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Abstract: The paper investigates the dynamics of the thermal field of the ACCC (aluminum conductor
composite core) line. The system was heated by solar radiation and current flow. Conductor cooling
was modeled using the total heat transfer coefficient as the sum of convective and radiative components.
The temperature increase generated by the current is described by a system of parabolic differential
equations with an appropriate set of boundary, initial and continuity condition. The mentioned
boundary-initial problem was solved by a modified Green’s method, adapted to the layered structure
of the system. For this purpose, Green’s functions, as the kernels of integral operators inverse
to differential ones, were determined. Aluminum resistivity and heat transfer coefficient change
significantly with temperature. For this reason, the solution to the problem is presented in the form
of a lower and upper estimation of the heating curve and local time constant. A steady-state current
rating was also determined. The results are presented graphically and verified by other methods
(power balance and finite element). The physical interpretation of the presented solution is also given.

Keywords: ACCC lines; Green’s functions; heating curves; local time constants; steady-state
current ratings

1. Introduction

Power lines produced in the ACCC (aluminum conductor composite core) technology have
a number of advantages over the classic ACSR (aluminum conductor steel reinforced) conductors.
First of all, composite cores are 70% lighter and twice as strong [1] as steel ones. A core braid is made
of fully annealed 99.7% aluminum (type 1350-O) [2]. Of all alloys of this metal, the resistivity of 1350-O
aluminum is the lowest. In order to increase the effective cross section of aluminum (with the same
diameter of the conductor) profiled trapezoidal strands are used. The above mentioned solutions
lead to a significant reduction in the resistance of ACCC conductors and thus to a reduction in power
loss (by 25–30%) compared to ACSR systems. Moreover, composite cores can operate at much higher
temperatures than steel ones (180 ◦C and 85 ◦C, respectively) [2]. This results in a double increase in
transmitted power. There is no need to change the diameter of the conductor or to strengthen/raise
towers. In addition, composite cores have a very low coefficient of thermal expansion (1.6× 10−6K−1).
Combined with the low core weight, this results in low sag of ACCC conductors. In this way, a safe
clearance between the line and objects below is maintained. In addition, covering the core and surface
of the ACCC conductor with additional coatings significantly reduces thermal aging and retains
flexural strength [3–5].

The disadvantages of ACCC conductors are the high price and the requirement for accurate
installation (especially tensioning must be in accordance with the manufacturer’s instructions). The full
annealing of aluminum makes the surface soft and susceptible to damage. However, the advantages
of ACCC conductors described earlier make them an object of interest of companies dealing with
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electrical power transmission and distribution. Evidence of this is the many thousands of kilometers
of ACCC conductors installed worldwide after 2005. For this reason, research on ACCC lines meet the
needs of modern power engineering and electrical engineering.

Each technology has its own limit parameters. If the composite core sustainedly heats up above
the maximum operating temperature, its accelerated aging process will occur. It may be manifested by
a decrease in the flexibility of the core [3,4]. On the other hand, too large thermal field gradients lead to
internal mechanical stresses and thus to smaller or larger displacement of the strands. In extreme cases
of very high temperature (generated, e.g., by short-circuit current), the strands delaminate to form
a kind of “birdcage” on the section of the conductor. Therefore, thermal field analysis is an important
part of checking the correctness of the line design and its optimization.

The stationary surface temperature of the ACCC conductor can be determined [6] by the CIGRE [7]
or IEEE [8] methods. They rely on an iterative solution to heat balance equations with respect to
temperature. An interesting variation [8] is the conductor replica method [9]. The finite element
method (FEM) [10] is much stronger than [7–9]. Transient thermal field in the cross-section of the ACCC
conductor was analyzed in [3,11] using commercial FEM software. In [3], however, the skin effect and
solar radiation were omitted. In [11] additional carbon nanostructure coatings were considered. In the
thermal field analysis of ACCC systems, methods previously used to study classic ACSR lines will also
be effective. The following methods should be mentioned here: finite difference (FDM) [12,13], finite
volume (FVM) [14,15] and equivalent thermal circuit (ETC) [16–18].

The experimental methods [6] are also worth mentioning. The method of measuring variable
temperature in a cylindrical current-heated system is briefly described in [19] (chapter experimental
verification). The calculations given in this paper can be experimentally verified in the same way.

It follows from the above that the thermal field of the ACCC conductor can be calculated
numerically or analytically. The first method allows for taking into account material non-linearities and
conveniently maps the heterogeneity of the ACCC cross-section. The mesh of the numerical method
imposes, however, a finite number of degrees of freedom. In turn, the main advantage of analytical
methods is the result in the form of formulas. It facilitates physical interpretation of phenomena and
discussion of the impact of individual parameters. In addition, the analytical solution enables quick field
estimation at any selected points in the area and moments of time. Due to greater accuracy, analytical
results are benchmark values for the numerical solutions tested. For the above-mentioned reasons,
the thermal field of the ACCC line is investigated in this paper using the Green’s function [20–22]
(i.e., by the analytical method). The Green’s function remains an important field theory tool used,
among others, in mechanics, electrical engineering and physics. This is confirmed by three extensive
monographs [20–22] devoted to this subject and published in the current decade. To the best of
the authors’ knowledge, the Green’s method has not been used in published works dedicated to
ACCC systems.

