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Abstract: Electric vehicles are set to be the dominant form of transportation in the near future and
Lithium-based rechargeable battery packs have been widely adopted in them. Battery packs need to be
constantly monitored and managed in order to maintain the safety, efficiency and reliability of the overall
electric vehicle system. A battery management system consists of a battery fuel gauge, optimal charging
algorithm, and cell/thermal balancing circuitry. It uses three non-invasive measurements from the battery,
voltage, current and temperature, in order to estimate crucial states and parameters of the battery system,
such as battery impedance, battery capacity, state of charge, state of health, power fade, and remaining
useful life. These estimates are important for the proper functioning of optimal charging algorithms,
charge and thermal balancing strategies, and battery safety mechanisms. Approach to robust battery
management consists of accurate characterization, robust estimation of battery states and parameters,
and optimal battery control strategies. This paper describes some recent approaches developed by the
authors towards developing a robust battery management system.

Keywords: battery management systems; battery fuel gauge; state of charge; state of health; power fade;
capacity fade; robust estimation; predictive control

1. Introduction

Automobiles powered by gasoline engines account for nearly 25% of the global energy
consumption [1]. Rechargeable batteries promise a way to replace them by electric vehicles (EVs)
in the near future. In addition to EVs, rechargeable batteries have been widely adopted in portable
electronic equipment, household appliances, power tools, aerospace equipment and renewable energy
storage systems. A battery management system (BMS) ensures the safety, efficiency and reliability of a
battery powered system. Research on BMS has been very intense in the last two decades and significant
improvements were achieved in the safety, efficiency and reliability of battery systems [2,3]. However, there
are challenges remaining and in this paper we describe a list of challenges and outline possible solutions.

Two schools of approaches for battery management systems have emerged over time; one models
the battery through electrical equivalent circuit model (ECMs) [2,3] and the other seeks to model it through
electrochemical models [4]. However, most practical systems adopt the electrical ECM based approaches
due to their simplicity. The research challenges faced by the present day BMS are three pronged: safety,
efficiency and reliability. Lithium ion batteries are susceptible to thermal runaway which is an irreversible

Energies 2020, 13, 2825; doi:10.3390/en13112825 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2669-7585
http://dx.doi.org/10.3390/en13112825
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/11/2825?type=check_update&version=2

Energies 2020, 13, 2825 2 of 19

chemical process triggered by several conditions including over-voltage and high temperature. The need
to fast-charge the battery, which is important in electric vehicle applications, increases the possibility
of thermal runaway and safety issues [5,6]. There are wide ranging issues affecting the efficiency of
energy storage in batteries; particularly, electric vehicle applications strive to improve efficiency in
every possible way. For example, charging efficiency is the percentage of the total energy needed
during charing [7]; fast charging requirements results in significant energy waste in the form of heat.
BMS algorithms attempt to enhance efficiency of batteries in multiple ways; optimal charging algorithms
aim to reduce the amount of heat waste and the degradation of state of health; precise SOC estimation
algorithms will help to improve the efficiency by helping to design minimal battery-pack configurations
based on specific needs. Individual cells in a battery-pack are known to become imbalanced over time
causing safety and reliability issues; short circuited cells are another common cause of safety and reliability
issues in Li-ion batteries [8-10].

An emerging challenge for battery management systems comes in the form of battery reuse [11,12]. Itis
predicted that the electric vehicle sales are about to grow by nearly 500% in the next 10 years [13]. The state
of the art BMS algorithms heavily depend on prior characterization carried out in laboratories [2,3];
Consequently, they are only effective for first time use of batteries. Considering the fact that the first use of
the battery alters its electrochemical characteristics in unique ways, traditional BMS approaches that rely
on empirical modeling, under the assumption that batteries of the same chemistry and size have similar
characteristics, will be inadequate to manage used batteries.

The present manuscript is written in the form of an expository paper detailing the many solutions
developed by the authors in the recent past in order to address specific challenges in battery
management systems. Section 2 describes in more details about the specific goals of a state of the
art battery management systems and the challenges it needs to overcome. Section 3 describes some specific
solutions developed by the authors in order to address the challenges faced by the present day battery
management system. Finally, the paper is concluded in Section 4.

2. Battery Management System: Goals and Challenges

In this section, some of the challenges faced in designing battery BMS are briefly described.

