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Abstract: Adsorption chillers offer an environmentally friendly solution for the valorisation of
waste or solar heat for cooling demands. A recent application is high efficiency data centre cooling,
where heat from CPUs is used to drive the process, providing cooling for auxiliary loads. The metal
organic framework aluminium fumarate with water is potentially a suitable material pair for this low
temperature driven application. A targeted heat exchanger design is a prerequisite for competitiveness,
requiring, amongst other things, a sound understanding of adsorption equilibria and adsorption
enthalpy. A novel method is employed for their determination based on small isothermal and
isochoric state changes, applied with an apparatus developed initially for volume swing frequency
response measurement, to samples with a binder-based adsorbent coating. The adsorption enthalpy
is calculated through the Clausius–Clapeyron equation from the obtained slopes of the isotherm
and isobar, while the absolute uptake is determined volumetrically. The isotherm confirms the
step-like form known for aluminium fumarate, with a temperature dependent inflection point at
prel ≈ 0.25, 0.28 and 0.33 for 30 ◦C, 40 ◦C and 60 ◦C. The calculated differential enthalpy of adsorption
is 2.90 ± 0.05 MJ/kg (52.2 ± 1.0 kJ/mol) on average, which is about 10–15% higher than expected by a
simple Dubinin approximation.

Keywords: adsorption equilibrium; adsorption enthalpy; heat of adsorption; metal organic
framework; aluminum fumarate; coating; adsorption; cooling; heat pump; heat transformation

1. Introduction

Adsorption chillers offer an environmentally friendly solution for the valorisation of waste or
solar heat for cooling demands. The working principle allows a simple, robust, and scalable design.
Adsorption chillers and heat pumps have been applied successfully for different applications, like solar
thermal cooling of buildings [1], gas adsorption heat pumps [2,3] and more [4,5]. A possible application
that has attracted rising interest in recent years is the provision of data centre cooling driven by heat
yielded from water cooled CPUs. Current high-performance CPUs allow cooling water temperatures
of up to 60 ◦C or more [6,7], that can be used to drive adsorption chillers.

An adsorption chiller (Figure 1) consists of two adsorption heat exchangers, a condenser, and an
evaporator, in a pure working fluid atmosphere. If temperatures below 0 ◦C can be excluded, usually
water is used as working fluid, due to its high evaporation enthalpy. The adsorption heat exchangers
(Ad-HX) have a heat transfer fluid on the primary and a stationary adsorbent material or composite
on the secondary side. The process is cyclic: In the first half-cycle, the CPU’s waste heat is used
to regenerate the first Ad-HX. The desorbed working fluid is condensed in the condenser which is
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cooled to the ambient at, e.g., 30 ◦C. In the second half-cycle, working fluid is adsorbed on the Ad-HX
which, again, is cooled to the ambient. The resulting pressure drop induces the evaporation in the
evaporator at about 20 ◦C, which is used to supply the air cooling of the server rooms. For continuous
provision of cooling, two Ad-HXs are operated alternately. In contrast to typical thermally driven
cooling applications, the coefficient of performance (COP) of this cycle is determined by the ratio of
CPU and auxiliary heat loads and in the order of 0.5–0.6 [6].
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Figure 1. Working principle of an adsorption chiller for data centre cooling with typical feed and
return temperature levels (schematic): high temperature CPU waste heat is yielded by direct water
cooling and used to drive the adsorption chiller cycle, the chiller provides low temperature cooling for
less temperature stable auxiliary loads (e.g., hard disks, power supplies), all heat flows are rejected at
medium temperature level to the ambient, e.g., through a cooling tower.

The development of new adsorbent materials has been a research interest for many years [8].
Aluminium fumarate, a metal-organic framework (MOF) that attracted increasing interest for thermal
applications in recent years, exhibits adsorption equilibrium properties that fit well to the boundary
conditions of this cycle [9]. Due to its beneficial stepwise isotherm [8], it can allow considerably
more efficient cycles compared to the state-of-the-art material silica gel with a good hydrothermal
cycle stability [10,11]. Under the temperature conditions depicted in Figure 1, aluminium fumarate
undergoes the full uptake step of about 0.3 kg/kg [10], compared to little more than 0.1 kg/kg for silica
gel. This advantage may be used to reduce the amount of adsorbent or to increase the power density
by, e.g., shorter cycles [12]. The material is potentially a low-cost material due to widely available
educts (Al-salts and fumaric acid) and a water-based synthesis route [13].