From the application point of view, it is important to estimate the following parameters and
operational characteristics of the ACCC line: steady-state current rating, heating curve and time
constant. The first value ensures the core thermal security. In turn, the last two values are the basic
parameters of thermal field dynamics (e.g., when switching the line on and off, changing the load
current, short circuit, discontinuous running, etc.). As previously mentioned, the problems transient
states in ACCC conductors are relatively rare topics of other publications. For this reason, this paper
contributes to filling this gap.

2. Physical Model of the ACCC Line

The cross section of the investigated system is shown in Figure 1. The bearing element of the
ACCC line is the central core with R1 radius. The core is made of carbon fiber epoxy composite (CFC).
The next layer with R1, R2 radiuses, protects aluminum against corrosion from carbon fibers. The layer
2 material is a glass fiber epoxy composite (GFC). The additional task of GFC is to increase the strength
and flexibility of the core. The last area (index 3) is the current conductor. The conductor is twisted
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from soft and annealed aluminum trapezoidal strands. This cross-section ensures large contact surfaces
between individual strands and their tight arrangement in the annulus R2 ≤ r ≤ R3 (Figure 1). For this
reason, a monolithic conductor structure was assumed. Helical stranding of strands was also omitted.
This last simplification was compensated by introducing the stranding factor k1 [23] into the formula
for volumetric power density. Additionally, it was assumed that the aluminum surface (r = R3) is
moderately oxidized (i.e., emissivity ε = 0.5). The outer diameter of the conductor (2R3) is much
smaller than its length and dimensions of surrounding objects. The latter are at ambient temperature
Ta = const.
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Figure 1. Cross-section of the aluminum conductor composite core (ACCC) conductor.

The thermal field is generated from the moment of switching on the current with the power
frequency f and the root mean square current |I|. Low frequency allows one to neglected dielectric
losses in composites relative to Joule heat produced in aluminum. The influence of the air boundary
layer around the line was also omitted. It means uniformly heat transfer by the surface r = R3. The last
assumption together with the axisymmetric geometry of the system allows one to approximate the
thermal field with the radial coordinate r and time t functions.

Solar radiation can be taken into account by the surface density of its power (W/m2) [7,8] or the
temperature of the sun sensor [9,24]. The second method was chosen in this paper. The simplest sensor
is a replica of the conductor [9,24] located next to the real system. It was assumed that Ts means the
temperature of the entire volume of the replica, heated by solar radiation. Therefore, Ts is also the
conductor temperature before turning on the power (i.e., for t < 0). The replica is never charged with
electricity—there is only solar input. For this reason, a constant value of the replica’s temperature is
assumed Ts (even after turning on the power supply of the real line). The Ts − Ta increase is a measure
of the intensity of solar radiation.

The system cooling was modeled using the total heat transfer coefficient α. It is the sum of [25]
convection γn and radiation αr coefficients. The first component includes, among others, wind speed
V [19]. The cross flow direction relative to the line was assumed. The second component depends,
among others, on emissivity ε [25] (p. 10). For the lower and upper estimation of the heating curve,
temperature-time profiles will be determined for the following parameters.

αL = α(V, ε, Tp = Ts, T f = 0.5(Ts + Ta)), ρL = ρ(Ts), (1a)

αM = α(V, ε, Tp = 0.5(Ts + Tmax), T f = 0.25(Ts + Tmax + 2Ta)), ρM = ρ(0.5(Ts + Tmax)), (1b)

αH = α(V, ε, Tp = Tmax, T f = 0.5(Tmax + Ta)), ρH = ρ(Tmax), (1c)

where the following nomenclature was used:

Tp—conductor surface temperature (or average),
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T f = 0.5
(
Tp + Ta

)
—average boundary layer temperature,

Tmax—maximum operating temperature (or sustained maximum temperature),

ρ(T) = ρ(20 ◦C)[1 + β(T − 20 ◦C)]—resistivity of annealed aluminum, (2)

at temperature T < 200 ◦C [23],
β—temperature coefficient of electric resistivity.

3. Mathematical Model of the Thermal Field in the ACCC Line

The temperature increases νi(r, t) and Ts − Ta are calculated relative to Ta and generated,
respectively, by current flow and solar radiation (i = 1 for CFC, i = 2 for GFC, i = 3 for Al).
According to the Electric Power Research Institute—USA [24], these increases can be analyzed
separately. After averaging the thermal and material parameters, the system is linear. From the
superposition of increases it results that

Ti(r, t) = Ts + νi(r, t), (3)

where: Ti(r, t) is the spatial-temporal distribution of temperature in the i-th zone. The temperature
increase forced by current was defined by the following initial-boundary problem for the heat
equation [22,25].