2.1. State of Charge Estimation

Coulomb counting is the easiest approach to estimate the state of charge (SOC) of a battery [2,3].
Figure la gives the approximate Coulomb counting equation that is used to compute SOC in a
recursive manner. However, Coulomb counting method suffers from the following sources of errors:

1. Initial SOC error. Since it is a recursive integration, any errors in the initial SOC assumption will
remain as a bias.

2. Current measurement error. Current sensors are corrupted by measurement noise; simple, inexpensive
current sensors are likely to be more noisy and possibly biased.

3. Current integration error. Coulomb counting methods employ a simple, rectangular approximation for
current integration. Such an approximation results in errors that increase with sampling interval as
the load changes rapidly.

4. Uncertainty in the knowledge of battery capacity [14]. Coulomb counting method assumes perfect
knowledge of the battery capacity, which is known to vary with temperature, usage patterns and
time (age of the battery) [15,16].

5. Timing oscillator error. Timing oscillator provides the clock for (recursive) SOC update, that is, the
measure of time comes from the timing oscillator. Any error/drift in the timing oscillator will have an
effect on the measured Coulombs.
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Alternatively, the open circuit voltage (OCV) can be modeled as a function of the SOC of the battery.
This OCV-50C model [17] can be exploited to estimate the SOC based on voltage measurements. However,
measuring the OCV in real-time during battery operation is not feasible because the battery needs to be
rested for several hours before the OCV can be measured. While the battery is operational a measure of
OCYV can be obtained by estimating the voltage across the battery ECM; this requires the estimation of the
ECM parameters as well. Once the OCV is estimated, the SOC can be looked-up [17] using the OCV-SOC
characterization parameters. Figure 1b summarizes the voltage based approach to SOC estimation.
The following errors are encountered by the OCV-SOC based state of charge estimation approach:

1. Errors in the parameters estimated for the electrical ECM of the battery.

2. Voltage and current measurement error.

Most of the advanced BFG'’s use a fusion based approach where both the Coulomb counting method
and the OCV-lookup method a combined in an efficient manner.
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Figure 1. State of charge estimation. The fusion based approach is one of the most robust approaches to
accurate battery SOC estimation.

Th fusion approach to SOC estimation (more appropriately, SOC tracking) is modelled as a recursive
Bayesian estimation problem and by employing a nonlinear filtering approach (such as an extended
Kalman filter) for online SOC tracking [2,3]. A complete SOC tracking solution involves the following:
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(i)  Estimation of the OCV parameters that form part of the state space model through offline OCV characterization:
The OCV-SOC characterization is stable over temperature changes and aging of the battery.
Once estimated, these parameters form part of a state-space model with known parameters.

(i) Estimation of the dynamic ECM parameters: These parameters can change depending on the battery age,
temperature, and SOC, therefore, they must be estimated in real time.

(iii) Estimation of battery capacity: Even though the the manufacturer provides the nominal capacity
of the battery, it changes over time. Some important factors that cause capacity fading are,
elevated temperature, cycling (usage), depth of discharge patterns, and calendar aging. Due to
this, the battery capacity needs to be estimated in real-time for an accurate BFG. Capacity estimation
is still being actively investigated in the literature [14].

(iv) Model parameter-conditioned SOC tracking: As soon as the model parameters are estimated, a filtering
approach can be used to track the SOC using the state-space model discussed above. In order to
do this, numerous filtering approaches, including extended Kalman filter, Unscented Kalman filter
and particle filter, were experimented in the literature. However, it is observed that the resulting
state-space model contains correlated process and measurement noise processes. Properly addressing
the effect of these correlations will yield better SOC tracking accuracy.

Figure 1c illustrates the fusion based approach to SOC estimation. The fusion based approach needs
to have the knowledge of OCV parameters, battery capacity, ECM parameters as well as the sensitivity of
the voltage and current measurement sensors. Section 3 briefly describes the approaches to estimate them.

2.2. Real-Time State of Health Estimation

Today’s BMS technology is inadequate to accurately predict the state of health (SOH) of a battery.
The available choices are either to prematurely replace the battery or to wait until an explicit failure
event occurs. Both of these choices have undesirable consequences: premature replacement will result in
increased cost to the end user and excessive waste to the environment; waiting out will negatively impact
the safety and quality of experience to the end user.

