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Abstract: The nitrogen (N;) expander and single mixed refrigerant (SMR) liquefaction processes
are recognized as the most favorable options to produce liquefied natural gas (LNG) at small-scale
and offshore sites. These processes have a simple and compact design that make them efficient with
respect to their capital costs. Nevertheless, huge operating costs, mainly due to their lower energy
efficiency, remains an ongoing issue. Utilization of design variables having non-optimal values is the
primary cause for the lower energy efficiency; which, in turn, leads to exergy destruction (i.e., entropy
generation), and ultimately the overall energy consumption is increased. The optimal execution
of the design variables of LNG processes can be obtained through effective design optimization.
However, the complex and highly non-linear interactions between design variables (refrigerant
flowrates and operating pressures) and objective function (overall energy consumption) make the
design optimization a difficult and challenging task. In this context, this study examines a new
optimization algorithm, named “Jaya”, to reduce the operating costs of nitrogen dual expander
and SMR LNG processes. The Jaya approach is an algorithm-specific parameter-less optimization
methodology. It was found that by using the Jaya algorithm, the energy efficiency of the SMR process
and nitrogen dual expander natural gas (NG) liquefaction process can be enhanced up to 14.3% and
11.6%, respectively, as compared to their respective base cases. Using the Jaya approach, significant
improved results were observed even compared to other previously used optimization approaches
for design optimization. Results of conventional exergy analysis revealed that the exergy destruction
of SMR and N, dual expander process can be reduced by 17.4% and 14%, respectively. Moreover,
economic analysis identified the 13.3% and 11.6% relative operating costs savings for SMR and N
dual expander LNG processes, respectively.

Keywords: liquefaction processes; LNG; natural gas; offshore; design optimization; Jaya; exergy
destruction; economic analysis

1. Introduction

It is a universally acknowledged fact that energy plays a key role in the performance of different
operations in all strata of life. Due to global population growth and the increasing trend of energy

Energies 2020, 13, 3278; doi:10.3390/en13123278 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-5052-5209
https://orcid.org/0000-0001-5734-5796
https://orcid.org/0000-0002-3218-1454
https://orcid.org/0000-0002-0370-0008
http://www.mdpi.com/1996-1073/13/12/3278?type=check_update&version=1
http://dx.doi.org/10.3390/en13123278
http://www.mdpi.com/journal/energies

Energies 2020, 13, 3278 2 of 27

consumption, it is estimated that demand of energy will rise by 33% by 2030 [1]. In this scenario, fossils
fuels such as coal, natural gas, and oil will be consumed in vast quantities to fulfil energy demand.
Consumption of fossils fuels at such a level is causing a disturbance in the global energy—environment
equilibrium, as shown by the issue of climate change [2]. As a result of the current situation regarding
energy consumption and its effects, efforts to develop clean energy resources have been increased.
The importance of climate change awareness can be gauged with the instance that, in 2016, 196 nations
became signatories of the Paris Climate Accord, which concerns the adaptation and mitigation of
the emission of greenhouse gases (GHGs) [3]. Considering environmental issues such as climate
change, natural gas (NG) has been identified as one of the most promising eco-friendly fossil fuels,
with lower air pollutant emissions than oil and coal [4]. Table 1 compares the air-pollutant emissions by
natural gas, coal, and oil. NG emits lower levels of pollutants, such as carbon dioxide, sulfur dioxide,
and nitrogen oxide, compared to other fossil fuels.

Table 1. Air pollutants emission per billion k] energy production (in kg) [5].

Pollutants NG Qil Coal
Nitrous oxide 41 203 207
Sulfur dioxide 0.27 504 1175

Carbon dioxide 53,070 74,389 94,347
Carbon monoxide 18 15 94
Mercury 0.0 0.003 0.007
Formaldehyde 0.34 0.1 0.1
Particulates 3 38 1245

In this scenario, the importance of natural gas exploitation as a fuel has emerged globally.
In addition to the unfavorable environmental effects associated with oil and coal [6,7], energy security
and exploration of new natural gas reserves [8] are the key factors in the global attraction to utilizing NG.
Global reserves of natural gas have increased over time and the threat of an immediate diminution of
reserves is negligible. In 1995, the estimated global reserves of NG were 120 trillion cubic feet (TCF) and
this soared to 186.1 TCF in 2014 [9]. It is established that energy conversion efficiencies of natural gas
are significantly higher than for other fuels regarding power generation purposes. However, reserves
of natural gas are presently at remote onshore and offshore locations. The multiform distribution of
NG reserves creates multiple challenges for international trade of natural gas, and transportation of
NG to remote locations is thus a difficult task. Given these factors, the introduction of technologies
such as liquefied natural gas (LNG) has recharged the global NG trade [10]. Thus, it is estimated that
LNG production and transportation will exhibit a positive trend in coming decades.

However, NG liquefaction is a highly energy- and cost-intensive process, especially when
refrigeration and compression processes of NG are considered. 42% of the overall cost of an LNG project
is associated solely with the liquefaction and refrigeration stages, as can be seen in Figure 1 [11-13].
Therefore, of the key issues related to LNG projects, low energy efficiency, or large energy consumption,
is a primary associated challenge.
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Exploration

Figure 1. Breakdown of liquefied natural gas (LNG) project cost by relative expenditure [13].

Consumption of energy to produce LNG does not only depend on the corresponding liquefaction
technology, but also the site conditions for onshore and offshore facilities. In this regard, floating
production, storage, and offloading (FPSO) facilities for LNG (liquefied natural gas) production are
designed with entirely different criteria compared to onshore LNG units. Several important design
factors, such as small footprint, equipment compactness, easy start-up/shut-down, and process safety in
terms of flammable materials handling, are considered during the design of an offshore LNG production
unit. Among all LNG processes, single mixed refrigerant (SMR) and nitrogen (N;) expansion-based
processes are categorized as the most suitable choices for offshore-based LNG plants considering their
low deck space requirement, simple design, and lower capital investment [14]. However, these benefits
associated with SMR and nitrogen expander-based LNG processes are countered by high operating
costs. To date, high operating costs, which are mainly related to the compression power requirement
in the refrigeration cycle, remain a major challenge.

Design optimization has proven to be one of the most suitable approaches to identify performance
enhancement opportunities for LNG processes. Many researchers have improved the performance of
SMR and N, expander LNG processes using design optimization only. Multiple design optimization
studies relevant to performance enhancement of SMR and nitrogen expander-based LNG processes are
listed in Table 2.
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Table 2. Literature survey on design optimization of single mixed refrigerant (SMR) and N, expander LNG processes.