∂2νi(r, t)
∂r2 +

1
r
∂νi(r, t)
∂r

−
1
χi

∂νi(r, t)
∂t

= −
gi(r)
λi

for Ri−1 ≤ r ≤ Ri, t ≥ 0, i = 1, 2, 3, (4)

where: R0 = 0 and χi = λi/(ciµi) is the diffusivity of the i-th zone, λi is the thermal conductivity of the
i-th zone, ci is the specific heat of the i-th zone, µi is the density of the i-th zone and R1, R2, R3 are the
consecutive radiuses of the conductor zones (Figure 1). The efficiency of the spatial heat source g3(r)
in the aluminum annulus was determined based on [26].

g3(r) = k1 · ρ ·

∣∣∣∣∣∣ m|I|
2πR3

K1(mR2)I0(mr) + I1(mR2)K0(mr)
I1(mR3)K1(mR2) − I1(mR2)K1(mR3)

∣∣∣∣∣∣2, (5)

where: m =
√

j2π fµo/ρ, ρ is the resistivity of the conductor, µo is the magnetic permeability of
a vacuum, k1—stranding factor, f —the frequency and j =

√
−1 is an imaginary unit, Ip(...), Kp(...) are

modified Bessel functions of the first and second kind of the order of p (p = 0 or p = 1), respectively.
There are no heat sources in the core, therefore g1(r) = g2(r) = 0.
In the considered model it was assumed that the current flow heats the system from t = 0.

The temperature increase generated by the current is calculated relative to Ta. This results in zero
initial conditions in all zones of the conductor

νi(r, t = 0) = 0 for Ri−1 ≤ r ≤ Ri for i = 1, 2, 3, R0 = 0. (6)

The outer surface of the conductor (r = R3) gives up heat by convection and radiation.
The mentioned transfer is described by Hankel’s boundary condition [25]

∂ν3(r, t)
∂r

∣∣∣∣∣∣∣∣∣∣∣ r = R3

= −
α
λ3
ν3(r = R3, t) for t ≥ 0, (7)

where α is the total heat transfer coefficient.
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The particular layers of the conductor are closely adherent to each other. Therefore, the conditions
for continuity of temperature increase and heat flux are met at the boundaries of regions

νi(Ri, t) = νi+1(Ri, t) for i = 1, 2 and t ≥ 0, (8a)

λi
∂νi(r, t)
∂r

∣∣∣∣∣∣∣∣∣∣∣ r = Ri

=λi+1
∂νi+1(r, t)

∂r

∣∣∣∣∣∣∣∣∣∣∣ r = Ri

for i = 1, 2 and t ≥ 0. (8b)

Equations (4)–(8) form the boundary-initial problem of the transient increase of the
temperature field.

4. Green’s Functions of the Mathematical Model of the Thermal Field in the ACCC Line

The boundary-initial problem (4)–(8) was solved by the Green’s method [20–22]. In this method,
it is unnecessary to determine the particular solution [27] of the heterogeneous Equation (4) for i = 3.
This is the advantage of the Green’s function method, which does not depend on the forcing function
g3(r) [22]. In addition, this method does not require a separate determination of the stationary and
transient temperature field components for later superposition. The above reasons prompted the
authors to choose the Green method. Details on the definition, physical interpretation and description
of the boundary-initial problem of Green’s function are given in [22,27,28]. In the considered model,
the current-related increase in temperature in the i-th zone can be represented by the following integral
relationship [28].

νi(r, t) =
χ3

λ3

t∫
0

R3∫
R2

g3(ξ)Gi(r, t, ξ, η)ξdξdη for Ri−1 ≤ r ≤ Ri, t ≥ η, i = 1, 2, 3, R0 = 0, (9)

where g3(ξ) is given by the relation (5) (after conversion r→ ξ ), Gi = Gi(r, t, ξ, η) is the Green’s function
in the i-th zone, (ξ, η) are parameters related to the definition of the Green’s function. The condition
for using (9) is knowledge of the Green’s functions Gi. One way to determine them is to solve the
auxiliary (homogeneous) problem using two methods: separation of variables [25,27] and Green’s
function [22,27].

The homogenous auxiliary problem in relation to the function Ψi(r, t) is defined as below:

∂2Ψi(r, t)
∂r2 +

1
r
∂Ψi(r, t)
∂r

−
1
χi

∂Ψi(r, t)
∂t

= 0 for Ri−1 ≤ r ≤ Ri, t ≥ 0, i = 1, 2, 3, R0 = 0, (10)

∂Ψ3(r, t)
∂r

∣∣∣∣∣∣∣∣∣∣∣ r = R3

= −
α
λ3

Ψ3(r = R3, t) for t ≥ 0, (11)

Ψi(Ri, t) = Ψi+1(Ri, t) for i = 1, 2 and t ≥ 0, (12a)

λi
∂Ψi(r, t)
∂r

∣∣∣∣∣∣∣∣∣∣∣ r = Ri

=λi+1
∂Ψi+1(r, t)

∂r

∣∣∣∣∣∣∣∣∣∣∣ r = Ri

for i = 1, 2 and t ≥ 0, (12b)

Ψ3(r, 0) = F3(r) for R2 ≤ r ≤ R3 and Ψi(r, 0) = 0 for Ri−1 ≤ r ≤ Ri at i = 1, 2, (13)

where F3(r) is any distribution of the initial condition in the source zone (i.e., the third).
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The boundary-initial problem (10)–(13) was solved first by the separation of variables
method [25,27]. According to the method, after separating time and location variables and rejecting
the singular component for r = 0 the following was obtained.