The increase in volume specific cooling power (VSCP)—thus the reduction in specific costs—while
keeping a reasonably high COP, is one of the major development challenges for adsorption chillers [12].
Typical values for COPs of market-available adsorption chillers are in the order of 0.5 to 0.65 [14]. In the
case of data centre cooling, the target COP is determined by the ratio of low temperature cooling demand
and available waste heat from CPUs, which typically is in the same range [6]. A promising approach to
increase VSCP is to use binder-based adsorbent coatings to allow for a substantially better heat transfer
to the heat exchanger structure, in comparison to a loose grain bed, the state-of-the-art solution [15].
Further performance increase can be reached through model-based design and optimisation, which is
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more cost-effective than empiric trial-and-error prototyping, as shown recently in a comprehensive
overview on designing strategies for Ad-HX by Graf et al. [16]. However, model-based design requires
detailed knowledge of (a) the adsorption equilibria, (b) the adsorption enthalpy, (c) relevant physical
heat and mass mechanisms and the corresponding transfer coefficients, and (d) the specific heat
capacities, allowing for models with explicit dependency on design parameters like heat exchanger
geometry, layer thicknesses and particle sizes. We developed a comprehensive approach to gain most
of this data, i.e., (a)–(c), from small representative Ad-HX cut-outs in a single measurement procedure
based on:

1. Volumetric uptake measurement;
2. Stepwise volume and temperature perturbation;
3. Frequency response analysis.

In this paper, we will focus on the first two steps for evaluating adsorption equilibrium and
adsorption enthalpy. The frequency response analysis (FRA) for the investigation of heat and mass
transfer processes builds upon this and will be dealt with in a following publication.

An apparatus developed initially for volume swing frequency response measurement also allows
for measurements of the differential adsorption equilibrium, i.e., the slopes of the isotherm and the isobar,
through the equilibrium response for small step experiments. Earlier, the FRA setups were used for
volume step experiments to evaluate sorption dynamics, using a numerical non-linear transport model
in the time domain [17], comparable to pressure jump [18,19] or temperature jump [20–22] experiments.
We extend this approach to measuring the isobar slope with small temperature steps. Both slopes can
be directly combined to determine the differential adsorption enthalpy at a specific thermodynamic
state, i.e., adsorbent loading, temperature, and pressure. In combination with a calibrated dosing
volume for the volumetric uptake measurement, this allows for a comprehensive determination of
sorption equilibrium, enthalpy, and dynamics in a single automated measurement procedure.

2. Materials and Methods

2.1. Material

An aqueous dispersion (26.8 wt% aluminium fumarate (a.k.a. MIL-53(Al)-FA), Basolite® A520,
BASF; 17.9 wt% SilRes® MP50E, Wacker Silicones) was processed by a knife coating applicator on
50 × 50 × 2 mm AlMg3 sample plates (Table 1). The wet film thickness was varied by an octagonal
stainless-steel mask with a defined thickness (200 µm, 350 µm, 600 µm) and constant coating surface
Act (18.7 cm2). Samples were oven dried at 200 ◦C for 3 h before measuring coating thicknesses dct of
final samples (Table 1, Figure 2) at five points with a probe indicator. The composite dry mass mcmp was
determined by quickly (T ≥ 160 ◦C) weighing the hot samples under lab atmosphere after oven drying.
Total dry adsorbent content ws,dry was first calculated from the suspension composition, based on
experimentally determined dry masses of different components, as shown by Kummer et al. [23],
and later cross checked by comparing the samples’ uptake to the uptake of pure adsorbent powder
measured volumetrically (AUTOSORB®, Quantachrome).
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Table 1. Sample mass and geometry, the adsorbent content was estimated when mixing the coating
suspension and confirmed later by comparing the sample’s uptake with the pure adsorbent powder
isotherm (c.f. Section 3.1).

By Suspension
Composition

By Comparison to Pure
Adsorbent Uptake

Sample mcmp(mg) dct(mm) ρcmp (g/cm3) ws,dry(-) wbnd(-) ws,dry (-) wbnd(-)

Ct_140 134 ± 3 0.14 ± 0.04 0.51 ± 0.15 0.75 0.25 0.72 0.28
Ct_240 217 ± 4 0.24 ± 0.05 0.48 ± 0.10 0.75 0.25 0.79 0.21
Ct_610 563 ± 11 0.61 ± 0.07 0.49 ± 0.06 0.75 0.25 0.80 0.20

2.2. Apparatus

Measurements are performed with a custom setup (Figure 3, Table 2) under pure water vapour
atmosphere, allowing vapour dosing as well as small volume and temperature steps. Moreover,
the setup allows frequency response (FR), large temperature jump (LTJ), large pressure jump (LPJ) and
small pressure jump (SPJ) experiments with water. Details on jump experiments with the setup have
been reported extensively before [20,24,25], FR experiments will be published elsewhere.
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Figure 3. Sorption kinetic setup for frequency response, large temperature jump and large pressure jump
experiments with absolute and differential equilibrium measurement. Absolute sorption equilibria
are measured volumetrically by dosing in from the dosing chamber, differential equilibria by small
temperature and pressure steps around equilibrium.