Many of the methods proposed in the literature for SOH estimation are data driven methods.
The existing approach to SOH estimation differ in terms of the features used to train and the
machine learning topology used. For instance, both approaches presented in References [18,19] used
neural networks; in Reference [18], the following features were used: change in the SOC, current,
temperature and the internal circuit parameters; in Reference [19] the voltage curve was used as a
feature. In References [20-22], support vector machines approach was employed for SOH classification.
Feng et al. [20] used partial charging voltage curves as there feature to estimate the SOH online while [21]
identified the charging time and capacity to be the features in order to estimate the SOH. In Reference [23],
a sample entropy algorithm is used identify the measured terminal voltage under hybrid pulse power
characterization current profile; this is then used as a feature to estimate the SOH using a sparse Bayesian
predictive modeling. Yun and Qin [24] proposed the use of the time required for the terminal voltage to
drop from and to a certain value as the feature to train.

Real-time SOH estimation remains one of the open problems in battery management system research.

2.3. Optimal Charging

The state of the art in battery charging is primitive: time consuming, less efficient and less safe
compared to gasoline refueling. Research on optimal charging algorithms (OCA) received significant
attention in the recent past. One of the most common method of charging is the constant trickle current
based charge strategy. Because a low charging current is used, it requires a long charging time (around
10 h) [25]; charging time can be reduced by increasing the charging current, however, as the batter OCV
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increases due to charging, this will cause the battery terminal to reach a voltage that is above the safety
threshold. Hence, the higher current that is applied at the initial stage needs to be reduced when the
terminal voltage reaches a certain threshold value. Consequently, the constant-current constant-voltage
(CC-CV) [25] strategy has become one of the widely used approaches to fast charging. In order to shorten
the charging time and perpetuate the cycle life of the battery a multi-step constant-current charging is used
in References [26,27]. The Taguchi-based methods for battery charging [28,29] uses orthogonal arrays to
put forward a systematic method to find the optimal solution with guidelines for choosing the design
parameters. Another strategy to use is the boost charging strategy, where a very high current is applied to
close-to-fully discharged batteries [30]. In pulse-charging methods [31-35], the battery is exposed to very
short rest or even deliberate discharging periods during the charging process. Soft-computing approaches
can also be used to optimize the battery charging profile. In Reference [36], optimal charging is achieved
by simplifying the problem to be in the form of an optimization problem with the objective function of
maximizing the charge within 30 min. Through the use of a multistage constant current charging algorithm,
the optimal solution can be obtained by using an ant-colony approach. The authors of Reference [37]
proposed a universal voltage protocol, its goal is to enhance the charging efficiency and cycle life by
applying a certain charging profile, this charging profile is determined based on the SOH of the battery,
which is estimated during the optimization process [38]. Recently, in Reference [39], to find the optimal
charging strategy, an optimization approach with cost function of time-to-charge and energy loss is used.
However, an analytical solution has not been presented; rather a numerical solution is given to the problem.
Many other approaches are presented in the literature for battery charging, such as data mining [40,41],
genetic algorithm and neural network based strategies [42], Grey-predicted charging system [43].

2.4. Fast Characterization

Two important offline characterizations required in a BMS are the SOC and SOH characterizations.
In SOC characterization, the SOC is modelled against the OCV by collecting one full cycle of data (fully
charged battery — fully discharged battery — fully charged battery) whereas the state of the art SOH
characterization is done against the number of cycle requiring hundreds and even thousands of cycles
of data. This makes SOC ans SOH characterization a time-consuming process. Hence, it is important to
find ways to reduce characterization time.

One approach to reduce characterization time is to do it in real-time while the battery is in use.
Some approaches for real-time SOC characterization were proposed in the past [44,45]. One of the
drawbacks of these approaches is due to the fact that simpler OCV-SOC models need to be employed
(due to computational bottlenecks in the BMS) for online estimation of parameters; this will lead to loss
of accuracy [46]. Secondly, different sources of error can accumulate from other estimated parameters,
that will be incorporated during OCV estimation [47]. Lastly, based on the SOC range that the battery
goes through, the estimated OCV model will cover that SOC portion—which depends on the battery
usage pattern. In orderfor OCV-SOC model to cover the entire SOC range, the battery has to undergo
a complete discharge/charge profile—this cannot be guaranteed. In Reference [48], an approach that
uses the data pieces-based parameter identification was proposed to estimate the entire OCV-SOC model.
However, this approach has its own drawbacks where the modelling error can be high at the initial stages
and the the convergence is not always insured.

Compared to SOC characterization, SOH characterization is nearly impossible to do in real-time
locally for a particular battery pack. However, the abundance today’s connectivity offers an alternative
solution for real-time SOC characterization. Figure 2 depicts how a cloud assisted BMS can collect data from
numerous batteries to estimate crucial parameters for real-time management of battery packs.



