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Abstract: This manuscript aims to incorporate an inertial scheme with Popov’s subgradient
extragradient method to solve equilibrium problems that involve two different classes of bifunction.
The novelty of our paper is that methods can also be used to solve problems in many fields,
such as economics, mathematical finance, image reconstruction, transport, elasticity, networking,
and optimization. We have established a weak convergence result based on the assumption of the
pseudomonotone property and a certain Lipschitz-type cost bifunctional condition. The stepsize,
in this case, depends upon on the Lipschitz-type constants and the extrapolation factor. The bifunction
is strongly pseudomonotone in the second method, but stepsize does not depend on the strongly
pseudomonotone and Lipschitz-type constants. In contrast, the first convergence result, we set
up strong convergence with the use of a variable stepsize sequence, which is decreasing and
non-summable. As the application, the variational inequality problems that involve pseudomonotone
and strongly pseudomonotone operator are considered. Finally, two well-known Nash–Cournot
equilibrium models for the numerical experiment are reviewed to examine our convergence results
and show the competitive advantage of our suggested methods.

Keywords: energy production models; optimization problems; control parameters; Lipschitz-type
conditions; variational inequality; Nash-Cournot oligopolistic equilibrium model

1. Introduction

An Equilibrium problem (EP) was originally started in the unifying feature by Blum and Oettli [1]
in 1994 and provided a detailed investigation of their theoretical properties. This study contributes
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significantly to the advancement of applied and pure science. This problem is primarily related
to Ky Fan Inequity due to his early contributions to this field [2]. It has been established that the
equilibrium problem theory has set up an unique approach to investigate an immense range of topics
that have appeared in social and physical science. For instance, it might involve physical or mechanical
structures, chemical processes [3], the distribution of traffic over computer, and telecommunication
networks or public roads [4–7]. In economics, it often refers to production competition [8] or the
dynamics of offer and demand [9], exploiting the mathematical model of non-cooperative games and
the analogous equilibrium concept by Nash [10,11]. The problem of equilibrium, as a particular case,
includes many mathematical problems as a particular case, such as the variational inequality problems
(VIP), problems of minimization, the fixed point problems, Nash equilibrium of non-cooperative
games, complementarity problems, and saddle point problem (see e.g., [1,12]).

On the other hand, iterative methods are efficient techniques for determining the approximate
solution of an equilibrium problem. In that case, two major approaches that are well-known
i.e., the proximal point method [13] and auxiliary problem principle [14]. The proximal point method
strategy was initially developed by Martinet [15] for the monotone variational inequality problems
and later Rockafellar [16] extends this approach for monotone operators. Moudafi [13] proposed the
proximal point method for monotone equilibrium problems. Konnov [17] also suggests a different
interpretation of the proximal point method with weaker assumptions for equilibrium problems.

In addition, inertial-type methods are additionally significant, depending on the heavy-ball
methods of the second-order time dynamic system. Polyak began by considering inertial extrapolation
as an acceleration procedure to deal with the problem of smooth convex minimization. Inertial-type
algorithms are two-step iterative schemes, and the next iteration is determined by using the
previous two iterations and it can be viewed as an accelerating step of the iterative sequence.
A large number of methods are the earliest, being set up for solving the problem (EP) in finite
and infinite-dimensional spaces, such as the proximal point-like methods [13,18], the extragradient
methods [19–23], the subgradient extragradient methods [24–26], the inertia methods [27–32] and
others in [33,34].

In this work, our focus is on the proximal point method, in particular projection methods, which
are well established and technically easy to implement due to their convenient numerical computation.
This manuscript aims to suggest two modifications of the results that appeared in [21,35,36] by
applying the inertial scheme that is useful for speeding up the iteration process. The first result
includes the two-step inertial Popov’s extragradient method for determining a numerical solution to
the pseudomonotone equilibrium problems and the weak convergence of the suggested method is
achieved based on the standard assumptions. We also propose an alternative inertial-type method,
the second variant of the first method. The second method does not need any information regarding
the Lipschitz-type and strongly pseudomonotone constants of a bifunction. A practical explanation
for the second method is that it uses a diminishing and non-summable sequence of non-negative real
numbers, which are useful in achieving the strong convergence.