4 of 27

LNG Liquid Isentropic Efficiency (%) Value of
Process Conditions [T, P, m] Simulator/EOS Fraction (%)/ i:e mof N r/lgxe szld ro MITA (C) Optimization Algorithm Objective Ref. Year
Temp (°C) ompressortxpande Function
Propane non-dominated sorting
precooled dual (30 °C, 55 bar, 22.6 kg/s) HYSYS, PR N.G/-160 80.0/80.0 >2.0 genetic algorithm 25.5 MW Shah et al., 2009 [15]
N, (NSGA-II)
Propane
precooled Ny (35 °C, 1.0 bar, 1 kmol/h) HYSYS, PR 95/N.G 80.0/85.0 3 HYSYS optimizer 0.75 kWh/Nm? Gao etal., 2010 [16]
expander
Tabu search (TS) and
SMR (20 °C, 60 bar, 360,000 kg/h) HYSYS/NG 100/NG 80/NA 293 Nelder-Mead Downhill 144,500 kW Aspelund et al., 2010 [17]
Simplex ( S) P
implex (NMD
SMR (32°C, 50 bar, 1.0 kg/h) HYSYS/PR 92/N.G 75/NA 3 N"“'h“ea(rl\lf]fgframmmg 0.4244 kW Khan et al., 2011 [18]
o - Knowledge-Based
SMR (32 °C, 50 bar, 1.0 kg/h) Unisim, PR 92/N.G 75/NA 3.01 Optimization (KBO) 0.432 kW Khan and Lee 2013 [19]
SMR (20 °C, 60 bar, 100 kg/s) HYSYS/SRK 100/NG 80/NA 2.6 SQP 143 MW Wahl et al., 2013 [20]
Parallel N,
expander (32°C, 5 bar, 1812 kg/h) HYSYS/PR 95.5/NG 80/80 >3 Genetic Algorithm (GA) k‘/(\)fﬁ/llsi‘ls’ He et al,, 2014 [21]
process
el;];;igér (32°C, 50 bar, 1 kg/h) HYSYi/IER and 92/N.G 75175 3 Oﬁ%ﬁ?jﬁ;ﬁ;& 0.4945 kW Khan et al., 2014 [22]
eI;I; ;léaelr (32 C{ ffllgaSr,klg%TPA = HYSYS/PR NG/-155 NG 3 Empirical Modeling 45,938 kW Song et al., 2014 [23]
eillii:iiaelr (30 °C, 50 bar, 1 kg/h) HYSYS/PR 92/-158.5 75/75 3 Knowledge Inspired kW}?iOg(-)ENG Khan et al., 2014 [24]
o HYSYS/PR and Sequential Coordinate
SMR (32 °C, 50 bar, 1 kg/h) LK 92/NG 75/NA 3 Random Search (SCRS) 0.440 kW Khan et al., 2015 [25]
R410a precooled
arallel nitrogen (20 °C, 50 bar, 1633 kg/h) HYSYS/PR 97.8/-158.2 80/85 3 Genetic Algorithm (GA)  0.376 kWh/Nm?> He et al., 2015 [26]
p g g
expansion
SMR (32 °C, 50 bar, 1 kg/h) HYSYS/PR 92/-158.5 75/NA 3 Genetic Algorithm (GA) kWh(;fg-?)LN G Qyyum et al., 2020 [27]
° Particle Swarm 0.386
SMR (32 °C, 50 bar, 1 kg/h) HYSYS/PR 92/-158.5 75/NA 3 Optimization (PSO) KWh/kg-LNG Qyyum et al., 2020 [27]
o Vortex Search 0.369
SMR (32 °C, 50 bar, 1 kg/h) HYSYS/PR 92/-158.5 75/NA 3 Optimization (VSO) KWh/kg-LNG Qyyum et al., 2020 [27]

NG: not given, NA: not applicable.
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In the research studies listed in Table 2, power consumption by SMR and N, expander LNG
processes was taken as a main objective function. For instance, Khan et al. [18] endeavored to
enhance the energy efficiency of SMR process using non-linear programming (NLP) and obtained
0.4244 kWh/kg-LNG specific energy consumption. Khan et al. [24] executed a customized knowledge
inspired based algorithm for design optimization of N, dual expander LNG process, and as a result,
a specific energy requirement of 0.5007 kWh/kg-LNG was obtained. The reason behind this significant
low value of specific energy consumption is the outlet temperature of inter-stage coolers used in [24].
Outlet temperature used in this study was set at 30 °C for each inter-stage cooler, while it is 40 °C in
other cases. In simulation, keeping the outlet temperature of coolers at lower values decreases the
specific energy consumption of that process. In addition, Qyyum et al. [27] used the vortex search
optimization (VSO) approach for process improvement of the SMR LNG process, obtaining energy
consumption of 0.369 kWh per kilogram of LNG. It has been reported [14,28,29] that LNG processes,
particularly SMR and N; dual expander-based processes, are still energy intensive, mainly due to
the non-optimal design variables such as flowrates of refrigerant and condensation, and evaporation
pressures of the refrigeration cycles. Therefore, it is imperative to pursue opportunities for the sake
of energy savings in small-scale and offshore LNG processes, and particular for SMR and N, dual
expander processes. However, enhancement of energy efficiency for offshore LNG projects via exclusive
optimization is nonetheless a difficult job. This is due to the fact that highly nonlinear and complex
thermodynamic interactions are present between the energy efficiency (objective function) and the
constrained design variables. In this context, the design optimization of the LNG processes is still an
ongoing issue.

Since different optimization algorithms (either population based or single-solution based) have
been used and evaluated for the effective design optimization of LNG processes [14]. The algorithms
based on swarm intelligence and having evolutionary characteristics are usually probabilistic algorithms.
To execute these algorithms, multiple controlling parameters are required, for instance, number of
generations, size of population, and size of elite. Different algorithms usually need multiple specific
control parameters despite having common control parameters [30]. For instance, Particle Swarm
Optimization (PSO) utilizes cognitive parameters and inertia weight; parameters such as selection
operator and mutation probability are used by GA; and different bees, such as scout, employed,
and onlooker are used by the Artificial Bee Colony (ABC) approach. In the same manner, many
different algorithms, such as Differential Evolution (DE), Shuffled Frog Leaping (SFL), Cat Swarm
Optimization (CSO), Biogeography-Based Optimization (BBO), and Invasive Weed Optimization
(IWO), require the tuning of their corresponding specific parameters. Performance of these algorithms
can be compromised if adequate protocols for the tuning of the specific parameters are not followed.
The inappropriate tuning of these specific parameters produces local optimal solutions or computational
effort can be increased. Taking into account this scenario, Rao et al. [30] developed an optimization
approach named “Jaya”, which does not need any algorithm-specific parameters. In this algorithm,
derivation of a final solution aims at two fundamental entities: moving towards the best solutions and
avoiding the worst solution. In addition to this crucial advantage, another reason for selecting the
Jaya algorithm optimization approach for this study is that it has not previously been used for the
optimization of LNG processes. Significant effects of this approach on the performance enhancement
of LNG process will also be explored.