Energies 2020, 13, 2825 6 of 19

Local BMS
Cloud Based

Data,
Information
and computing
System

Measured Data &
Estimated Features

Measured Data

Control Signals Parameters &

Control Signals

Figure 2. Cloud assisted battery management system. The abundance of todays connectivity allows
crucial parameters related to SOC and SOH characteristics of battery packs in real-time. (image
from Reference [49] being reprinted with permission from IEEE).

2.5. Battery Reuse

As counties race towards decreasing their green house gas emissions, the public is being encouraged
to use EVs by offering various incentives. As a result, the manufacturing of Lithium-ion (Li-ion) batteries is
expected to increase very rapidly in the next few decades due to their expected use in electric vehicles [50].
Battery packs used in electric vehicles are expected to be replaced when they reach about 80% of their
original capacity [11], since range is an important quality in EVs. Research on BMS algorithms so far
has predominantly focused on the first use of the battery-pack. The batteries retired from the EVs are
still an excellent medium of renewable energy storage in other applications, such as renewable energy
storage systems [11]. However, it is still not well understood as to how usage affects the SOC and SOH
characterizations of a battery pack. Environmental and usage conditions affect battery characteristics;
based on how, when and where an EV was predominantly in use, its battery-pack might have significantly
different reliability, efficiency and safety compared to another battery-pack that was made by the same
manufacturer during the same assembly process. In other words, even though two batteries were identical
twins out of the assembly line, after their first retirement, they would possess two different characteristics
based on the patterns of environmental and usage conditions that they experienced. Hence, there is a need
to invest in research and to develop BMS that ensure safe, reliable and efficient operation of EV batteries
during their second use as renewable energy storage systems. Even though the electric vehicle production
is expected to grow exponentially in the next few decades [13], research on battery reuse is still in early
stages [51,52]. Figure 3 demonstrates the overall block diagram of a BMS during battery reuse. One of the
important challenges here is that each used battery pack is different from one another.

sto

Custom
battery pack

power in (M/G)Wh
(millions of cells)

Renewable

L_Energy Storage

Random entry
and exit

Figure 3. Battery reuse: from scrapyard to powering living rooms. Millions of vehicles are scrapped each
year due to accidents. In the case of electric vehicles, the batteries could be reused store renewable energy.
However, more research needs to be done about managing used batteries of various size, chemistry
and manufacturers.
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2.6. Universality

Existing BFG algorithms depend on prior characterization for accurate estimation of SOC and
SOH [2,3]; as a result, their application is limited to certain type of batteries to which they have the
parameters for. The state of the art BMS is constrained to a particular chemistry, manufacturer, and size of
the battery to which it is characterized for, that is, the present-day BMS is not universal; this restricts battery
selection and results in increased cost; also, such a restrictive BMS does not allow one to repurpose used
battery packs for energy storage. In smaller, household, applications, custom battery chargers generate
excessive electronic clutter and environmental waste.

The first ones to think about the universal battery systems were the battery charger designers who
had to address the huge number of different chemistry and types of batteries that in each application
requires its own customized charger; this increases the amount of electronic wastage and adds to the cost
of the device. Hence, the problem of universal battery charger received attention in the literature [7,53-55].
Earlier versions of universal battery chargers are programmed to look for appropriate voltage to terminate
the charging process. Most of them used a look-up table of incremental voltage in response to charging by
a certain number of Coulombs [7,53-55].

A preliminary achievement regarding the universality objective is reported in Reference [52] where
a probabilistic data association filter [56,57] was employed to associate the online measurements from
batteries to their model parameters, thus, resulting in a chemistry-adaptive BFG. Further research needs
to be done on this topic so that reliable algorithms can be developed to extend adaptivity for load-range,
size, temperature, nominal voltage and age as well. This would require large computing power that
the traditional battery management systems are not allocated for, for example, portable electronics.
Cloud computing [58] allows one to outsource intense computing to external sources; that is, by combining
information fusion with cloud computing, a greater deal of universality can be achieved in battery
management systems, paving the way for optimal battery reuse (see Section 2.5) and reduced electronic
clutter in households and work places.

2.7. Self Evaluation

Battery management system evaluation is a very challenging research problem since there are
no proven mathematical models to represent the complex features of a Li-ion battery, these features
include power fade (PF), capacity fade (CF), temperature effects on parameters, aging, hysteresis and
relaxation effects.