This manuscript is arranged, as follows: in Section 2, we provide some essential definitions and
useful results. Sections 3 and 4 include all of our main methods and corresponding convergence results.
Section 5 provides the methods for variational inequality problems. Section 6 sets out the numerical
tests to show the numerical efficiency of the proposed methods for the test problems based on the
Nash–Cournot equilibrium model compare to other existing methods.

2. Background

Let K be a non-empty, convex, and closed subset of the Hilbert space E. Let H : K → E be an
operator and SOLVI(H,K) is the solution set of a variational inequality problem relative to the operator
H upon the set K. Likewise, SOLEP( f ,K) denotes the solution set of an equilibrium problem on the set
K and ξ∗ is any arbitrary element of the solution set SOLEP( f ,K) or SOLVI(H,K).



Energies 2020, 13, 3292 3 of 28

Definition 1. [1] Let f : E× E → R be a bifunction with f (ũ, ũ) = 0, for each ũ ∈ K. The equilibrium
problem for f upon K is defined, as follows:

Find ξ∗ ∈ K such that f (ξ∗, ṽ) ≥ 0, ∀ṽ ∈ K.

Definition 2. [37] The metric projection PK(ũ) of ũ on a closed and convex subset K of E is determined,
as follows:

PK(ũ) = arg min{‖ṽ− ũ‖ : ṽ ∈ K}.

Next, we take the concept of monotonicity of a bifunction into account (see [1,38] for details).

Definition 3. Let f : E×E→ R on K for γ > 0 is

(1) strongly monotone if
f (ũ, ṽ) + f (ṽ, ũ) ≤ −γ‖ũ− ṽ‖2, ∀ ũ, ṽ ∈ K;

(2) monotone if
f (ũ, ṽ) + f (ṽ, ũ) ≤ 0, ∀ ũ, ṽ ∈ K;

(3) strongly pseudomonotone if

f (ũ, ṽ) ≥ 0 =⇒ f (ṽ, ũ) ≤ −γ‖ũ− ṽ‖2, ∀ ũ, ṽ ∈ K;

(4) pseudomonotone if
f (ũ, ṽ) ≥ 0 =⇒ f (ṽ, ũ) ≤ 0, ∀ ũ, ṽ ∈ K;

(5) satisfying the Lipschitz-type condition on K if there exist constants L1, L2 > 0, such that

f (ũ, w̃) ≤ f (ũ, ṽ) + f (ṽ, w̃) + L1‖ũ− ṽ‖2 + L2‖ṽ− w̃‖2, ∀ ũ, ṽ, w̃ ∈ K,

holds.

This section ends with a few essential lemmas that are useful for examining convergence.

Lemma 1. [39] Assume that K is non-empty, convex, and closed subset of Hilbert space E and g : K → R is a
convex, subdifferentiable, and lower semi-continuous function on K. Furthermore, ũ ∈ K is a minimizer of g if
and only if 0 ∈ ∂g(ũ) + NK(ũ) where ∂g(ũ) and NK(ũ) denotes the subdifferential of g at ũ and normal cone
of K at ũ, respectively.

Lemma 2. [40] Let {pn}, {qn} ⊂ [0,+∞) be two sequences and
∞

∑
n=1

pn = ∞ with
∞

∑
n=1

pnqn < ∞,

then lim infn→∞ qn = 0.

Lemma 3. [41] For ũ, ṽ ∈ E and µ ∈ R then the following relation is true:

‖µũ + (1− µ)ṽ‖2 = µ‖ũ‖2 + (1− µ)‖ṽ‖2 − µ(1− µ)‖ũ− ṽ‖2.

Lemma 4. [42] Assume that ãn, b̃n and c̃n are sequences in [0,+∞), such that

ãn+1 ≤ ãn + b̃n(ãn − ãn−1) + c̃n, ∀n ≥ 1, with
+∞

∑
n=1

c̃n < +∞,

and also with b̃ > 0, such that 0 ≤ b̃n ≤ b̃ < 1 for all n ∈ N. Subsequently, the following relations are hold.