In this article, for process modeling and analysis, the commercial simulation software tool
Aspen HYSYS® v10 (https://www.aspentech.com/) is employed, and rigorous models of SMR and N,
expansion processed are produced that are interlinked with the Jaya optimization algorithm, which is
coded in MATLAB. The Peng-Robinson equation of state were used to calculate the binary interactions
and Lee-Kesler equations were used to determine the calculations regarding entropies and enthalpies.
This article is organized in the following manner: Section 2 emphasizes the simulation basis and
description for offshore LNG processes such as SMR and N, dual expander processes. Section 3
provides the detailed conditions and assumptions for processes modeling and optimization. Section 4
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describes the Jaya algorithm and its major advantages and limitations with respect to offshore LNG
processes. Section 5 deals with the multiple process analyses involved in this research. Section 5.1
explores the energy saving opportunities as a result of design optimization. Section 5.2 reveals the
detailed results of conventional exergy analysis applied to base and optimized cases of SMR and N,
dual expander LNG processes. Section 5.3 depicts the effects of the Jaya algorithm, based on composite
curves analysis, on the performance of an LNG heat exchanger involved in the SMR and N, dual
expander processes. Section 5.4 describes the different types of costs and relative cost savings for SMR
and N dual expander LNG processes based on economic analysis. Finally, the conclusions extracted
from this research work are presented in Section 6.

2. LNG Processes: Nitrogen Dual Expander and Single Mixed Refrigerant

The nitrogen dual expander process (see Figure 2) and single mixed refrigerant process (see Figure 3)
are taken promising candidates for offshore NG liquefaction project. Their corresponding process
description and simulation are described in the following sub-sections.

2.1. Nitrogen Dual Expander LNG Process: Description and Simulation

In a typical N, dual expander LNG process, a single refrigeration cycle consists of N, as a
refrigerant, which is employed to produce liquid natural gas. Due to a single (gaseous) phase
throughout the refrigeration cycle, a turbo expander (single or dual) is used to produce sufficient
cold energy upon isentropic expansion. The N, expansion LNG process uses multistage compression,
which is equipped with water/air based inter-stage cooling. In this study, the nitrogen expansion
process used is a dual turbo expander. The major reason behind the dual expander is that an expansion
of nitrogen refrigerant takes place at two different (low and high) pressure levels, which ultimately
reduces the generation of entropy within the multi-stream cryogenic LNG heat exchanger. Although
dual expansion adds to the capital cost, it results in a significant reduction in operating cost [14,27].
In Figure 2, natural gas (stream-A) passes through the main cryogenic heat exchanger (LNG-1) at
high pressure (50.0 bar) and ambient temperature. The latent heat of vaporization of natural gas is
exchanged with the working fluid nitrogen (stream-16 and stream-17) in the LNG heat exchanger
(LNG-1). The resultant stream-B is obtained as subcooled LNG, which is expanded by a Joule-Thomson
(JT) valve (JTV-1) to produce liquefied natural gas after passing through a vessel (V-1). In this process,
expanders (K-5 and K-6) are used for isentropic expansion, which are preferable to JT valves in terms
of thermodynamic efficiency. Stream-1 and -6 exit from LNG-1, and are recycled to complete the
refrigeration loop.

1

—

Natural Gas (NG) A
—

12 13

[ e e+
|

CHX-01: Cryogenic heat exchanger
E: Interstage cooler

K-1 to 4: Compressors

K-5 & 6: Expanders

JTV-1:  Joule-Thomson Valve

Vi End flash gas vessel

JTV1

LNG

Figure 2. Schematic diagram of the N; dual expander LNG process.
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2.2. Single Mixed Refrigerant LNG Process: Description and Simulation

The classical SMR process uses mixed refrigerant (MR) including methane, ethane, propane,
and nitrogen. This process also uses a single refrigeration cycle but with two phases (gas-liquid), where
two-phase mixed refrigerant is expanded through Joule-Thomson (JT) valve. The JT valve has several
advantages over an expander, such as simple design, compactness, and significantly lower capital
cost. Nevertheless, JT valves lead to isenthalpic expansion rather than isentropic expansion, which
makes the SMR process less attractive thermodynamically. Figure 3 presents a simple schematic of
the conventional SMR process. Accordingly, natural gas (stream-1) goes to the main cryogenic heat
exchanger (usually plate-fin) at ambient temperature and high pressure (i.e., 40.0-80.0 bar). The SMR
process deals with both type of heat i.e., sensible and latent. The latent heat of the vaporization of
natural gas is exchanged with the MR (stream-5), and the resultant stream-2 is obtained as subcooled
LNG. In contrast, stream-6 exits as a superheated mixed gas refrigerant from the LNG heat exchanger
which is recycled to complete the refrigeration loop.

13
aaat E3 acat E-2 swwl
Q4 Q3 Q2
k4 @
G
6 (Recycled MR) 2
14
1 (NG)———
7
CHX-01 g N2 —>
C1——>| SMR-Stream e
T 5 C2——> _
C3—— et
Q1
3
LNG D2 NJ
JIV-2 4 JTV-1

Figure 3. Schematic diagram of the single mixed refrigerant (SMR) LNG process [20].
3. Processes Simulation

NG feed assumptions and conditions are listed in Table 3. The key assumptions taken into account
during the modeling (through Aspen Hysys® v10) of the SMR and N, expansion LNG processes are
given as:

e  Loss of heat to the surroundings is negligible.

e 75% isentropic efficiency was fixed for each compressor.

e 75% isentropic efficiency was considered for each involved expander.

e  The outlet temperature of refrigerant was set at 40 °C for each inter-stage cooler.

e  Across each inter-stage cooler, there is no pressure drop [31-33].

e  Across the main LNG heat exchanger (CHX-01), there is no pressure drop [31-33].

e  The minimum internal temperature approach (MITA) value of heat exchanger CHX-01 for both
(SMR and N, dual expander) LNG processes was set at 3 °C.

e  The fraction of end flash gas was fixed at 8.0%.
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Table 3. Natural gas feed conditions and assumptions adapted from [25].