Table 2. Principal characteristics of measurement quantities, details are explained in the text.

Quantity Range Typical Uncertainty Device

Chamber volume 849–922 mL 0.4 mL (20 ◦C),
1.3 mL (80 ◦C)

Schreiber Messtechnik LVDT

Chamber pressure 0–100 mbar 0.05 mbar (5 mbar),
0.15 mbar (100 mbar)

MKS Baratron 627B

Cold plate temperature 20–95 ◦C 0.1 K 4-wired Pt100
Sample surface temperature 20–80 ◦C Not applicable 1 Heitronics KT15

1 The sample surface temperature is used to qualitatively ensure steady state conditions.
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The volume of the dosing chamber is constant (VD = 41.815± 0.021 L), while the measurement
chamber volume (VM = 885.4 ± 1.3 mL) can be varied by 4.12% through a mechanically driven
vacuum bellow, while the bellow position is recorded with a vacuum stable linear variable differential
transformer (LVDT, Schreiber Messtechnik). The bellow position has been calibrated with a second
order polynomial to the chamber volume by filling the evacuated and temperature-controlled chamber
with water of known mass. The sample is thermally well connected (thermal grease TG20032) to the
cold plate kept isothermal (±0.01 K) by two switchable external circuits. The cold plate temperature is
precisely measured with a 4-wired Pt100 sensor embedded in a bore. The chamber pressure is measured
with a capacitive pressure transducer (MKS Baratron 627B, 0–100 mbar). Additionally, the sample’s
surface temperature is recorded using an IR temperature sensor (Heitronics KT15) through a ZnSe
vacuum viewport with a noise equivalent temperature difference of 25 mK at a response time of 1 s.
The measurement spot has a diameter of 6 mm (95%) and the detector’s spectral response maximum
is between 8 and 14 µm, fitting to the transmissivity of the ZnSe viewport and the aimed sample
temperature (20–80 ◦C). To minimise temperature gradients, the whole vacuum setup is encapsulated
in a temperature-controlled cabinet (±0.1 K) set to the mean cold plate temperature. Data acquisition is
performed with a high precision digital multimeter (Agilent 34970A).

2.3. Procedure

The measurement procedure consists of two steps: pre-conditioning to the desired state and
determination of equilibrium slopes. Throughout the measurement, the temperature-controlled cabinet
is kept at the measurement mean temperature T0.

Initially, samples were desorbed against a rotary vane pump (p < 0.01 mbar) at 95 ◦C overnight,
to remove any co-adsorbed impurities. For aluminium fumarate this ensures an initial loading Xinit

of 0 kg/kg. After cooling down the closed chamber to T0, the sample is pre-conditioned to a desired
loading X0 by dosing in vapour from the dosing chamber. X0 is calculated volumetrically from the
mass balance of both chambers and the adsorbent dry mass ms = ws,drymcmp following the ideal gas
law, which is a very good approximation for water in the pressure and temperature region of the
measurements:

X0 = Xinit +
1

T0Rwms
[VDpD1 + VM1pM1 − (VM2pM2 + VDpD2)]. (1)

Here, indexes D and M denote the dosing and the measurement chamber where the volume
depends on the bellow position, and indexes 1 and 2 denote the equilibrium state before and after
dosing in vapour. The pressures pD,1 and pD,2 are calculated beforehand based on the isotherm of
the pure adsorbent powder to approximately reach the set point for X0. The equilibrium pressure of
the sample p0 = pM,2 will follow the equilibrium of the sorbent at T0 and X0, yielding a point on the
T0-isotherm. To calculate the effective loading Xeff, the composite mass, mcmp is used in Equation (1)
instead of ms.