(i)
+∞

∑
n=1

[ãn − ãn−1]+ < ∞, with [s]+ := max{s, 0};



Energies 2020, 13, 3292 4 of 28

(ii) limn→+∞ ãn = a∗ ∈ [0,+∞).

Lemma 5. [43] Let {ũn} be a sequence in E and K ⊂ E such that the following relations are true:

(i) For each ũ ∈ K, limn→∞ ‖ũn − ũ‖ exists;
(ii) Every sequentially weak cluster point of {ũn} belongs to K;

Subsequently, {ũn} weakly converges to a point in K.

A normal cone of K at ũ ∈ K is defined as:

NK(ũ) = {z̃ ∈ E : 〈z̃, ṽ− ũ〉 ≤ 0, ∀ ṽ ∈ K}.

Let g : K → R be a convex function with subdifferential of g at ũ ∈ K is defined as:

∂g(ũ) = {z̃ ∈ E : g(ṽ)− g(ũ) ≥ 〈z̃, ṽ− ũ〉, ∀ ṽ ∈ K}.

3. Inertial Popov’s Two-Step Subgradient Extragradient Algorithm for Pseudomonotone EP

We present our first method to solve the pseudomonotone equilibrium problems involving the
Lipschitz-type condition of a bifunction. It uses an inertial term to boost up the iterative sequence,
so we referred it as an “Inertial Popov’s Two-step Subgradient Extragradient Algorithm” for a class
pseudomonotone equilibrium problems. The detailed algorithm is given below.

Algorithm 1 (Two-step Subgradient Extragradient Algorithm for Pseudomonotone EP)

Initialization: Choose u−1, u0, v0 ∈ E, 0 ≤ ϑn ≤ ϑ <
√

5− 2 and λ(ϑ, L1, L2) > 0. Set

u1 = arg min
y∈K

{λ f (v0, y) +
1
2
‖ρ0 − y‖2},

v1 = arg min
y∈K

{λ f (v0, y) +
1
2
‖ρ1 − y‖2},

where ρ0 = u0 + ϑ0(u0 − u−1) and ρ1 = u1 + ϑ1(u1 − u0).

Iterative steps: Given un−1, un, vn−1, vn for n ≥ 1 and construct a half space

Hn = {z ∈ E : 〈ρn − λωn−1 − vn, z− vn〉 ≤ 0},

where ωn−1 ∈ ∂ f (vn−1, vn).

Step 1: Compute

un+1 = arg min
y∈Hn

{λ f (vn, y) +
1
2
‖ρn − y‖2},

where ρn = un + ϑn(un − un−1).

Step 2: Compute

vn+1 = arg min
y∈K

{λ f (vn, y) +
1
2
‖ρn+1 − y‖2},

where ρn+1 = un+1 + ϑn+1(un+1 − un).

Step 3: If un+1 = ρn and vn = vn−1, then STOP. Otherwise, set n := n + 1 and go back to Step 1.
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Assumption 1. Assume that f : E×E→ R satisfy the following conditions:

(A1) f (ṽ, ṽ) = 0 for all ṽ ∈ K and f is pseudomonotone on K;
(A2) f satisfy the Lipschitz-type condition on E through two positive constants L1 and L2;
(A3) lim sup

n→∞
f (ũn, ṽ) ≤ f (ũ∗, ṽ) for all ṽ ∈ K and {ũn} ⊂ K satisfy ũn ⇀ ũ∗;

(A4) f (ũ, .) is convex and subdifferentiable on E for each ũ ∈ E.

Lemma 6. We have the following crucial inequality that results from the Algorithm 1.

λ f (vn, y)− λ f (vn, un+1) ≥ 〈ρn − un+1, y− un+1〉, ∀y ∈ Hn.

Proof. By the value un+1 through Lemma 1, we have

0 ∈ ∂2

{
λ f (vn, y) +

1
2
‖ρn − y‖2

}
(un+1) + NHn(un+1).

For ω ∈ ∂ f (vn, un+1), there exists ω ∈ NHn(un+1), such that

λω + un+1 − ρn + ω = 0.

The above implies that

〈ρn − un+1, y− un+1〉 = λ〈ω, y− un+1〉+ 〈ω, y− un+1〉, ∀y ∈ Hn.