Property Conditions
NG Feed Condition
Flow rate 1.0 kg/h
Temperature 32.0°C
Pressure 50 bar
NG Feed Composition Mole Fraction
Methane 0.9133
Ethane 0.0536
Propane 0.0214
n-Butane 0.0047
i-Butane 0.0046
n-Pentane, i-Pentane 0.0001
Nitrogen 0.0022

Details of heat exchanger model used for SMR and N, dual expander LNG processes are described
in Table 4.

Table 4. Heat exchanger model for SMR and N, dual expander LNG process.

Characteristics For Heat Exchanger (CHX-01) For Coolers (E-1 to E-4)
Heat exchanger type LNG-100 Air cooler simple design
Configuration Plate fin heat exchanger One tube row, one pass
Flow alignment Concurrent for streams 1 and 14; Countercurrent for Crossflow

streams 1 and 5 in SMR process;
Concurrent for streams A and 12, 13; Countercurrent for
streams A and 16, 17 in N, dual expander process
Cooling medium - Air
Air intake temperature, pressure - 25.0 °C, 1.0132 bar

4. Jaya Optimization Algorithm

The Jaya algorithm solves constrained and unconstrained problems with a lesser number of
evaluations compared to other algorithms and is simple to implement and modify. The general
searching (working) flowchart of the Jaya algorithm is shown in Figure 4. A generic explanation of the
Jaya algorithm is given as follows:

Let us suppose that the objective function to be optimized is f(x). Assume that at any iteration
i the design variables number is m (i.e., j =1, 2, ..., m), and the number of candidate solutions or
population size is  (i.e., k =1,2, ..., n). The worst candidate solution f(x)yorst and the best candidate
solution f(x)pes; are acquired by selecting the worst and the best values from the whole population size,
respectively. If at the ith iteration, the current value of the jth variable for the kth candidate solution is
X ki, the modification of this value to new values X’;  ; for moving towards the optimized solution is
carried out according to the following mathematical equation:

X jki = Xjki + 11 (X pesti — 1Xii) = 72 (X rworsti = | X i) (1)
where X’j,k,i is the updated value of Xt ;, and X pest,i and X;worst,i are best and worst values of jth
variable for the best and worst candidate solutions f(x)pest and f(x)worst respectively. r1;; and r2;,; are
selected as two random numbers having range from 0 to 1 for the jth variable and during the ith
iteration. The term r1;, (Xj,best,i - |X ]-,k,i)) tends to push the solution towards the best solution whereas

the term r2 j/i(X jaworst,i — |X j,k,i|) tends to move the solution away from the worst solution.
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Setting population size, number of design
variables,and the number of iterations

Identified the best and worst candidate solutions
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Based on f(X) ges: and f{X) w,r: solutions, modify the decision
variables using equation:
Xiki = Xjki + 1l Kbesti = 1 Xjkil) - 7255 Gworsti = Xijkd)

9 of 27

Save and
replace X
with X'z,

Iteration = Iteration + |

Save and keep
/\’M,,"dS it is

Is the solution X';; ; better than
corresponding solution Xjy ;>

Consider the new set of
solutions as the initial
population

Number of iterations
completed ?

Optimal solution is
obtained

Figure 4. Flowchart of the Jaya algorithm.

In this study, the N, dual expander and the SMR LNG processes were optimized using the
Jaya algorithm. The specific compression power was considered as an objective function that was
constrained with the MITA. Table 5 lists the objective function, constraint, and design variables for

both studied LNG processes.

Table 5. Objective function, constraint, and design variables for N, dual expander and SMR processes.

Objective function

Specific compression power

n
Z41':0

)

mNG

Minimize f(X) = Min.(

Design constraint

Minimum internal approach
temperature (°C)

MITA(X)cHx-o01 2 3.0
where,
Xlower < X < Xupper
and X is a vector of the decision variables.
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Table 5. Cont.

Decision variables Lower bound Upper bound

Design variables for SMR Process

MR high pressure, P; (bar) 35.0 70.0
Evaporation pressure, P4 (bar) 1.1 4.0
Nitrogen flow rate, mpy» (kg/h) 0.1 0.65
Methane flow rate, mc; (kg/h) 0.25 0.85

Ethane flow rate, mc, (kg/h) 0.45 1.15
Propane flow rate, mc3 (kg/h) 2.0 3.5
Design variables for N, dual expander process
N, Low P (bar) 8 20
N, mid P (bar) 18 30
Ny high P (bar) 70 120
Mid expansion T (°C) -130 =70
Ny split fraction 0.5 2

High pressure exparolder inlet ~110 ~60
temperature (°C)
N, mass flow (kg/h) 10 20

To handle the constraint, the exterior penalty function (EPF) method has been utilized to incorporate
the constraint (i.e., MITA) into the objective function. This approach has been exercised in many recent
research works [13,17,20,34] relevant to design optimization of the LNG processes. Hence, the objective
function with the incorporation of constraint is given below in Equation (2):

k
Minimize f(X) = Min Z W;/mynG + r(max{0, (3.0 - MITA(X)} 2)
i=1

The purpose of the objective function given in Equation (2) was to minimize the energy needed
for LNG process. Next, an example of the SMR process, to demonstrate the working of the Jaya
algorithm, is given. For this, the objective function given in Equation (2) is considered. There are
six design variables (i.e., mc3, mcy, mc1, mpp, P2 , and P;) in the SMR process. Five candidate
solutions (i.e., initial population size) and two iterations as the termination criteria are assumed for
this demonstration. The initial population was generated by choosing the values of design variables
randomly from within the given ranges of the variables” values, and then the respective objective
function values were calculated using the Aspen HYSYS simulator, as shown in Table 6.
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Table 6. Initial population generated over decision variables of the SMR process.

gz‘l‘jt‘l‘l::‘: mcs (k/h)  mcp (kg/h)  mcq (kg/h)  mnp (kg/h) Py (bar)  Pp(bar)  MITA  f(x) Using Equation (2)  f(x) Using Equation (3)  Status
1 25 0.8722 0.6707 0.3496 60.44 1313 —2.695 6.241 5701.2 Worst
2 2,633 0.869 0.6707 0.35 61 232 4687 0.437 0.437 Best
3 2.7 0.96 0.66 0.28 71 3 1.591 1.815 1410.8
4 29 12 071 0.32 65 2.89 1.987 1.462 1014.5
5 3.32

22 73 1.5 58 3.33 1.485 3.391 1518.4
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Because itis a minimization function, the lowest and highest values of f (x) were taken as the best and
the worst solutions, respectively. From Table 6, it can be seen that best and the worst solutions correspond
to the second and first candidate solutions, respectively. Then, assuming two random numbers
rl = 0.58 and r2 = 0.81, the new values of each design variable (mc3, mcp, mci, myp, P2, and Py),
were calculated using Equation (1) and are shown in Table 6. For instance, the new values of the
three variables for the first candidate solution and for the first iteration were calculated as shown from
Equations (3)—(6):