There is little literature focusing on BFG algorithm evaluation under realistic usage conditions.
The importance of BMS evaluation is discussed in Reference [59]; in Reference [60], the need to minimize
power dissipation and extend battery run-time for portable devices is discussed; the advantages of
hardware-in-the-loop (HIL) testing to validate a BMS under various failure conditions was motivated
in Reference [61]; and a HIL test to validate the BFG using a multi-cell battery pack was proposed
in References [62,63].

Evaluating BMS algorithms is a time consuming task [16] that requires research to find
efficient solutions. Particularly, the following aspects needs to be studied further:

o  The state of the art BMS evaluation is done in a lab setting. Real-time self-evaluation through data
driven approaches need to be developed.

e  Majority of the existing research experiments are done at a constant temperature. BMS evaluation in
the presence of gradual and rapid temperature changes is needed.
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3. Solutions Through Model Based Algorithms

Figure 4 shows an overall block diagram of a BMS that consists of three important components [49]:
BFG, OCA, and cell-balancing circuitry (CBC). The BFG is considered as the the primary component
of a BMS since the BFG output is required in both the OCA and CBC. The BFG estimates the SOC and
SOH of the battery-pack based on three measurements: voltage, current, and temperature. The OCA is
responsible for regulating the battery charging by generating charging waveforms. The charing waveforms
vary in complexity; at the simplest level, a charger applies a constant voltage across the battery terminal;
in constant-current constant voltage (CC-CV) charging, the battery SOC (and hence the OCV) rises fast
due to the relatively high current; then the charing is switched to CV in order to safeguard the battery
from overcharging. Complex charging strategies closely monitor critical battery parameters and adaptively
alter the charging pattern. The ultimate goal of an OCA is to charge the battery faster without negatively
affecting its SOH [64,65]. When new, individual cells in the battery-packs have similar battery capacity
and impedance. However, it is well know that after many charge/discharge cycles these parameters can
deviate away from one other causing cell imbalance. Cell-imbalance has many drawbacks from reduced
power output, reduced cycle life to catastrophic failures, including fire. The CBC helps to maintain
the battery-pack balanced. In addition to this, CBC is also responsible for thermal balancing [66] of
the battery-pack. In the remainder of this section, recent contributions to some of the BMS components
are described.

The BMS consists of several smaller modules that are critical for improving its safety, efficiency
and reliability. Many of todays research is focused on improving these individual modules. In the
remainder of this section, we brief the details of the several BMS modules that were developed as
improvements to the state of the art.

Optimal Charging Algorithm Batteeruel Gauge

Accurate
estimation of
cycle life:

Level 2 (short
term) OCA:

Optimize for State of charge
temperature

increase and (SOC), and

e R R R time to shut
charging time Li 'I'Ii down (TTS)

~—_— S~
Level 1 (long Accurate
term) OCA: estimation of
Optimize for battery life:
extended Power fade
battery life (PF), capacity
\/ w

Thermal
Balancing:
Adaptively move
coolant among
battery cells to
balance temp.

Charge Balancing:
Dissipate/move
charge into
load/cells to make
battery balanced

Cell Balancing Circuitry

Figure 4. Functional block diagram of a battery management system. Three important components of a
BMS are battery fuel gauge, optimal charging algorithm and cell balancing circuitry.

3.1. Normalized Open Circuit Voltage Characterization

Open circuit voltage characterization is one of the most important elements of any BMS, as it allows
one to estimate the SOC based on a given OCV. Earlier approaches to OCV modelling suggested to
store different OCV-SOC parameters at different temperatures. It was shown in Reference [17] that the
normalized approach to OCV characterization results in a single set of parameters for all temperatures.
Further, various models for OCV characterization were evaluated in Reference [17]. Figure 5 shows the
results of applying the normalized OCV modelling approach [17] for OCV-SOC characterization. The
important advantage of the normalized modelling approach is that the OCV-SOC characterization does
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not need to be repeated at multiple temperatures. Just one characterization at room temperature is shown
to be enough to cover typical operational temperatures experienced by batteries.

________________

Voltage measurements at 1 Modelled OCV thatis foundto
different temperatures (using a : be almost the same at all 1
very small current - charging) | temperatures !

w
)

34 ¥

Open circuit voltage (V)
w
N

Voltage measurements at
different temperatures (using a
very small current - discharging)

3.2

0 10 40 60 80
State of charge (SOC) %

Figure 5. Normalized open-circuit voltage modelling. It is shown that the OCV-SOC parameters obtained
through the proposed normalized OCV modelling approach in Reference [17,67] showed little variations
with temperature.