Because ω ∈ NHn(un+1) then 〈ω, y− un+1〉 ≤ 0, ∀y ∈ Hn. It implies that

λ〈ω, y− un+1〉 ≥ 〈ρn − un+1, y− un+1〉, ∀y ∈ Hn. (1)

Due to ω ∈ ∂ f (vn, un+1) and by definition of subdifferentiable, we obtain

f (vn, y)− f (vn, un+1) ≥ 〈ω, y− un+1〉, ∀y ∈ E. (2)

From expressions (1) and (2), we have the required result.

Lemma 7. We also have the following inequality from Algorithm 1.

λ f (vn, y)− λ f (vn, vn+1) ≥ 〈ρn+1 − vn+1, y− vn+1〉, ∀y ∈ K.

Proof. The proof is the same as that of Lemma 6.

Lemma 8. We have the following inequality from Algorithm 1.

λ
{

f (vn−1, un+1)− f (vn−1, vn)
}
≥ 〈ρn − vn, un+1 − vn〉.

Proof. Because un+1 ∈ Hn then the definition of Hn implies that

〈ρn − λωn−1 − vn, un+1 − vn〉 ≤ 0.

The above implies that

λ〈ωn−1, un+1 − vn〉 ≥ 〈ρn − vn, un+1 − vn〉. (3)

From ωn−1 ∈ ∂ f (vn−1, vn) and due to subdifferential definition, we have

f (vn−1, y)− f (vn−1, vn) ≥ 〈ωn−1, y− vn〉, ∀y ∈ E.
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Set y = un+1 in the above expression

f (vn−1, un+1)− f (vn−1, vn) ≥ 〈ωn−1, un+1 − vn〉, ∀y ∈ E. (4)

From expression (3) and (4), we obtain the desired result.

Now, we are proving the validity of the stopping criterion for Algorithm 1.

Lemma 9. If un+1 = ρn and vn = vn−1 in Algorithm 1, then vn ∈ SOLEP( f ,K).

Proof. By substituting un+1 = ρn in Lemma 6, we have

λ f (vn, y)− λ f (vn, un+1) ≥ 0, ∀y ∈ Hn. (5)

Because un+1 ∈ Hn and vn = vn−1, un+1 = ρn, then from Lemma 8, we have

λ f (vn, un+1) ≥ ‖ρn − vn‖2 ≥ 0. (6)

The expression (5) and (6) implies that vn ∈ SOLEP( f ,K).

Remark 1. Two more conditions for stopping criterion are un+1 = vn = ρn and ρn+1 = vn+1 = vn for
Algorithm 1. The validity of these stopping criterion can be shown easily by Lemma 6 and Lemma 7, respectively.

Lemma 10. Let f : E × E → R satisfying the Assumption 1. Assume that SOLEP( f ,K) is nonempty.
Afterwards, for each ξ∗ ∈ SOLEP( f ,K), we have

‖un+1 − ξ∗‖2

≤ ‖ρn − ξ∗‖2 − (1− 4λL1)‖ρn − vn‖2 − (1− 2λL2)‖un+1 − vn‖2 + 4λL1‖ρn − vn−1‖2.
(7)

Proof. Substituting y = ξ∗ into Lemma 6, we obtain

λ f (vn, ξ∗)− λ f (vn, un+1) ≥ 〈ρn − un+1, ξ∗ − un+1〉, ∀y ∈ Hn. (8)

Since ξ∗ ∈ SOLEP( f ,K) then f (ξ∗, vn) ≥ 0. Thus, from (A1) the above expression becomes

〈ρn − un+1, un+1 − ξ∗〉 ≥ λ f (vn, un+1). (9)

Because of the Lipschitz-type condition, we have

f (vn−1, un+1) ≤ f (vn−1, vn) + f (vn, un+1) + L1‖vn−1 − vn‖2 + L2‖vn − un+1‖2. (10)

The expression (9) and (10) implies that

〈ρn − un+1, un+1 − ξ∗〉
≥ λ

{
f (vn−1, un+1)− f (vn−1, vn)

}
− λL1‖vn−1 − vn‖2 − λL2‖vn − un+1‖2.