X111 =X+l (Xian — [Xua]) = 211 (X301 — [X114]),

= 37+ 0.58(62 — 37]) — 0.81(57 — 37]) ©)
=353

Xo11 = Xopa+rl11(Xou1 — [Xo11]) = 1211 (X231 — [X211),

= 1.2+ 0.58(3.3 - |1.2]) — 0.81(2.3 — |1.2]) @)
=1.52

X311 = Xs11 +1111(Xaa1 — [Xo11]) = 1211 (X331 — [X311]),
= 0.21 + 0.58(0.44 — [0.21]) — 0.81(0.34 — 0.21]) )
=0.24

X'a10 = Xg11 +rli(Xgan - |X4,1,1|) —1211(Xa31 — |X4,1,1‘),
= 0.28 + 0.58(0.67 — [0.28]) — 0.81(0.45 — 0.28]) ®)
= 0.36

Similarly, the new values of other variables were calculated. Then, each corresponding candidate
solution from Tables 6 and 7 were compared and the best solution was chosen. For example, candidate
solutions 1, 2, 4, and 5 were the best in Table 7, whereas solution 3 was the best in Table 6. Thus,
Table 8 shows the best candidate solutions obtained by comparing Tables 6 and 7. The best and worst
solutions are identified again in Table 8. Candidate solutions 2 and 3 were identified as the best and
the worst solutions, respectively. Thus, this completes the first iteration. Then, the second iteration
started by choosing new values of random variables r1 and r2. The process of updating the decision
variable values was repeated again. For the second iteration, the values of r1 and 12 were assumed
as rl = 0.21 and r2 = 0.29. New values of all decision variables were calculated using Equation (1).
Table 9 shows the new values of decision variables and their relevant values of the objective function.
Now the optimal values of objective function of Tables 8 and 9 are compared, best value of objective
function is chosen, and placed in Table 10. Table 10 shows the optimal solution after second iteration.
It is obvious from Table 10 the best solution obtained corresponds to 2nd candidate solution and the
worst solution corresponds to 1st candidate solution. The value of objective function is reduced from
0.437 to 0.3906 in just two iterations. The above demonstration is for constraint problem of minimizing
overall power of SMR process. Similarly, a demonstration could be made for N, dual expender process.
The difference lies only in the number of variables and their lower and upper bounds.
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Table 7. New values of decision variables and corresponding energy during the first iteration.

gzrlljtli((i);tse mc; (kg/h) mc; (kg/h) me; (kg/h) mp; (kg/h) P2 (bar) Pl(bar) MITA f(x) Using Equation (2) f(x) Using Equation (3)  Status
1 2.5771 0.8703 0.6707 0.3498 60.7648 1.8971 1.666 1.8 1341.8
2 2.7407 0.8664 0.6707 0.3503 61.4536 3.1357 3.139 0.3944 0.3944 Best
3 2.8231 0.9783 0.6575 0.2642 73.7536 3.9721 —-0.6765 4.042 3680.5 Worst
4 3.07 1.2735 0.719 0.3134 66.3736 3.8368 3.651 0.5521 0.5521
5 3.5857 2.5035 8.82 1.7648 57.76 4.378 2.403 2.58 599.58

Table 8. Updated candidate solutions for the SMR process after comparing Tables 5 and 6 (first iteration completed).

Candidate . . . .

Solutions mc; (kg/h) mc; (kg/h) mcy (kg/h) my; (kg/h)  P2(bar) Pl(bar) MITA f(x) Using Equation (2)  f(x) Using Equation (3)  Status
1 2.5771 0.8703 0.6707 0.3498 60.7648 1.8971 1.666 1.8 1341.8
2 2.7407 0.8664 0.6707 0.3503 61.4536 3.1357 3.139 0.3944 0.3944 Best
3 2.7 0.96 0.66 0.28 71 3 1.591 1.815 1410.8 Worst
4 3.07 1.2735 0.719 0.3134 66.3736 3.8368 3.651 0.5521 0.5521
5 3.5857 2.5035 8.82 1.7648 57.76 4.378 2.403 2.58 599.58

Table 9. New values of decision variables and the corresponding energy for the SMR process during the second iteration.

Candidate . . . .

Solutions mc; (kg/h) mc; (kg/h) mcy (kg/h) mp; (kg/h) P2 (bar) P1 (bar) MITA  f(x) Using Equation (2)  f(x) Using Equation (3)  Status
1 2.5758 0.8435 0.6738 0.3701 57.9412 1.8374 -5.233 8.701 824,107 Worst
2 2.7525 0.8393 0.6738 0.3707 58.6821 3.1751 3.337 0.3906 0.3906 Best
3 2.7085 0.9403 0.6622 0.2948 68.9953 3.028 1.925 1.479 1076.5
4 3.1081 1.2789 0.7260 0.3308 63.9987 3.9322 0.6715 2.741 2331.2
5 3.6651 2.6073 9.4750 1.8983 54.6961 4.5167 2.232 2.810 770.81

Table 10. Updated candidate solutions of the SMR process after comparing Tables 6 and 7 (second iteration completed).

Candidate . . . .

Solutions mc3 (kg/h) mc; (kg/h) mcy (kg/h)  mnp (kg/h) P2(bar)  Pl(bar) MITA  f(x) Using Equation (2)  f(x) Using Equation (3)  Status
1 2.5771 0.8703 0.6707 0.3498 60.7648 1.8971 1.666 1.8 1341.8 Worst
2 2.7525 0.8393 0.6738 0.3707 58.6821 3.1751 3.337 0.3906 0.3906 Best
3 2.7085 0.9403 0.6622 0.2948 68.9953 3.028 1.925 1.479 1076.5
4 3.07 1.2735 0.719 0.3134 66.3736 3.8368 3.651 0.5521 0.5521
5 3.5857 2.5035 8.82 1.7648 57.76 4.378 2.403 2.58 599.58
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The demonstration of the Jaya algorithm for the design optimization of the SMR process does not
include any effect of the constraints. This can be handled simply by using a penalty function to take
care of the constraint’s violation by activating the penalty on the objective function.