Ψ1(r, t) =
∞∑

n=1

Cn J0(γnr/R1) · e
−γ2

n
χ1
R2

1
t

for 0 ≤ r ≤ R1, t ≥ 0, (14)

Ψ2(r, t) =
∞∑

n=1

(Dn J0(γns1r/R1) + EnY0(γns1r/R1)) · e
−γ2

n
χ1
R2

1
t

for R1 ≤ r ≤ R2, t ≥ 0, (15)

Ψ3(r, t) =
∞∑

n=1

(Fn J0(γns1s2r/R1) + HnY0(γns1s2r/R1)) · e
−γ2

n
χ1
R2

1
t

for R2 ≤ r ≤ R3, t ≥ 0, (16)

where: s1 =
√
χ1/χ2, s2 =

√
χ2/χ3 and γn are dimensionless eigenvalues (rescaled separation

constants) of the boundary-initial problem (10)–(13), Cn,Dn,En,Fn and Hn are the coefficients of
eigenfunctions and Jk(...), Yk(...) are Bessel functions of the first and second kind of order k. Then
using the continuity (12a,b) and boundary (11) conditions, equation of the eigenvalues of the problem
(10)–(13) was determined and the number of coefficients was reduced. For this purpose, the relations
(14)–(16) were substituted to (12a,b) and (11). This leads to a homogeneous system of five equations
relative to unknown coefficients Cn, Dn, En, Fn and Hn.

Cn J0(γn) −Dn J0(γns1) − EnY0(γns1) = 0, (17)

Dn J0(γnp1s1) + EnY0(γnp1s1) − Fn J0(γnp1s1s2) −HnY0(γnp1s1s2) = 0, (18)

K1Cn J1(γn) −Dn J1(γns1) − EnY1(γns1) = 0, (19)

K2Dn J1(γnp1s1) + K2EnY1(γnp1s1) − Fn J1(γnp1s1s2) −HnY1(γnp1s1s2) = 0, (20)

Fn(ϑ · J0(p1p2s1s2γn)/(γns1s2) − J1(p1p2s1s2γn))+

Hn(ϑ ·Y0(p1p2s1s2γn)/(γns1s2) −Y1(p1p2s1s2γn)) = 0,
(21)

where: K1 = λ1/(λ2s1),K2 = λ2/(λ3s2),ϑ = αR1/λ3 and p1 = R2/R1,p2 = R3/R2.
The system of Equations (17)–(21) has a non-trivial solution if its main determinant is zero

∆(γn) = a1[b1b2 + b3b4 + b5b6 + b7b8] − a2[b9b2 + b10b4 + b11b6 + b12b8] = 0, (22)

where:
a1 = ϑ ·Y0(p1p2s1s2γn)/(γns1s2) −Y1(p1p2s1s2γn),

a2 = ϑ · J0(p1p2s1s2γn)/(γns1s2) − J1(p1p2s1s2γn),

b1 = K1 J1(γn)J1(γnp1s1s2), b2 = J0(γns1)Y0(γnp1s1) −Y0(γns1)J0(γnp1s1),

b3 = K2 J0(γn)J0(γnp1s1s2), b4 = J1(γns1)Y1(γnp1s1) −Y1(γns1)J1(γnp1s1),

b5 = K1K2 J1(γn)J0(γnp1s1s2), b6 = Y0(γns1)J1(γnp1s1) − J0(γns1)Y1(γnp1s1),

b7 = J0(γn)J1(γnp1s1s2), b8 = Y1(γns1)J0(γnp1s1) − J1(γns1)Y0(γnp1s1),

b9 = K1 J1(γn)Y1(γnp1s1s2), b10 = K2 J0(γn)Y0(γnp1s1s2), b11 = K1K2 J1(γn)Y0(γnp1s1s2),

b12 = J0(γn)Y1(γnp1s1s2).

The condition (22) is an equation of eigenvalues.
Using of Equations (17)–(21), one can also reduce the number of unknown coefficients. For this

purpose, the first four Equations (17)–(20) were used. As a result Dn, En, Fn and Hn coefficients were



Energies 2020, 13, 280 7 of 15

made dependent on one Cn. The coefficients determined in this way were substituted to (15) and (16)
and, after appropriate reduction, the following was obtained.

Ψ2(r, t) =
∞∑

n=1

CnZ0(γns1r/R1) · e
−γ2

n
χ1
R2

1
t

for R1 ≤ r ≤ R2, t ≥ 0, (23)

Ψ3(r, t) =
∞∑

n=1

CnΛ0(γns1s2r/R1) · e
−γ2

n
χ1
R2

1
t

for R2 ≤ r ≤ R3, t ≥ 0, (24)

where:
Zk(γns1r/R1) = w1 Jk(γns1r/R1) + w2Yk(γns1r/R1), (25)

Λk(γns1s2r/R1) = w3 Jk(γns1s2r/R1) + w4Yk(γns1s2r/R1), (26)

w1 = (K1 J1(γn)Y0(γns1) − J0(γn)Y1(γns1))/(J1(γns1)Y0(γns1) − J0(γns1)Y1(γns1)),

w2 = (J0(γn)J1(γns1) −K1 J1(γn)J0(γns1))/(J1(γns1)Y0(γns1) − J0(γns1)Y1(γns1)),

w3 = (b6b11 + b2b9 + b4b10 + b8b12)/b13, w4 = −(b5b6 + b1b2 + b3b4 + b7b8)/b13,

b13 = (J1(γns1)Y0(γns1) − J0(γns1)Y1(γns1)) · (J1(γnp1s1s2)Y0(γnp1s1s2) − J0(γnp1s1s2)Y1(γnp1s1s2)).