(11)

From expression (11) and Lemma 8, we obtain

〈ρn − un+1, un+1 − ξ∗〉
≥ 〈ρn − vn, un+1 − vn〉 − λL1‖vn−1 − vn‖2 − λL2‖vn − un+1‖2.

(12)

We have the following facts:

−2〈ρn − un+1, un+1 − ξ∗〉 = −‖ρn − ξ∗‖2 + ‖un+1 − ρn‖2 + ‖un+1 − ξ∗‖2.
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2〈ρn − vn, un+1 − vn〉 = ‖ρn − vn‖2 + ‖un+1 − vn‖2 − ‖ρn − un+1‖2.

We also have the following inequality

‖vn−1 − vn‖2 ≤
(
‖vn−1 − ρn‖+ ‖ρn − vn‖

)2 ≤ 2‖vn−1 − ρn‖2 + 2‖ρn − vn‖2.

From the above two facts and last inequality with (12) provides the required result.

Now, we are in a position to provide our first convergence result of this work.

Theorem 1. Assume that {un}, {vn} and {ρn} sequences in E generated by Algorithm 1, where the sequence
ϑn is non-decreasing and λ is a positive real number, such that

0 < λ <
1
2 − 2ϑ− 1

2 ϑ2

L2(1− ϑ)2 + 2L1(1 + ϑ + ϑ2 + ϑ3)
and 0 ≤ ϑn ≤ ϑ <

√
5− 2.

Subsequently, the sequences {un}, {vn} and {ρn} are converges weakly to an element ξ∗ of SOLEP( f ,K).

Proof. From Lemma 10, we have

‖un+1 − ξ∗‖2 + 4λL1‖ρn+1 − vn‖2

≤ ‖ρn − ξ∗‖2 − (1− 4λL1)‖ρn − vn‖2 − (1− 2λL2)‖un+1 − vn‖2

+ 4λL1‖ρn − vn−1‖2 + 4λL1‖ρn+1 − vn‖2.

(13)

By the definition of ρn in Algorithm 1, we have

‖ρn − ξ∗‖2 = ‖(1 + ϑn)(un − ξ∗)− ϑn(un−1 − ξ∗)‖2

= (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2. (14)

By the definition of ρn+1 in Algorithm 1, we also have

‖ρn+1 − vn‖2 = ‖un+1 + ϑn+1(un+1 − un)− vn‖2

= ‖(1 + ϑn+1)(un+1 − vn)− ϑn+1(un − vn)‖2

= (1 + ϑn+1)‖un+1 − vn‖2 − ϑn+1‖un − vn‖2 + ϑn+1(1 + ϑn+1)‖un+1 − un‖2

≤ (1 + ϑn)‖un+1 − vn‖2 + ϑn(1 + ϑn)‖un+1 − un‖2. (15)

Combining the expression (13)–(15), we obtain

‖un+1 − ξ∗‖2 + 4λL1‖ρn+1 − vn‖2

≤ (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2

+ 4λL1‖ρn − vn−1‖2 − (1− 4λL1)‖ρn − vn‖2 − (1− 2λL2)‖un+1 − vn‖2

+ 4λL1(1 + ϑn)‖un+1 − vn‖2 + 4λL1ϑn(1 + ϑn)‖un+1 − un‖2 (16)

≤ (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2

+ 4λL1‖ρn − vn−1‖2 + 4λL1ϑn(1 + ϑn)‖un+1 − un‖2

− (1− 4λL1)‖ρn − vn‖2 − (1− 2λL2 − 4λL1(1 + ϑn))‖un+1 − vn‖2 (17)

≤ (1 + ϑn+1)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2

+ 4λL1‖ρn − vn−1‖2 + 4λL1ϑn(1 + ϑn)‖un+1 − un‖2

−
(
1− 2λL2 − 4λL1(1 + ϑn)

)
2

[
2(‖un+1 − vn‖2 + ‖ρn − vn‖2)

]
. (18)
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By substituting

σn =
1− 2λL2 − 4λL1(1 + ϑn)

