance of FS-MPC is analyzed considering the
intermediate responses: minimum cost function gmin and index number at each sampling interval.
The selected gmin represents the minimum current error and index number represents the switching
state Sopt at each sampling interval. The value of gmin are shown in Figure 8a,b for the FS-MPC in αβ
and dq frames, respectively. Further, the index number of the selected Sopt corresponding to the gmin at
each sampling interval are shown in Figure 9a,b for the FS-MPC in αβ and dq frames, respectively.
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Figure 10. Block diagram of experimental setup. 

Figure 9. Simulation result: the index number of selected optimum switching state Sopt in each sampling
interval for the FS-MPC in (a) αβ-frame and (b) dq-frame.

The index number is almost following the same profile for each cycle of current. However, the
selected Sopt in each sampling intervals is not identical in αβ and dq frames that signify the different
selection of optimum voltage vectors, consequently having the non-identical minimum current error.

The intermediate responses are intentionally demonstrated as enlarged view during the instant
of transients caused by the step change in reference current. The minimum current error in Figure 8
is possessing a sharp spike at the instant of change in reference current. The value of the current
spike in dq-frame is lower as compared to the αβ-frame. The intermediate responses for selection of
minimum cost function and the index number corresponding to optimum switching state is analyzed
for modeling and implementation of FS-MPC.

5. Experimental Results

The experimental setup for real-time implementation of the FS-MPC is represented using block
diagram as shown in Figure 10. The laboratory prototype of the experimental setup is depicted in
Figure 11 and the experimental system components used for the development of laboratory prototype
are listed in Table 3. The FPGA code was generated automatically through the modeled controller and
programmed using dedicated software (Xilinx Vivado Design Suite) for real-time operation of VSI
system with FS-MPC.
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Figure 11. Laboratory prototype of the experimental setup.

Table 3. Description of components specifications for the experimental system.

S. No. Components Specifications

1 Three-phase VSI STEVAL-IHM023V3, 1 kW
2 DC supply THDSHVMTRPFCKIT
3 Current transducer LA 25-NP
4 Op-amp IC for level shifter LM385N
5 Isolator IC ADuM3440
6 ADC Digilent Pmod AD1
7 DAC Digilent Pmod DA4
8 FPGA board Zedboard Zynq Evaluation and Development Kit

The performance of the FS-MPC in αβ and dq frames was experimentally evaluated and the
experimental data are obtained through HIOKI 8855 Memory Hicorder. Further, the data are plotted
with the help of MATLAB plotting tool for demonstration and analysis of experimental results.

5.1. System Performance

The FS-MPC in both frames is experimentally validated for system performance analysis
considering the same system parameters as in the case of simulation. The three-phase load currents
(iLa, iLb, iLc) are shown in Figure 12a,b for the FS-MPC in αβ and dq frames, respectively. Further,
the dynamic response is demonstrated in Figure 13a,b for the FS-MPC in αβ and dq frame, respectively,
with the same step change in reference current as adopted in the simulation (2.5 and 4 A at instants
0.062 s and 0.14 s respectively). In order to investigate the dynamic response of the FS-MPC, the time
span is intentionally expanded to demonstrate the current tracking during the transient caused by step
changes in reference current.
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Figure 13. Experimental result: tracking performance of load current for the FS-MPC in (a) αβ-frame
and (b) dq-frame.

The harmonic content in the load current during the experiment was measured through HIOKI
power analyzer and current clamp sensor. The percentage THD in load current is 7.91% in αβ-frame,
8.15% in dq-frame for current reference of 2.5 A and 4.9% in αβ-frame, 4.8% in dq-frame for current
reference of 4 A. Considering the simulation results, the current THD is significantly high during the
experiment for lower current reference as compared to higher current reference. However, the difference
between the percentage THD through the implementation with the FS-MPC in αβ and dq frame is
smaller during the experiment as compared to the simulation.
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5.2. Intermediate Response

The value of gmin and the index number at each sampling interval are demonstrated in Figures 14
and 15 for the FS-MPC in αβ and dq frames, respectively. The index number profile for Sopt is similar to
that analyzed during the simulations for each sampling interval. The non-identical nature of selected
Sopt with respect to sampling interval validates the different selection of optimum voltage vectors,
consequently the different minimum current error between the FS-MPC in αβ and dq frames.
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Figure 14. Experimental results: the values of minimum cost function gmin for the FS-MPC in (a)
αβ-frame and (b) dq-frame.

Similar to the simulation results, gmin shows a sharp spike at the instant of step change and the
value of the current spikes in the case of αβ frame is higher than dq frame. In addition, the value of
current spikes during simulation and experiment is almost the same for both the frames.