To determine the equilibrium slopes at the pre-conditioned sample state, the sample is exposed
to small volume and temperature jumps symmetrically around V0 and T0, first by ∆V = 2V̂ with
constant temperature and then by ∆T = 4 K with constant volume. This allows determining
the differential equilibrium, i.e., the slopes of the isotherm dX/dp ≈ (∆X/∆p)T and the isobar
dX/dT ≈ ((∆X − dX/dp∆p)/∆T)V from the equilibrium pressure difference ∆p and loading change
∆X, measured for the isothermal and the isochoric jump, respectively. A very slow drift in the pressure,
which is due to parasitic effects of the setup already reported [24,25], is corrected by fitting linear
models to equilibrium sections before and after the jump and using the extrapolated values at the
centre. Finally, with both slopes the differential enthalpy of adsorption at X0 and T0 can be calculated
based on the Clausius–Clapeyron equation assuming ideal gas behaviour:
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∆hs ≈
RT2

p
dp
dT

= −
RT2

p
dX
dT

(
dX
dp

)−1

(2)

Loading, differential equilibrium and adsorption enthalpy are important input parameters for
a subsequent FRA reported elsewhere. Integration in a single measurement routine allows for
measurement under exactly the same conditions (in-situ). As the sample is pre-conditioned only once,
this eliminates the need for time consuming external measurements and possibly error-prone transfer
to the measurement conditions.

To exclude a local hysteresis of the adsorption equilibrium, an important pre-requisite for FRA,
a further test is included in the routine: The same equilibrium state X0, T0 is reached coming from
a smaller and a larger volume at constant temperature and vice versa. The equilibrium loading is
then compared and a “hysteresis-free” behaviour assumed if the loading difference between the two
directions is below the measurement uncertainty.

2.4. Uncertainty Evaluation

Uncertainty analysis has been carried out based on GUM [26], including uncertainty from sample
variance (type A) and uncertainties from imperfect calibration and correction (type B).

The uncertainty of the mean values are between 0.4 mL (20 ◦C) and 1.3 mL (80 ◦C) for V0, between
0.05 mbar (p0 = 5 mbar) and 0.15 mbar (p0 = 100 mbar) for the chamber pressure, and about 0.1 K for
the mean sample temperature T0. Typical uncertainties for vapour dosing are in the order of 1 to 4 mg
influenced mainly by p0 for 10 to 60 mbar. Thus, uncertainties for the loading are smaller for higher
sample dry mass, given constant dry mass uncertainty.

3. Results and Discussion

Results are reported for five different loadings at 40 ◦C and one loading at 30 ◦C and
60 ◦C, respectively.

3.1. Adsorption Equilibrium

The water isotherm of the adsorbent powder at 40 ◦C (Figure 4) shows the characteristic step-like
uptake to a plateau at 0.32 kg/kg and is in line with [11], or slightly lower than [10,27] previous results.
The position of the step is temperature dependent with an inflection point at prel ≈ 0.25, 0.28 and 0.33
for 30, 40 and 60 ◦C. Measured local isotherm slopes are in agreement with the tangent for 40 ◦C.
The position of the uptake step is reproducible within the samples and shows a strong temperature
dependency that persists when applying a Dubinin transformation [28]. Hence, the assumption of
a temperature invariant characteristic curve is a strong simplification for aluminium fumarate and
should be applied with care. The exact position of the uptake step is an important information for
application, as it determines the available driving forces and finally the resulting equipment power [3].

No significant hysteresis was observed, neither locally by the procedure explained before,
in Section 2.3, nor globally. For the latter, the vapour dosing procedure was modified starting with a
saturated sample (prel = 0.5, T = 40 ◦C, Xinit = 0.33 kg/kgs) and desorbing into the dosing chamber.
The hysteresis found in previous results was probably due to incomplete equilibrium and/or pore
condensation occurring at prel � 0.5, which was disregarded here due to the limited relevance for heat
transformation applications.

The adsorbent content calculated by comparing the uptake of the sample to that of the powder
(Figure 4, right), fits on average the values calculated at sample preparation (Table 1), showing that
the binder has no significant influence on adsorption equilibrium. The results show good agreement
between the two thicker samples and a slight deviation of the thinnest sample Ct_140, which could be
explained by a slightly lower adsorbent content of the coating. The difference to the uptake of the
pure adsorbent can be explained by the inert binder/loss due to the coating process, differences in the
production process and measurement uncertainty of the volumetric adsorption measurement.
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A general description of the measured sorption equilibrium for modelling purposes is given in
the Supplementary Material (S1).
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the Supplementary Material (S1). 
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average. The calculation with Equation (2) is based on either the local equilibrium slope indicated in 
Figure 5 or on a linear fit of the quasi-isosteric points (𝑋ୣ୤୤ ≈ 0.16 kg/kg) measured at 30, 40 and 60 
°C. The Clausius–Clapeyron plot shows that local slopes coincide well with the multi-temperature 
fit, and so do the calculated enthalpies. Temperature and loading dependencies are negligible in the 
parameter range evaluated. The adsorption enthalpy is about 10%–15% higher than expected by a 
simple Dubinin approximation (sum of evaporation enthalpy at the same temperature and the 
adsorption potential 𝐴 = −𝑅𝑇 ln(𝑝୰ୣ୪) , [28]), which is in qualitative accordance to the observed 
temperature variance of the isotherm. Thus, the application of the concepts of a characteristic curve 