5. Process Analysis

5.1. Optimization Results and Discussion

The energy saving opportunities in SMR and nitrogen dual expander processes for an offshore
facility were found successfully by executing the Jaya optimization algorithm. Table 11 summarizes
the results for both base and optimized cases of the N, dual expander process and SMR process. In
the base case of the nitrogen expansion process and SMR process, minimum internal temperature
approach (MITA) values were 4.95 and 5.4 °C, respectively. These higher values of MITA provided an
opportunity to save energy. It has been reported [35] that to make feasible, economical, and efficient
transfer of heat, the MITA value must be in the range of 1.0-3.0 °C. Hence, after optimization, the MITA
value reached 3.0 °C, which led to the reduction in the entropy generation within the main cryogenic
heat exchanger. The entropy reduction provides a significant decrease in exergy losses and enhances
the overall energy efficiency of the liquefaction process.

Table 11. Optimization results: summary and comparison.

Parameters N Dual Expander Process SMR Process
Base Case Optimized Base Case Optimized
High pressure of refrigerant (bar) 90.0 105.0 48.0 60.44
Low Pressure of refrigerant (bar) 12.0 9.9 1.3 3.31
Mid pressure of refrigerant (bar) 22.43 28.5 - -
Refrigerant splitting ratio 0.7623 0.8072 - -
Nitrogen flow rate, nyy (kg/h) 14.43 13.28 0.2690 0.3496
Methane flow rate, ¢ (kg/h) - - 0.5290 0.6707
Ethane flow rate, ricp (kg/h) - - 0.6190 0.8722
Propane flow rate, ric3 (kg/h) - - 2.950 2.633
MITA (°C) 4.93 3.0 5.4 3.0
Liquefaction rate (%) 92.0 92.0 92.0 92.0
Required specific power
(kWh/kg-NG) 0.6337 0.5599 0.4452 0.3815
Relative energy saving (%) - 11.64 - 14.30

5.2. Composite Curves Analysis

In the main multi-stream LNG heat exchanger of LNG process, opportunities for exergy saving can
be interpreted physically using composite curves analysis [36]. Composite curves analyses, in addition
to exergy analysis, plays a vital role for the evaluation of the exergy contents in the process streams.
In composite curves analysis, the maximum hot stream temperature is in agreement with the maximum
cold stream temperature, and vice versa. In the temperature and heat-flow composite curves (THCCs),
the arrangement of the process data is done in such manner that the energy streams containing heat
flow (W) function is in correspondence with temperature (°C) [37]. On the other hand, the temperature
difference composite curves (TDCCs) provide the opportunity to determine the peak of the minimum
internal temperature approach (MITA) value within cryogenic heat exchangers. The value of MITA
between 1.0 and 3.0 °C inside the cryogenic heat exchangers is taken as more feasible range for efficient
heat transfer. Approach temperature values approaching 3.0 °C in TDCCs implies efficient heat transfer,
and the values receding 3.0 °C implies exergy destruction within the cryogenic heat exchanger [37].

Figure 5 shows the THCCs of cryogenic heat exchanger CHX-01 of the base and the optimized
cases for SMR and N, dual expander LNG processes. The exergy destruction within cryogenic
heat exchangers (CHX) is analyzed by computing the gap margin of cold and hot composite curves.
It can be observed in Figure 5a,b that the application of optimal decision variables, derived through
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optimization using the Jaya algorithm, leads to a reduction in exergy destruction. The margin between
cold composite curves (CCC) and hot composite curves (HCC) of optimized cases is significantly less
than their corresponding base cases. This scenario implies the overall performance improvement of
the LNG heat exchanger (CHX-01) because of the application of the Jaya algorithm.
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Figure 5. Temperature and heat-flow curves (THCCs) of base and optimized cases for CHX-01 of
(a) SMR and (b) N, dual expander LNG processes.

Figure 6 shows the TDCCs for base and optimized cases for SMR and N, dual expander LNG
processes. The MITA values for ideal heat transfer inside the heat exchanger range between 1.0 and
3.0 °C. The high-temperature approach inside the LNG heat exchanger (>20 °C) is mainly because of
the existence of MR high boiling point components, e.g., propane. The high-temperature approach
tends to cause the generation of entropy inside the LNG heat exchangers, and this approach can usually
be observed in the central area of the composite curves [38]. High energy performance of the LNG
heat exchanger could be obtained by increasing mass flow rates of high boiling point components like
propane, which will force the high-temperature approach to move towards a warmer section of the
cryogenic exchanger. This scheme, however, could produce liquid fractions at the inlet of compressors
if the flow rate of propane is increased. Therefore, flow rates of refrigerant are adjusted to ensure the
zero fraction of liquid at the compressor inlet. High energy efficiency of an LNG heat exchanger can
be achieved by reducing the peak value of MITA. In Figure 6a, it is observed that the peak value of
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MITA for CCC and HCC in the base case is 63 °C, however, due to the application of Jaya algorithm,
the MITA peak value drops to 51 °C in the optimized case. On the other hand, in Figure 6b, the peak
value of MITA in the N; dual expander base case is 28 °C, while it drops to 25 °C in the optimized case.
Reduction in peak values of MITA in both processes due to implementation of the Jaya algorithm leads
to the overall improvement in efficiency.
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Figure 6. Temperature difference composite curves (TDCCs) of base and optimized cases for CHX-01
of (a) SMR and (b) N, dual expander LNG processes.

5.3. Exergy Analysis

The exergy of any system can be stated as the maximum attainable useful work when the system
undergoes interactions to reach a state of equilibrium. To perform exergy analysis in these processes,
the following assumptions were taken into account [39]:

i. The outer surface of all equipment involved in the process are at constant reference temperature,
hence, the rate of exergy destruction is neglected.

ii. ~ The whole system, including each involved equipment, is assumed at rest by taking into account
the environment making the rates of kinetic and potential exergies negligible.
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Conventional exergy analysis is performed to find out the exergy destruction in each equipment
involved in the NG liquefaction process. Methods are taken into account from the literature [39] to
compute the destruction of exergy in different equipment of the system. As a chemical reaction was
not involved in this process, only physical exergy has been taken into account. Equation (7) expresses
the physical exergy of the kth equipment:

e = (1) x { (7 = o) = To X (5 — 50)} @)

where ey, h, T, and s represent the rate of exergy of the kth equipment, enthalpy, temperature, and entropy,
respectively. The subscripts 0 and k express the ambient conditions and the concerned equipment,
respectively. Here, fy = 25.0 °C and atmospheric pressure value of 1.013 bar were used as ambient
conditions to perform exergy analysis. Equations of exergy balance are used to evaluate the total
destruction of exergy in each involved equipment, as shown in Equation (8) [39].

EF = ED—FEP (8)

where Ef, Ep, and Ep express the rate of fuel exergy, rate of product exergy, and the rate of exergy
destruction, respectively.