The combined model and its variations, such as the combined+3 model [17], remain one of the
most used approaches to OCV modelling. Many existing OCV models, including combined model and
its variants, suffer from the fact they are not defined at the extreme limits of the SOC, that is, (SOC =
0% and SOC = 100%). For example, let us consider the combined model equation where the OCV (V,(s)
relates to the SOC (s) as follows

Vo(s) = xo + % + x5 + k31n(s) + x4 In(1 —s) (1)

where it can be noticed that the function is undefined when s = 0 (SOC = 0%) and when s = 1
(SOC =100%). Existing approaches to the above problem not very optimal. In References [67,68], the effect
of not scaling on the performance of SOC estimation is formally quantified and an approach was presented
to find the optimal scaling factor; further, it was shown in Reference [67] that the optimal scaling factor
remained the same across different battery chemistries and temperatures. Figure 6 summarizes the results
of scaling

15

unscaled

10+

SOC Error (%)

0 20 40 60 80 100
SOC (%)

Figure 6. Scaling. The scaling approach [67] reduces the worst case error in OCV modelling.
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3.2. Equivalent Circuit Model Identification

Li-ion batteries are powered through chemical reactions. modelling such chemical reactions
using physics and chemistry result in very complex models that are challenging to solve. In contrast,
ECM provided a simplistic, albeit adequately approximate representation of batteries and battery packs.
Figure 7 shows a generalized ECM of a battery.

It was shown in Reference [69] that different approximations of ECM in Figure 8 can be used based
on the battery load. Using the appropriate ECM can reduce computation time and complexity and give
accurate results. Figure 8a shows the ECM when there is a constant low current load. In this mode the
hysteresis can be neglected due to the small effect it has and the capacitors can be ommited due to the
constant current. The remaining resistances can be lumped together to form the output resistance (Ry).

The second mode is shown in Figure 8b. This model is used when there is a high current for extended
periods of time. Due to the high current, hysteresis cannot be neglected anymore, and must be incorporated
in the model. However, the capacitors can still be omitted due to the constant current. The remaining
resistances can still be lumped together in one output resistance (Ry).

Figure 8c shows model 3 that can be used when there is a dynamic load with a constant average load.
In this case, the hysteresis cannot be ignored, along with the capacitor /resistor component (C; /R1). On the
other hand, model 4 is shown in Figure 8d where there is a dynamic current with varying average load.
Therefore, a second capacitor/resistor (C,/R;) need to be used for accurate battery modelling.

hlk] Ry 0 Ry i K] Ry k)
i inlk i
L o IWV\ Av AVIW\ ]
e o
-\| -1]
Dt +/1
Vo(slk) . a Cv =i
15 Rel ti >
EMF(SOC) : Coffect

Figure 7. Equivalent circuit model of a battery. Identifying the battery model and estimating its
parameters are crucial steps for all aspects of a battery management system, from state of charge estimation
to optimal charging to charge and thermal balancing. In practice, reduced models, shown in Figure 8, are
employed; In Reference [69] a unified approach to ECM model parameter estimation is developed.

The authors of Reference [69] proposed an approach that is based on weighted least squares method
to identify the battery parameters online, which is inexpensive and has high accuracy. This method has
the ability to switch between the battery models easily based on the current profile. Furthermore, instead
of modelling the hysteresis as a function of the SOC, which can be very complex and inaccurate, the
authors proposed a way to model the hysteresis as an error in the OCV, which has the added benefit of fast
recovery when the initial SOC is inaccurate.
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i
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(c) Model 3 (Stationary load profiles) (d) Model 4 (Time-varying load profiles)

Figure 8. Reduced equivalent circuit models of a battery. Each model is appropriate for different types
of loading condition as indicated.

3.3. Real-Time Battery Capacity Estimation

Real-time battery capacity estimation is a very important factor to achieve a universal BMS. It is
also one of the ways to improve the accuracy of SOC estimates. The work done in Reference [14] aims to
establish an approach that can estimate the battery capacity in real-time. In this paper, two approaches
to estimate the battery capacity were investigated; the first approach uses total least squares, while the
second approach used the rest states and models the hysteresis as an error in the OCV. Furthermore,
both approaches are fused together to estimate the battery capacity with a high accuracy. Finally, HIL
approach was used to validate the estimation algorithm; the results showed that it is accurate within 1% of
the true value.