In order to summarize the results obtained during simulation (Sim.) as well as experiments (Exp.)
with both frames, a comparative analysis is presented in Table 4. The average switching frequency
(fSW) is also depicted in the same table with the percentage THD in load current corresponding to the
load changes. There is a noticeable difference between the average fSW during the simulation and the
experiment. A higher value of the average fSW during the simulation may be due to the ideal power
switches and absence of realistic inductive load properties. The average fSW in αβ and dq frame for
experiment is almost similar. However, the slight difference in THD as well as average switching
frequency is maybe due to the different mathematical computation in αβ and dq frames. In addition,
usually there are difference in performance between both frames and a decoupling term is included in
dq-frame to compensate the computational difference of the αβ and dq frame.
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5.3. FPGA Resource Utilization

Digital logic resources of an FPGA are used during the implementation of the controller in
real-time. The configurable logic blocks (CLBs) are the main constituents of the FPGA resources. A CLB
element contains a pair of slices where a slice is composed of look-up tables (LUTs) and flip-flops
(FFs) [34,35]. An FPGA chip consists of large arrays of LUTs. LUTs are used for making digital logics
for desired system designs, whereas flip-flops are binary shift registers used to synchronize logic and
save logical states between clock cycles within an FPGA circuit. The number of LUTs and flip-flops in
a single slice varies based on the family of the FPGA chip. In 7 series FPGAs, a slice contains four LUTs
and eight flip-flops [35]. In addition, DSP slices are a major component of the FPGA resources that are
mainly used to implement signal processing functions. A DSP slice is composed of signed multiplier,
adder/accumulator, arithmetic logic unit (ALU), and many more [36].

In order to analyze the complexity level between the FS-MPC developed in αβ and dq frames,
the resource utilization of FPGA are summarized in Table 5. The number of slice LUTs and DSP cells
show higher resource utilization for the case of FS-MPC in dq-frame. DSP cells utilization is nearly
three times higher for dq-frame than αβ-frame. A higher FPGA resource utilization in the case of the
FS-MPC in dq-frame is due to the additional coordinate transformation (αβ to dq) for voltage vectors
including measured current, reference phase angle θ* generation using CORDIC SINCOS, and an extra
effort for computation of feed-forward term used for decoupling.
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Table 4. Comparative analysis chart for the FS-MPC in two frames.

Performance Indices
FS-MPC in αβ-Frame FS-MPC in dq-Frame

Comments
Sim. Exp. Sim. Exp.

Current error (spike) at
instant 0.062 s 1.76 1.78 1.16 1.1

1. lower for dq-frame
2. quite similar in experiment as
compared to simulation for both
frames

Current error (spike) at
instant 0.14 s 1.02 1.1 0.8 0.88 1. quite similar for both frames

2. slightly lower for dq-frame

THD and average fSW
for iL = 2.5 A

5.28%
3053 Hz

7.91%
2310 Hz

5.61%
3306 Hz

8.15%
2350 Hz

1. higher for dq-frame
2. significantly high in experiment for
both frames

THD and average fSW
for iL = 4 A

3.54%
3733 Hz

4.9%
2550 Hz

3.74%
3920 Hz

4.8%
2580 Hz

1. quite similar for both frames
2. slightly high in experiment

Transient response:
Settling time for step

change at 0.062 s
200 µs 400 µs 250 µs 500 µs

1. significantly high in experiment for
both frames
2. slightly higher for dq-frame

Transient response:
Settling time for step

change at 0.14 s
150 µs 280 µs 130 µs 200 µs 1. high in experiment for both frames

2. slightly lower for dq-frame

Table 5. Field-programmable gate array (FPGA) resource utilization for the FS-MPC implementation.

Logic Utilization Indices Available
Used Utilization Percentage

αβ-Frame dq-Frame αβ-Frame dq-Frame

Number of slice LUTs 53,200 4364 8534 8.2% 16.04%
Number of FFs 106,400 1078 1327 1.01% 1.25%

Number of DSP cells 220 25 66 11.36% 30%

6. Conclusions

This paper presents an FPGA-based real-time implementation of the FS-MPC in αβ as well as
dq coordinates for the load current control of a three-phase VSI system. The FS-MPC algorithm is
developed in a digital simulator of Xilinx which is an integrated platform with MATLAB-Simulink.
A modeling approach was adopted for controller development to have an insight into the FS-MPC
performance. To demonstrate the functionality of the modeling approach, the intermediate responses
such as minimum cost function and index number are presented considering step-by-step analysis.
The system performance is validated through simulation results and experimental results considering
the dynamic behavior during transients for the FS-MPC in both frames as summarized in Table 4.

The current error spike during transient is almost the same for the simulation and experiment
results that authenticates the realistic controller modeling in a digital simulator. However, the percentage
THD of load current is higher in experiments as compared to the simulations that are because of the
simplified model of the VSI and the load used for the simulation study. In addition, in αβ-frame slightly
better percentage THD is achieved as compared to dq-frame in the simulation as well as the experiment.
The system implementation through the FS-MPC in dq-frame can be used for in-depth system analysis,
however, for the real-time implementation αβ-frame should be preferred as it has 2–3 times lower
complexity considering the overall FPGA resource utilization.
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