The form of Equation (14) remained unchanged.
It is also necessary to determine the unknown coefficient Cn visible in the formulas (14), (23), (24).

For this purpose initial conditions (13) were used. After substituting distributions (14), (23), (24) into
(24) into (13) the following was obtained

∞∑
n=1

Cn J0(γnr/R1) = 0 for 0 ≤ r ≤ R1, (27)

∞∑
n=1

CnZ0(γns1r/R1) = 0 for R1 ≤ r ≤ R2, (28)

∞∑
n=1

CnΛ0(γns1s2r/R1) = F3(r) for R2 ≤ r ≤ R3. (29)

Subsequently, the relation (27) was multiplied by (λ1/χ1) · J0(γmr/R1) and integrated in the range
〈0, R1〉. Analogous operations were performed on expressions (28) and (29) (respectively multiplied by
(λ2/χ2) ·Z0(γms1r/R1) and (λ3/χ3) ·Λ0(γms1s2r/R1) and integrated in ranges 〈R1, R2〉 and 〈R2, R3〉).
The relations obtained in this way were added to each other. Subsequently, the orthogonality condition
of the radial coordinate eigenfunctions in cylindrical multi-zone systems (proven in [27]) was used

λ1
χ1

R1∫
0

rJ0(γnr/R1)J0(γmr/R1)dr+λ2
χ2

R2∫
R1

rZ0(γns1r/R1)Z0(γms1r/R1)dr+

+λ3
χ3

R3∫
R2

rΛ0(γns1s2r/R1)Λ0(γms1s2r/R1)dr =
{

0 for γn , γm

‖N(m)‖2 for γn = γm

(30)

where ‖N(m)‖2—square of the norm (32).
After calculating the suitable integrals in (30), ordering and replacing m→ n , the Cn coefficient

was obtained

Cn =

(λ3/χ3) ·
R3∫

R2

rF3(r)Λ0(γns1s2r/R1)dr

‖N(n)‖2
, (31)
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where:

‖N(n)‖2 = λ1
2χ1

R2
1

(
J2
0(γn) + J2

1(γn)
)
+ λ2

2χ2
R2

2

(
Z2

0(p1s1γn) + Z2
1(p1s1γn)

)
−

λ2
2χ2

R2
1

(
Z2

0(s1γn) + Z2
1(s1γn)

)
+

+ λ3
2χ3

R2
3

(
Λ2

0(p1p2s1s2γn) + Λ2
1(p1p2s1s2γn)

)
−

λ3
2χ3

R2
2

(
Λ2

0(p1s1s2γn) + Λ2
1(p1s1s2γn)

)
.

(32)
Then the integration variable was changed in (31) ( r→ ξ ). The expression thus modified was

substituted to (14), (23) and (24).
The auxiliary problem (10)–(13) was solved again by another method (i.e., using the Green’s

function [22])

Ψi(r, t) =

R3∫
R2

Gi(r, t, ξ, η = 0)F3(ξ)ξdξ for Ri−1 ≤ r ≤ Ri, i = 1, 2, 3, R0 = 0, t ≥ 0. (33)

The coefficient Cn is the integral (31) and occurs in (14), (23) and (24) with the replaced variable
r→ ξ . This makes it possible to compare the relations (14), (23)and (24) with (33) for i = 1, 2, 3
(including conversion t→ t− η ), respectively. As a result, the following was obtained.

G1(r, t, ξ, η) =
λ3

χ3

∞∑
n=1

Λ0(γns1s2ξ/R1)J0(γnr/R1)

‖N(n)‖2
· e
−γ2

n
χ1
R2

1
(t−η)

, (34)

G2(r, t, ξ, η) =
λ3

χ3

∞∑
n=1

Λ0(γns1s2ξ/R1)Z0(γns1r/R1)

‖N(n)‖2
· e
−γ2

n
χ1
R2

1
(t−η)

, (35)

G3(r, t, ξ, η) =
λ3

χ3

∞∑
n=1

Λ0(γns1s2ξ/R1)Λ0(γns1s2r/R1)

‖N(n)‖2
· e
−γ2

n
χ1
R2

1
(t−η)

, (36)

where ‖N(n)‖2 is the square of the norm (32). Green’s functions (34)–(36) are kernels of integral
operators (9) inverse to differential ones (4).

5. The Time-and-Space-Variable Heating Curves, Steady State Current Ratings and the
Time Constants

The time-and-space-variable heating curves were obtained after substitution of (34)–(36)–(9),
integration and use of relationship (3).