3.4. Optimized Charging

Optimal battery charging is one of the most active research areas of BMS. Figure 9 outlines the level-2
and level-1 charging goals.
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Figure 9. Elements of a smart (optimal) charger.

A closed-form solution to the problem of optimally charging a Li-ion battery was presented
in Reference [64] by considering a combination of three cost functions: time-to-charge (TTC), energy
losses (EL), and a temperature rise index. It was theoretically shown in Reference [64] that the optimal
charging strategy for the simple equivalent model case reduces to the well-known CC-CV policy with the
value of the current in the CC stage being a function of the ratio of weighting on TTC and EL and of the
resistance of the battery.

In Reference [65], two models were presented for normalized battery capacity: the LAR-a%y model
and the control variable dependent model. The first model is based on the number of cycles and the latter is
a function of the number of cycles as well as two other charge control parameters, viz., maximum terminal
voltage of the battery (vmax) and maximum charge current (imax). In order to evaluate the accuracy of these
models experimental data were gathered from aging experiments performed on Samsung GS4 battery.
The results show that these methods are far more superior to the bi-exponential capacity model [70].

3.5. Adaptive Algorithms for Universality

Developing a generalized BFG that is independent of battery chemistry can be broken down into
two categories. The first category is to simply compile a library of all possible OCV parameters and to
select the most suitable OCV model for fuel gauging through online deteciton. In other words, this first
approach seeks to resolve the association ambiguity between several possible OCV parameters and the
battery being monitored in a supervised way (e.g., employing nearest neighbor or any of the machine
learning-based classifiers).

The second category seeks to use online data to estimate the OCV parameters [71-73]; an iterative
process is used to keep the OCV parameters and battery capacity up to date. Since users can swap the
battery at any time this can cause an issue where the BFG has to be aware of this change and adapt
accordingly by restarting the OCV parameter estimation process. Additionally, this routine should only be
applied when required. Further, the iterative estimation of SOC, OCV & ECM parameters and the battery
capacity can lead to loss of robustness and instability for the BFG algorithm.

One of the first few approaches towards achieving chemistry adaptive BFG was reported
in Reference [52] where the probabilistic data association (PDA) methodology was used to achieve this goal.
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Here the ultimate goal is to be able to mange an arbitrary battery (present day BMS rely on parameters that
are obtained from the same battery type). Figure 10 shows a demonstration of the chemistry adaptivity
reported in Reference [52]. Chemistry adaptivity is a desired feature in the secondary applications of used

batteries, for example, used EV batteries used in power grid.

ocv
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Figure 10. Chemistry adaptive BMS. The proposed chemistry probabilistically selects the battery
parameters based on the measured data from the battery (voltage and current). In the above demonstration,
all three models were initialized with equal probability (1/3); within few samples of measured data,
the PDA algorithm was able converge to the correct model. (a) OCV curves of different chemistries;

(b) Model probabilities of the PDA algorithm [52].

3.6. Approaches to BMS Evaluation

In References [15,16], systematic approaches were presented to validate BFG algorithms. Particularly,

the following three BFG evaluation metrics were proposed and analyzed in References [15,16]:

CC-metric. The CC-metric is used to evaluate the accuracy of the SOC estimates of a BFG. It was
known that the Coulomb counting method is an error prone approach to SOC estimation. However,
if the battery capacity and initial SOC are known, the Coulomb counting approach will provide a very
accurate estimate of SOC. The CC-metric proposes to use special BFG validation load profiles [16] such
that the initial SOC and the battery capacity can be accurately estimated in order to evaluate the SOC
estimate of a BFG. It must be noted that the CC-metric is a laboratory based metric, that is, it cannot be
implemented in real-time when the battery is being operated by the end user.
OCV-metric: The OCV-SOC metric proposes to employ the OCV curve [17] in order to find the true
SOC which can then be used to validate the SOC estimate given by a BFG. Similar to the CC-metric,
the OCV-SOC metric is also a laboratory based metric because the battery needs to be rested before the
OCV can be directly measured.
Time to voltage (TTV) Metric. The TTV metric [16] is the most rigorous way to test the accuracy of
a BFG algorithm. This metric tests several features of a BFG at once. Let us consider an example:
the BFG in an EV predicts the remaining milage as 100 miles. The most accurate way to validate
this prediction is to actually drive the EV until it reaches end of charge; by subtracting the actual
distance travelled from the prediction, the true BFG error can be computed. Now, instead of miles,
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consider this in voltage: A BFG can predict the time it takes to reach a certain voltage, given a constant
load or constant charging current. Similar to how an EV can be driven to check the accuracy of the
mileage prediction, the TTV metric is computed based on the predicted vs. actual time it took for
the battery to reach a certain terminal voltage. One drawback of the TTV metric is that it requires a
constant current to implement the metric. Most battery chargers employ constant current charging for
a certain amount of time—this provides an opportunity to implement the TTV metric in real-time.
It must be re-emphasized that the TTV metric is used to quantify the accuracy of the following BFG
estimates at once: such as, SOC, battery capacity and ECM parameter estimates