Table 12 provides the details of results of conventional exergy analysis applied to SMR and N; dual
expander LNG processes. Details of exergy destruction in the equipment of the base and optimized
cases are demonstrated.

Table 12. Exergy destruction values for SMR and N, dual expander LNG processes (values in W).

Equipment SMR N3 Dual Expander
Base Optimized Base Optimized
Compressors
K1 24 22 8 10
K2 24 21 8 10
K3 23 20 73 63
K4 20 17 73 64
Water coolers
E1 13 11 2 5
E2 15 13 4 7
E3 17 15 60 51
E4 32 27 68 57
Expanders
K5 - - 101 92
K6 - - 39 38
Heat exchanger
CHX-01 129 93 85 51
Valve
VLV-1 31 30 8 8
VLV-2 8 8 - -
Total 337 278 530 456

On the basis of Table 12, Figure 7 shows the comparison of exergy destruction between base and
optimized cases of SMR LNG processes. Due to the application of the Jaya algorithm, a significant
reduction in exergy destruction in the optimized case can be observed. It can be seen that the maximum
exergy destruction for each case is associated with the heat exchanger (CHX-01). This is due to the fact
that, in the LNG process, heat transfer between the cold and hot fluids, and exchange of heat between
the environment and the exchanger, plays a vital role in increasing the generation of entropy [40].
In addition, movement of hot and cold fluids through the exchanger also contributes to the increase of
exergy destruction. Figure 8 shows the exergy destruction comparison between the base and optimized
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cases associated with each item of equipment of the N, dual expander LNG process. In this process,
the maximum destruction of exergy is associated with compression units (Kj_4). The percentage
share of exergy destruction related to each equipment in the optimized cases of the SMR and N, dual
expander LNG processes was elaborated in Figures 9 and 10, respectively. These results were extracted
on the basis of the values given in Table 12.
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Figure 7. Exergy destruction comparison in SMR LNG process (base and optimized cases).
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Figure 8. Exergy destruction comparison in N, dual expander LNG process (base and optimized cases).
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Figure 9. Percentage of exergy destruction by each equipment in the optimized case of the SMR
LNG process.

N2 Dual

Expander

Figure 10. Percentage of exergy destruction by each equipment in the optimized case of the N, dual
expander LNG process.

Figure 9 provides useful details for process engineers and information about the influence of
each type of equipment on the exergy efficiency of the SMR process. It can be observed that the
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CHX-01 and compressors play the vital roles in decreasing the exergy efficiency of the overall SMR
process. Process engineers can further improve the system via more competent design optimization
approach or retrofitting. On the other hand, Figure 10 shows the details of the impact of each piece
of equipment on the exergy efficiency of the N, dual expander LNG process. It can be observed
that compressors (K3 and K4), the expander (K5), and coolers (E3 and E4) are the leading equipment
producing maximum exergy destruction. Improving these pieces of equipment alone can significantly
enhance the exergy efficiency of the overall process.

Due to the implementation of the Jaya algorithm, exergy destruction in the optimized cases of
both SMR and N; dual expander processes was reduced by 17.4% and 14%, respectively, compared
to their corresponding base cases (Figure 11). Thermodynamic efficiency of the overall process of
liquefaction can be determined considering figure of merit (FOM) [26]. Having utilized the Carnot
refrigeration cycle with respect to energy consumption for liquefaction, the thermodynamic efficiency
of a liquefaction process can be determined. This could be described as the ratio of ideal work W; to
actual required work W, for liquefaction, as given in Equation (9):

Wi
FOM = 7+ O

Exergy efficiency, thermodynamic limit, percent Carnot, and FOM are the key indicators to assess
the thermodynamic efficiency of any liquefaction process [41-43]. In terms of thermodynamics, ideal
or minimum work is associated with the ideal process of liquefaction, while actual work is the actual
consumption of energy utilized in the real process of liquefaction. From the fluid, which undergoes
reversible processes to reach equilibrium with its surroundings, the maximum work which could be
obtained for the liquefaction process can be described by Equation (10):

W; = rine X (Erne) = five X (Enc) (10)

Table 13 shows actual power and thermodynamic efficiencies of both SMR and N, dual expander
processes with their corresponding base and optimized cases. It implies that actual work required for
the base cases of LNG and N, dual expander processes are 0.44 and 0.63 kW, leading to thermodynamic
efficiency of 22% and 15%, respectively. With the application of the Jaya algorithm actual power for the
LNG and N, dual expander processes is reduced to 0.38 kW and 0.55 kW, respectively, which leads
to an enhancement in thermodynamic efficiency of 26% and 17%, respectively. This scenario of
thermodynamic efficiency improvement is also illustrated in the Figure 11.

Table 13. Actual work and thermodynamic efficiency of LNG and N, dual expander processes.

Process Cases Actual Power (kW) Thel:n'lodynaomlc
Efficiency (%)
Base 0.44 22.32
SMR Optimized 0.38 25.74
Base 0.63 15.50

N, dual d
2 QUATEXPANCEr Optimized 0.55 17.54
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Figure 11. Net exergy destruction comparison in SMR and N, dual expander LNG processes and

corresponding thermodynamic efficiency.

5.4. Economic Analysis

The annual capital charge ratio (ACCR) is a widely used method in the economic analysis of
industrial plants, and is based on interest rates and the life time of plant. Nevertheless, due to certain
limitations regarding the selection of adequate assumptions for plant life and interest rates, a simpler
method to calculate total annualized cost (TAC) was adopted from the literature [44]. This method is
based on the payback period. In this study, 5 years was taken as the period for the overall investment
return. Using this method, a rigorous comparison between conventional and proposed schemes can be
undertaken to demonstrate the economic feasibility of the proposed work. In addition, the handbooks
of Turton and Luyben [44,45] were utilized to obtain additional details regarding economic analysis of
different LNG processes. To execute the economic analysis, equations to calculate different types of
costings involved in the LNG process are enlisted in the Table 14 [44].

Table 14. Types of cost along with corresponding equations for cost estimation.