T1(r, t) = Ts +
∞∑

n=1

QnLn J0(γnr/R1)φn(t) for 0 ≤ r ≤ R1, t ≥ 0, (37)

T2(r, t) = Ts +
∞∑

n=1

QnLnZ0(γns1r/R1)φn(t) for R1 ≤ r ≤ R2, t ≥ 0, (38)

T3(r, t) = Ts +
∞∑

n=1

QnLnΛ0(γns1s2r/R1)φn(t) dla R2 ≤ r ≤ R3, t ≥ 0, (39)

where:

Qn =
R2

1

χ1γ2
n‖N(n)‖2

–, (40a)

φn(t) =

1− e
−γ2

n
χ1
R2

1
t
, (40b)
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Ln =

R3∫
R2

g3(ξ)Λ0(γns1s2ξ/R1)ξdξ, (40c)

and g3(ξ) is given by relation (5) (after conversion r→ ξ ). The integral (40c) is calculated numerically.
The temperature distributions (37)–(39) and other parameters of the ACCC conductor were

calculated using a software developed in the Mathematica 10.4 environment [29]. The following
data [3,19,23,25] were adopted:

R1 = 0.0034 m, R2 = 0.004765 m, R3 = 0.016425 m, λ1 = 0.17 W/(mK ), λ2 = 0.2 W/(mK ),

λ3 = 238 W/(mK ), c1 = 800 J/(kgK ), c2 = 1000 J/(kgK ), c3 = 900 J/(kgK ), µ1 = 1043 kg/m3,

µ2 = 1168 kg/m3, µ3 = 2700 kg/m3, k1 = 1.02, ρ(20 ◦C) = 2.79 · 10−8 Ωm, β = 4.07 · 10−3 1/ ◦C,

V = 0.6 m/s, ε = 0.5, Ta = 40 ◦C, Ts = 55 ◦C, αL = 17.45 W/(m2K), αM = 18.88 W/(m2K),

αH = 20.17 W/(m2K), ρL = 3.18744 · 10−8 Ωm, ρM = 3.89714 · 10−8 Ωm,ρH = 4.60685 · 10−8 Ωm,

f = 50 Hz,µo = 4π · 10−7 H/m. (41)

Resistivity ρ and heat transfer coefficients α were defined according to (1a–c) and calculated
using [19,25] Equation (2).

One of the most important parameters of the current path is steady-state current rating Icr. After
loading the system with such current, the steady-state aluminum temperature (R2 ≤ r ≤ R3) should be
equal to Tmax (maximum operating temperature). According to the manufacturer’s guidelines [1,6]
Tmax = 180 ◦C was adopted. This value ensures core security under the highest thermal load conditions
(i.e., for parameters αH,ρH). Therefore, in order to determine the steady-state current rating, one should
solve the following equation with respect to Icr.

T3H(r = R2, t→∞, |I| = Icr) = Tmax (42)

Equation (42) was iteratively solved using (39) and (41) and while loops in Mathematica 10.4 [29].
The result was Icr = 2057 A. The calculated current value was verified by the steady-state power
balance. For this purpose, the following theorem was used [9]: if in the convection and radiation terms,
the ambient temperature Ta is replaced by the solar temperature Ts, then the solar radiation power can
be zeroed in the balance.

I2
crR(Tmax) = αkS(Tmax − Ts) + εδS[(Tmax + 273.15)4

− (Ts + 273.15)4], (43a)

where the following nomenclature was used:

R(Tmax) = k1k2ρHl/[π(R2
3 −R2

2)]—aluminum resistance at temperature Tmax, (43b)

k1—stranding factor [23] (p. 116),
k2—skin factor [23] (Figure 7.2),
l—length of conductor’s section,

αk = αk(V, Tp = Tmax, T f = 0.5(Tmax + Ta)) = 13.58 W/(m 2K)—convective component of the total heat
transfer coefficient (67.33%) [19],
S = 2πR3l—conductor surface,
δ = 5.67 · 10−8 W/(m 2K4)—Stefan-Boltzmann constant.

From the relationship (43a) was obtained Icr = 2070 A. Therefore, the relative difference between
solution (42) and (43a) is approx. 0.63%, which was considered good enough accordance. The discussed



Energies 2020, 13, 280 10 of 15

difference results from the approximation of the AC resistance with the expression RAC � k1k2RDC
(43b).

On the basis (39), the heating curves T3L(r = R2, t), T3M(r = R2, t) and T3H(r = R2, t) were
plotted with heavy lines, which were respectively marked with letters L, M and H (Figure 2). They
correspond to the parameters (αL,ρL), (αM,ρM) and (αH,ρH). The load current is constant and is
(|I| = Icr = 2057 A). For 0 ≤ t ≤ t1 = 800 s real time-profile T3(r = R2, t) is initially close to L and then
gradually approaches to M (window in Figure 2). For t ≥ t1 = 800 s the sought temperature-time
history it increases analogously from the curve M to H. Therefore, the gray area visible in Figure 2
shows the range of changes of the real heating curve T3(r = R2, t).Energies 2020, 13, x FOR PEER REVIEW 10 of 15 
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Figure 2. Lower and upper estimation of the heating curve T3(r = R2, t) with the current load
Icr = 2057 A.

At the moment t = 100 s the system parameters are very close to (αL,ρL), and in t = 800 s and
t→∞ respectively to (αM,ρM) and (αH,ρH). Figure 3a–c show radial temperature distributions
TiL(r, t = 100 s), TiM(r, t = 800 s) and TiH(r, t→∞), where i = 1, 2 and i = 3 Gradual
equalization of the core temperature as a result of its heating is visible (T2L(r = R2, t =