Figure 4. Effective loading Xeff and loading X = Xeff/ws,dry over relative pressure measured for
samples Ct_140 (N), Ct_240 (�), and Ct_610 (•) in comparison with the 40 ◦C isotherm of the pure
adsorbent powder (+), adsorbent content ws,dry determined by uptake correction; grey lines: local
equilibrium slope measured by small volume jumps.

3.2. Adsorption Enthalpy

The calculated differential enthalpy of adsorption is 2.90 ± 0.05 MJ/kg (52.2 ± 1.0 kJ/mol) on
average. The calculation with Equation (2) is based on either the local equilibrium slope indicated
in Figure 5 or on a linear fit of the quasi-isosteric points (Xeff ≈ 0.16 kg/kg) measured at 30, 40 and
60 ◦C. The Clausius–Clapeyron plot shows that local slopes coincide well with the multi-temperature
fit, and so do the calculated enthalpies. Temperature and loading dependencies are negligible in the
parameter range evaluated. The adsorption enthalpy is about 10–15% higher than expected by a simple
Dubinin approximation (sum of evaporation enthalpy at the same temperature and the adsorption
potential A = −RT ln(prel), [28]), which is in qualitative accordance to the observed temperature
variance of the isotherm. Thus, the application of the concepts of a characteristic curve to describe the
sorption equilibrium, and of the adsorption potential to describe the sorption enthalpy, results in a
rather crude approximation for the case of aluminium fumarate.
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Figure 5. Left: Clausius–Clapeyron plot (p0 = 1 bar) with measured equilibrium points for different
samples (N Ct_140, � Ct_240, • Ct_610) and isostere slope calculated from measured local deviations
(short grey lines) and linear fit of points with Xeff ≈ 0.16 kg/kg (- - -), uncertainties of T and p are bellow
point size; Right: differential adsorption enthalpy calculated from isostere slopes of local equilibria and
0.2-kg/kg-fit over corrected loading with the evaporation enthalpy of water (- - -).
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4. Conclusions

In this work we developed a novel method for in-situ measurements of sorption equilibria and
enthalpy, in an apparatus dedicated to the sorption dynamic measurement. The method, based on
dosing vapour from calibrated volumes and small temperature and volume steps around an equilibrium
point, allows for direct measurements of the isobar’s and isotherm’s slope, tightly around a specific
thermodynamic state. This allows extracting the loading and temperature dependency of the isostere’s
slope and thus the sorption enthalpy.

The method was tested on samples coated with a composite of aluminium fumarate particles
with Silres® as a binder, in different thicknesses (140–610 µm) at 30–60 ◦C and the entire loading range.
The measured sorption equilibrium fits expectations from the pure adsorbent powder’s isotherm and
the coating composition. The coating procedure did not alter the adsorption properties.

The measurement of the differential adsorption enthalpy was successfully verified by comparing
the local slope of the isostere to the linear regression over the whole temperature range. The sorption
enthalpy is 2.90 ± 0.05 MJ/kg (52.2 ± 1.0 kJ/mol) on average, with no significant dependency with either
loading or temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/11/3003/s1,
Section S1: General description of the sorption equilibrium of aluminium fumarate.
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Nomenclature

Abbreviations
Ad-HX Adsorber heat exchanger
Variables
T Temperature (K)
p Pressure (Pa)
X Loading (kgadsorbed/kgsorbent,dry)
Xeff Effective loading (kgadsorbed/kgcomposite,dry)
V Volume (m3)
A Surface area (m2), adsorption potential (J/kg), Amplitude (any unit)
R Universal gas constant (J/(mol K))
Rw Specific gas constant of water (J/(kg K))
m Mass (kg)
t Time (s)
M Molar mass (kg/mol)
∆hs Differential adsorption enthalpy (J/kgadsorbed)
Indices
w Water
s (Ad)sorbent, (ad)sorption
0 Temporal mean value
D Dosing chamber
M Measurement chamber

http://www.mdpi.com/1996-1073/13/11/3003/s1
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V At constant volume
T At constant temperature
ch (Measurement) chamber
cmp Composite
ct Coating
rel Relative
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