Cost Types Equations
Equipment purchase cost Cp ($) log,o(Cp) = k1 +kzlogg A + k3(log10 A)2
Bare module cost CBM ($) Cpm = CpFpm
n
Total capital investment TCI ($) TCI =1.18 ):,CBM,i
1
Operating cost OC ($/yr) OC = costof elect’ricity(w\,m%) X (total compression power)
Maintenance cost MC ($/yr) MC = TCIx0.02
. TCI
Total annualized cost TAC ($/yr) TAC = (WM) +OC ($/yr)+ MC ($/yr)
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To estimate the economic and commercial feasibility of SMR and N, dual expander LNG processes,
1 million tons per annum (MTPA) NG feed capacity was assumed. In this article, economic differences
between the base and optimized cases of the SMR and N, dual expander LNG processes were
highlighted. In this way, the significant impact of design optimization on the economic performance
was identified. Considering operating costs (OC), electricity generated on floating LNG power station
(FLPS) was considered. So, the price of electricity was taken as $0.057/kWh [46] for the cost estimation
of OC. which mainly reflect the cost of operation of compression units. For economic analysis, 8760
working hours per year have been taken into account which makes the cost of electricity $500.2/yr.
Utilizing the equations given in Table 14, the cost of multiple equipment involved in the SMR and
N, dual expander LNG processes, such as inter-stage air coolers, compression units, heat exchangers,
and expanders, was calculated. In order to estimate the cost of compressors and expanders, the capacity
factors related to work duty (kW) were acquired by Aspen HYSYS. To evaluate the costs of air coolers
and multi-stream LNG heat exchangers, the capacity factor was related to the area (A) of the coolers
and heat exchangers. However, the area (A) of coolers and heat exchangers cannot be obtained from
Aspen HYSYS. Thus, the value of UA (the product of the area of exchanger and the overall heat transfer
coefficient) was utilized in this regard. Table 15 provides the values of UA and capacity factors for the
compressors and the expanders.

Table 15. Equipment parameters used for economic analysis.

Equipment N; Dual Expander Process SMR Process
Base Optimized Base Optimized
Compressors work duty (kW)
K1 4213 5490 13,216 11,655
K2 4409 5750 13,138 11,487
K3 43,228 37,272 12,617 10,877
K4 44,203 38,087 11,258 9528
Expanders work duty (kW)
K5 18,972 18,029 - -
K6 4743 4649 - -
Coolers UA values (W/°C)
El 337,088 904,123 13,494,418 14,013,510
E2 3,202,349 2,815,121 20,245,299 5,565,554
E3 25,565,116 41,316,805 8,371,237 9,354,074
E4 32,099,741 22,653,124 23,418,762 21,242,648
Main exchanger UA values (W/°C)
CHX-01 4,831,537 5,700,190 7,823,250 13,567,172

Figure 12 illustrates that the operating cost of the base case of the SMR LNG process can be
reduced by 13%. The reason behind the operating cost savings is the high energy efficiency of the
optimized SMR LNG process. In addition to achieving operating cost savings, total capital investment
(TCI) is also decreased in the optimized case by 2.6%. Moreover, the TAC of optimized case decreased
to the value of $26.3 million/year, leading to 11.6% TAC savings. Figure 13 demonstrates the 11.6%
relative operating cost savings in the N dual expander LNG process. In this regard, a tradeoff between
the capital investment/increment and the operating costs is observed, leading to a 0.9% increment
of TCI for the optimized case. However, 9.9% TAC relative savings are obtained and the TAC value
decreased to $37.9 million/year from $41.8 million/yr.
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Figure 13. Economic analysis of N, dual expander process LNG process.

In addition, in order to identify the potential of Jaya algorithm, economics of the SMR LNG
process using the Jaya approach was compared with approaches such as the GA, PSO, and vortex
search optimization (VSO) approaches. In the recent study, Qyyum et al. [20] used the GA, PSO,
and VSO approaches for design optimization of the SMR LNG process. Economic analysis of these
three optimized processes were performed and results were compared with the Jaya approach which
can be seen in Figure 14. Figure 14 shows the significant benefit of Jaya approach over GA and PSO
approaches in terms of TCI, OC, and TAC while these values are 1.5%, 3.5%, and 2.9% higher as
compared to the VSO approach, respectively. Relative savings of annual costs i.e., TAC ($/yr) and OC
($/yr) were also elaborated in the Figure 14. Relative TAC savings using Jaya approach was found
11.50% while it was 6.7%, 10.7%, and 14.1% for the GA, PSO, and VSO approaches, respectively. On the
other hand, relative OC savings exploiting Jaya approach was observed 13.3% while it was 8.3%, 12.2%,
and 16.1% for the GA, PSO and VSO approaches, respectively.
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Figure 14. Economic analysis comparison for SMR processes using Jaya, Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and vortex search optimization (VSO) approaches.

6. Conclusions

A newly created algorithm-specific parameter-less Jaya algorithm was executed to identify the
energy saving opportunities for offshore NG liquefaction processes, and results were compared
with previously used algorithms identifying the significant advantage of Jaya algorithm over others.
The SMR and N, dual expander processes were chosen as promising candidates for offshore-based
LNG production projects. During the implementation of the Jaya algorithm, it was observed that its
application for the design optimization of non-linear and complex LNG processes is simple, mainly
due to its less algorithm-specific parameters. The constraints were handled using a penalty function
approach incorporated into the objective function. So, the Jaya algorithm was applied to deduce
the optimal values of key design variables and to insure a feasible temperature approach (i.e., 3 °C)
inside the LNG cryogenic exchanger of both the SMR and N, dual expander processes. A significant
performance improvement in whole LNG process was observed as compared to other previously
used optimization approaches. On the basis of exergy analysis, it was deduced that application of
the Jaya algorithm reduced the exergy destruction in the SMR and N, dual expander significantly
and enhanced the respective thermodynamic efficiency of these processes. The outcome of composite
curves analysis identified that the overall performance of the LNG heat exchanger involved in the
SMR and N, dual expander processes can be improved through implementation of the Jaya algorithm.
Results of economic analysis revealed that total annualized cost (TAC) savings of 11.6% and 9.9% can
be obtained in the SMR and N dual expander processes. Moreover, some useful results have been
obtained by comparing the economic analysis results using Jaya approach with the genetic approach
(GA), Particle Swarm Optimization (PSO), and the vortex search optimization (VSO) approaches.
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Nomenclature
Variables

N, Nitrogen
Cq Methane
C Ethane
Cs Propane

P Pressure (bar)

T Temperature (°C)

h Enthalpy (k]/kg)

s Entropy (k]/kg-°C)
m Mass flow rate (kg/s)

Ex Exergy rate

w Work duty (W)

$ US Dollars

Subscripts

D destruction

F fuel

k kth equipment

P product

o ambient conditions

Acronyms

LNG Liquefied natural gas

SMR Single mixed refrigerant

NG Natural gas

TDCC Temperature difference composite curves
THCC Temperature-heat flow composite curves
MITA Minimum internal temperature approach
FPSO Floating Production Storage and Offloading
TCF trillion cubic feet

CBM Bare module cost ($)

TCI Total capital investment ($)

ocC Operating cost ($/yr)

MC Maintenance cost ($/yr)

TAC Total annualized cost ($/yr)

FLPS Floating LNG power station
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