100 s) − T1L(r = 0, t = 100 s) ≈ 2.35 ◦C, T2M(r = R2, t = 800 s) − T1M(r = 0, t = 800 s) ≈ 1.42 ◦C
and T2H(r = R2, t→∞) − T1H(r = 0, t→∞) ≈ 0 ◦C). Due to inequality λ1 ≈ λ2 << λ3, this
process is relatively slow. On the other hand, a high value λ3 means that in the annulus
{R2 ≤ r ≤ R3} the Biot number (Bi) is very low (<< 0.1). This Bi value justifies the almost uniform
temperature distribution in aluminum at any given time [25], e.g., from Figure 3c it follows:
T3H(r = R2, t→∞) − T3H(r = R3, t→∞) < 0.07 ◦C. Since the outer layer is a source of heat, its
temperature increases rapidly over time (for t = 100 s approx. 64 ◦C, for t = 800 s approx. 117.35 ◦C,
and in steady state it reaches 180 ◦C).
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Figure 3. (a) Radial temperature distribution at the instant t = 100 s with the current load Icr = 2057 A,
(b) radial temperature distribution at the instant t = 800 s with the current load Icr = 2057 A and
(c) radial temperature distribution in the steady state ( t→∞ ) with the load current Icr = 2057 A.
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In order to verify the correctness of formulas (37)–(39), the boundary-initial problem (4)–(8)
was solved again. This was done using the finite element method (FEM) [10]. The Green and FEM
methods are completely different. In the second case, the commercial NISA software was used [30].
The discrepancy of the results was evaluated using the following relation

δTi = 100%
νi(r, t) − ν(FE)

i (r, t)

νi(r, t)
for i = 1, 2, 3, (44)

where νi(r, t) is the temperature increase (above Ta) caused by the current flow calculated by the Green
method, and ν(FE)

i (r, t) is the same increase but determined by the finite element method. Figure 4

shows the relation (44) for parameters (αM,ρM). As one can see δ(M)
Ti < 0.11%, which was considered

good enough accordance. For parameters (αL,ρL) and (αH,ρH) the relative differences (44) are of the
same order as in Figure 4.
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The local time constant method τi(r) consists in approximating the dynamics of each point of the
field with the first order lag element. The step response of such an object is well known and equals

Ti(r, t) = Ti(r, t→∞)[1− exp(−t/τi(r))] + Ti(r, t = 0) exp(−t/τi(r)), (45)

where i = 1, 2 and 3. From (45) it results [31–33]

τi(r) =

∞∫
0

Ti(r, t) − Ti(r, t→∞)

Ti(r, t = 0) − Ti(r, t→∞)
dt. (46)

Heating curves (37)–(39) were substituted to (46) and, after integration, the following was
finally obtained

τ1(r) =
R2

1

χ1

∞∑
n=1

An(r)/γ2
n

∞∑
n=1

An(r)
, where An(r) =

J0(γnr/R1)

γ2
n‖N(n)‖2

Ln for 0 ≤ r ≤ R1, (47)
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τ2(r) =
R2

1

χ1

∞∑
n=1

Bn(r)/γ2
n

∞∑
n=1

Bn(r)
, where Bn(r) =

Z0(γns1r/R1)

γ2
n‖N(n)‖2

Ln for R1 ≤ r ≤ R2, (48)

τ3(r) =
R2

1

χ1

∞∑
n=1

Un(r)/γ2
n

∞∑
n=1

Un(r)
, where Un(r) =

Λ0(γns1s2r/R1)

γ2
n‖N(n)‖2

Ln for R2 ≤ r ≤ R3. (49)

Graphs of functions (47)–(49) are shown in Figure 5. The inequality τiL(r) > τiM(r) > τiH(r)
shows that at any point r the heating curve with parameters (αH,ρH) increases the fastest, and with
parameters (αL,ρL) the slowest. For r = R2 this is confirmed by Figure 2. In turn, the inequality
τ jK(r) > τ3K(r) (for j = 1, 2, K = L, M, H) makes the temperature in the composite core (CFC + GFC)
increase more slowly than in aluminum. The high speed of heat propagation in the metal means that in
its whole volume the time constant does not change. The same conclusions were drawn in the analysis
of Figure 3 based on inequality λ1 ≈ λ2 << λ3. The steady state arose as a result of a gradual transition
from M to H curve in Figure 2. For this reason, the duration of the transient state was estimated
between 5τ1H(r = 0) = 4840 s and 5τ1M(r = 0) = 5155 s. This result is also confirmed by Figure 2.
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Figure 5. Distributions of local time constants with parameters (αH,ρH), (αM,ρM) and (αL,ρL).

6. Final Remarks

The conclusions below follow from the presented analysis:

• The lower and upper estimates of the heating curve determined for the point r = R2 (Figure 2) was
almost the same in the whole volume of aluminum. This is due to the high thermal conductivity
of this metal and is confirmed by the graphs of Figures 3a–c and 5 in the range R2 ≤ r ≤ R3.

• The heating curves in the composite core increased more slowly than in aluminum. It justifies the
inequality λ1 ≈ λ2 << λ3 and was confirmed by the graphs of Figures 3a–c and 5 in the range
0 ≤ r ≤ R2. At the beginning of the transient state (t < 25 s), even apparent dead time occurred
inside the core (r = 0).

• The presented solution also included the worst case analysis (i.e., the highest thermal load). It will
occur for parameters αH and ρH defined by formulas (1c). Thus, the critical aluminum heating
curve is presented in the diagram H in Figure 2.

• The solution in the form of estimation of the heating curve and ACCC line time constant results
from the strong influence of temperature on aluminum resistivity (change by 44.5%) and on the
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total heat transfer coefficient (change by 15.6%). Sensitivity of other parameters to temperature
was much lower.