2
,

and due to the inequality 2‖un+1 − vn‖2 + 2‖ρn − vn‖2 ≥ ‖un+1 − ρn‖2. From this discussion,
the expression (18) turns into following:

Λn+1 ≤ Λn + ϑn(1 + ϑn)‖un − un−1‖2 + 4λL1ϑn(1 + ϑn)‖un+1 − un‖2 − σn‖un+1 − ρn‖2, (19)

where Λn = ‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + 4λL1‖ρn − vn−1‖2. By the value ρn+1, we have

‖un+1 − ρn‖2 = ‖un+1 − un − ϑn(un − un−1)‖2

= ‖un+1 − un‖2 + ϑ2
n‖un − un−1‖2 − 2ϑn〈un+1 − un, un − un−1〉 (20)

≥ ‖un+1 − un‖2 + ϑ2
n‖un − un−1‖2 − 2ϑn‖un+1 − un‖‖un − un−1‖

≥ (1− ϑn)‖un+1 − un‖2 + (ϑ2
n − ϑn)‖un − un−1‖2. (21)

Combining the expression (19) and (21) implies that

Λn+1 ≤ Λn + ϑn(1 + ϑn)‖un − un−1‖2 + 4λL1ϑn(1 + ϑn)‖un+1 − un‖2

− σn(1− ϑn)‖un+1 − un‖2 − σn(ϑ
2
n − ϑn)‖un − un−1‖2

≤ Λn + rn‖un − un−1‖2 − qn‖un+1 − un‖2,

(22)

where rn := ϑn(1 + ϑn) + σnϑn(1− ϑn) and qn := σn(1− ϑn)− 4λL1ϑn(1 + ϑn).
Further, we take Γn = Λn + rn‖un − un−1‖2. It follows from (22) that

Γn+1 − Γn = ‖un+1 − ξ∗‖2 − ϑn+1‖un − ξ∗‖2 + rn+1‖un+1 − un‖2 + 4λL1‖ρn+1 − vn‖2

− ‖un − ξ∗‖2 + ϑn‖un−1 − ξ∗‖2 − rn‖un − un−1‖2 − 4λL1‖ρn − vn−1‖2

= ‖un+1 − ξ∗‖2 − (1 + ϑn+1)‖un − ξ∗‖2 + ϑn‖un−1 − ξ∗‖2 + 4λL1‖ρn+1 − vn‖2

− 4λL1‖ρn − vn−1‖2 − rn‖un − un−1‖2 + rn+1‖un+1 − un‖2

≤ −qn‖un+1 − un‖2 + rn+1‖un+1 − un‖2

= −(qn − rn+1)‖un+1 − un‖2. (23)

Next, we need to compute

qn − rn+1

= σn(1− ϑn)− 4λL1ϑn(1 + ϑn)− ϑn+1(1 + ϑn+1)− σn+1ϑn+1(1− ϑn+1)

≥ σn(1− ϑn)− 4λL1ϑn(1 + ϑn)− ϑn(1 + ϑn)− σnϑn(1− ϑn)

≥ σn(1− ϑ)2 − 4λL1ϑ(1 + ϑ)− ϑ(1 + ϑ)

≥ 1− 2λL2 − 4λL1(1 + ϑ)

2
(1− ϑ)2 − 4λL1ϑ(1 + ϑ)− ϑ(1 + ϑ)

=
(1

2
− 2ϑ− 1

2
ϑ2
)
− λ

(
L2
(
1− ϑ

)2
+ 2L1

(
1 + ϑ + ϑ2 + ϑ3))

≥ 0. (24)

The expression (23) and (24) with some δ ≥ 0, implies that

Γn+1 − Γn ≤ −(qn − rn+1)‖un+1 − un‖2 ≤ −δ‖un+1 − un‖2 ≤ 0. (25)
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The above relation (25) implies that the sequence {Γn} is non-increasing. From Γn+1, we have

Γn+1 = ‖un+1 − ξ∗‖2 − ϑn+1‖un − ξ∗‖2 + rn+1‖un+1 − un‖2 + 4λL1‖ρn+1 − vn‖2

≥ −ϑn+1‖un − ξ∗‖2.
(26)