In order to compute the BFG evaluation metrics (CC-metric, OCV-metric and TTV-metric), the battery
needs to undergo a specific load profile that is named BFG evaluation profile in References [15,16]. Figure 11
shows a BFG evaluation profile that is designed to compute the above three metrics for a battery with a
nominal capacity of 1.5 Ah. The evaluation profile requires to start the experiment with a fully charged
battery and apply various discharge profiles and rest periods until the battery is given a final rest period of
about 2 h before constant current profile of moderate to low magnitude is applied until the battery becomes
empty; this procedure ensures the total capacity [17] of the battery can be accurately estimated—the
estimated total capacity in return ensures the computation of a rigorous CC-metric. The constant current
discharge at the end also allows to compute the TTV metric; this is particularly significant because
remaining time prediction is crucial when the battery nears it end of charge.

Full
: T T T T
4+ OCV metric i
S 38l B
&
£ 36t i
o
>
3.4
3.2 Rest (=2 hours)
3 1 1 1 1 1 1 1 < Empty
2 4 6 8 10 12 16 18 20 battery
CC metric \
e ¥ Constant
Light b current
load i discharge
= 1 (allows to
= . compute TTV
§ metric)
Il Il Il

14 16 18 20

Heavy load (close
to c-rate discharge)

Figure 11. BFG evaluation profile. The battery fuel gauge evaluation profile is a specially designed load
current profile that allows to implement all three BFG evaluation metrics: CC-metric, OCV-metric and the
TTV-metric. The profile starts with a full battery and ends when the battery becomes empty; this allows to
compute the battery capacity accurately. Intermittent rest periods within the profile allows to compute the
OCV metric and the constant current load profile allows to compute the TTV metric.
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4. Conclusions

In this paper, we detailed the challenges involved in developing a novel battery operating system
that is suitable in future applications and described the details of some solutions that we developed.
Particularly, details of the following elements of a robust battery management system are described:

e Open circuit voltage modelling: It is demonstrated how careful modelling and optimization can result in
parameters that are applicable to a wide range of temperatures. The need for careful modelling is
demonstrated using scaling, a strategy, when ignored, results in up to 90% higher SOC errors.

e  Battery impedance estimation: Battery impedance changes with temperature and other battery states;
real-time impedance estimation is required for effective battery management. In this paper,
we summarize a real-time approach to battery impedance estimation.

e Battery capacity estimation: Accurate knowledge battery capacity is crucial for all aspects of a battery
management system.

e  Adaptive strategies for universal battery management: Newer versions of batteries come in slightly
different chemical compositions. How to develop a battery management system that can stay relevant
with ever changing battery types? This paper offers a glimpse into futuristic solutions based on
probabilistic data and information fusion.

o  Optimal charging strategies: Battery chargers have two competing objectives; one seeks to charge fast
and the other attempts to minimize capacity fade and temperature rise due to charging. This paper
offers high-level summary of ‘level-1" and ‘level-2” optimal charging algorithms designed to satisfy
the above goals.

o  Strategies to evaluate battery management systems: We describe the challenges involved in evaluating a
battery management system and present several guidelines.

Further, we provided insights into the remaining challenges that needs to be addressed in the domain
of battery management systems research.
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Abbreviations

The following abbreviations are used in this manuscript:

BFG  Battery fuel gauge

BMS  Battery management system
CBC  Cell-balancing circuitry

CF Capacity fade

ECG  Electrocardiography

ECM  Equivalent circuit model

EL Energy loss
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EV
HIL

Electric vehicle
Hardware-in-the-loop

Li-ion Lithium ion

OCA Optimal charging algorithm

OCV  Open circuit voltage

PF Power fade

SOC State of charge

SOH State of health

TTC Time to charge

TV Time to voltage
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