• Since the current rating was calculated in a steady state, the value of this parameter was precisely
determined (i.e., without estimation).

• Solution verification carried out by other methods than Green’s function gave a positive result
(power balance (43), finite elements—Figure 4).

• The presented solution had a very good physical interpretation (comments to Figures 2, 3a–c and 5
in the previous chapter).

• The analysis included 25 terms of the series (37)–(39) and (47)–(49). The following characteristics
and parameters were determined: heating curves (37)–(39) for three different values of heat
transfer coefficient and resistivity, time constants (47)–(49) and spatial temperature distributions
presented in Figure 3a–c. The calculations were made in the Mathematica 10.4 program within
50 min.

Author Contributions: The authors equally contributed to the preparation of each excerpt of the paper: 50%, J.G.;
50%, M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The paper was prepared at Bialystok University of Technology within a framework of the S/WE/2/2018
project funded by Ministry of Science and Higher Education, Poland.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. CTC Global Website. Available online: http://www.ctcglobal.com/products/accc-conductors (accessed on
3 January 2020).

2. Hunt, J.R. Advanced Technology High-Temperature Conductors. In Electric Power Generation, Transmission
and Distribution; Grigsby, L., Ed.; CRC Press: Boca Raton, FL, USA, 2012; Chapter 24.

3. Hoffman, J.D. On Thermal Aging Prevention in Polymer Core Composite Conductor Rods. Ph.D. Dissertation,
University of Denver, Denver, CO, USA, 2015. Available online: https://digitalcommons.du.edu/etd/1066
(accessed on 3 January 2020).

4. Burks, B.; Armentrout, D.L.; Kumosa, M. Failure prediction analysis of an ACCC conductor subjected to
thermal and mechanical stresses. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 588–596. [CrossRef]

5. Hoffman, J.; Middleton, J.; Kumosa, M. Effect of a surface coating on flexural performance of thermally aged
hybrid glass/carbon epoxy composite rods. Compos. Sci. Technol. 2015, 106, 141–148. [CrossRef]

6. CTC Global Corporation. Engineering Transmission Lines with High Capacity Low Sag ACCC Conductors; CTC
Global Corporation: Irvine, CA, USA, 2011; ISBN 978-0-615-57959-7.

7. CIGRE Working Group B2.42. Guide for Thermal Rating Calculations of Overhead Lines; Technical Brochure 601;
CIGRE: Paris, France, 2014.

8. IEEE Std. 738-2012. IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead
Conductors; IEEE Standard Association: Piscataway Township, NJ, USA, 2013.

9. Lawry, D.C.; Daconti, J.R. Overhead line thermal rating calculation based on conductor replica method.
In Proceedings of the IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat.
No. 03CH37495), Dallas, TX, USA, 7–12 September 2003; pp. 880–885.

10. Nithiarasu, P.; Lewis, R.W.; Seetharamu, K.N. Fundamentals of the Finite Element Method for Heat and Mass
Transfer; John Wiley and Sons: Paris, UK, 2016.

11. Ranjith Kumar, V.S.N.; Kumar, S.; Pal, G.; Shah, T. High-ampacity overhead power lines with carbon
nanostructure-epoxy composites. J. Eng. Mater. Technol. 2016, 138, 9. [CrossRef]

12. Chavez, O.; Mendez, F. Conjugate heat transfer in a bimetallic conductor with variable electric resistivity.
Appl. Therm. Eng. 2011, 31, 3420–3427. [CrossRef]

13. Ozisik, M. Finite Difference Methods in Heat Transfer; CRC Press: Boca Raton, FL, USA, 1994.

http://www.ctcglobal.com/products/accc-conductors
https://digitalcommons.du.edu/etd/1066
http://dx.doi.org/10.1109/TDEI.2010.5448116
http://dx.doi.org/10.1016/j.compscitech.2014.11.010
http://dx.doi.org/10.1115/1.4034095
http://dx.doi.org/10.1016/j.applthermaleng.2011.06.027


Energies 2020, 13, 280 15 of 15

14. Alvarez Gomez, F.; Garcia de Maria, J.M.; Garcia Puertas, D.; Bairi, A.; Granizo Arrabe, R. Numerical
study of the thermal behaviour of bare overhead conductors in electrical power lines. Recent Researches in
Communications. Electrical and Computer Engineering. In Proceedings of the 10th WSEAS International
Conference on Applications of Electrical Engineering (AEE’11), Madrid, Spain, 24–26 March 2011; pp. 149–153.

15. Eymard, R.; Gallouet, T.R.; Herbin, R. The Finite Volume Method. In Handbook of Numerical Analysis;
Ciarlet, P.G., Lions, J.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume VII, pp. 713–1018.

16. Hu, J.; Xiong, X.; Chen, J.; Wang, W.; Wang, J. Transient temperature calculation and multi-parameter thermal
protection of overhead transmission lines based on an equivalent thermal network. Energies 2019, 12, 67.
[CrossRef]

17. Save, Y.O.; Narayanan, H.; Patkar, S.B. Solution of partial differential equations by electrical analogy.
J. Comput. Sci. 2011, 12, 18–30. [CrossRef]

18. Piotrowska, E. The equivalent electrical model for the heat exchanger considering working medium.
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