Additionally, from definition Γn, we have

‖un − ξ∗‖2 ≤ Γn + ϑn‖un−1 − ξ∗‖2

≤ Γ1 + ϑ‖un−1 − ξ∗‖2

≤ · · · ≤ Γ1(ϑ
n−1 + · · ·+ 1) + ϑn‖u0 − ξ∗‖2

≤ Γ1

1− ϑ
+ ϑn‖u0 − ξ∗‖2. (27)

Combining the expression (26) and (27), we obtain

−Γn+1 ≤ ϑn+1‖un − ξ∗‖2

≤ ϑ‖un − ξ∗‖2

≤ ϑ
Γ1

1− ϑ
+ ϑn+1‖u0 − ξ∗‖2. (28)

It continues to follow from (25) and (28), such that

δ
k

∑
n=1
‖un+1 − un‖2 ≤ Γ1 − Γk+1

≤ Γ1 + ϑ
Γ1

1− ϑ
+ ϑn+1‖u0 − ξ∗‖2

≤ Γ1

1− ϑ
+ ‖u0 − ξ∗‖2, (29)

letting k→ ∞ in (29) implies that

∞

∑
n=1
‖un+1 − un‖2 < +∞ implies ‖un+1 − un‖ → 0 as n→ ∞. (30)

From the relation (20) and (30), we obtain

‖un+1 − ρn‖ → 0 as n→ ∞. (31)

Next, the expression (28) implies that

−Λn+1 ≤ ϑ
Γ1

1− ϑ
+ ϑn+1‖u0 − ξ∗‖2 + rn+1‖un+1 − un‖2. (32)

From the relation (18) we have(
1− 2λL2 − 4λL1(1 + ϑ)

)[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Λn −Λn+1 + ϑ(1 + ϑ)‖un − un−1‖2 + 4λL1ϑ(1 + ϑ)‖un+1 − un‖2. (33)
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Set k ∈ N and using (33) for n = 1, 2, · · · , k, gives that

(
1− 2L2λ− 4L1λ(1 + ϑ)

) k

∑
n=1

[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Λ0 −Λk+1 + ϑ(1 + ϑ)

k

∑
n=1
‖un − un−1‖2 + 4λL1ϑ(1 + ϑ)

k

∑
n=1
‖un+1 − un‖2

≤ Λ0 + ϑ
Γ1

1− ϑ
+ ϑk+1‖u0 − ξ∗‖2 + rk+1‖uk+1 − uk‖2

+ ϑ(1 + ϑ)
k

∑
n=1
‖un − un−1‖2 + 4λL1ϑ(1 + ϑ)

k

∑
n=1
‖un+1 − un‖2, (34)

letting k→ ∞ in (34) implies that

∞

∑
n=1
‖un+1 − vn‖2 < +∞ and

∞

∑
n=1
‖ρn − vn‖2 < +∞, (35)

and
lim

n→∞
‖un+1 − vn‖ = lim

n→∞
‖ρn − vn‖ = 0. (36)

The following relation can easily be derived:

lim
n→∞

‖un − vn‖ = lim
n→∞

‖un − ρn‖ = lim
n→∞

‖vn−1 − vn‖ = 0. (37)

By the definition of ρn and using Cauchy inequality, we have

‖ρn − vn−1‖2 = ‖un + ϑn(un − un−1)− vn−1‖2

= ‖(1 + ϑn)(un − vn−1)− ϑn(un−1 − vn−1)‖2

= (1 + ϑn)‖un − vn−1‖2 − ϑn‖un−1 − vn−1‖2 + ϑn(1 + ϑn)‖un − un−1‖2

≤ (1 + ϑ)‖un − vn−1‖2 + ϑ(1 + ϑ)‖un − un−1‖2. (38)

Now, summing up the expression (38) for n = 1, 2 · · · , k, we obtain

k

∑
n=1
‖ρn − vn−1‖2 ≤ (1 + ϑ)

k

∑
n=1
‖un − vn−1‖2 + ϑ(1 + ϑ)

k

∑
n=1
‖un − un−1‖2 (39)

The above expression with (30) and (35) implies that

∑ ‖ρn − vn−1‖2 < +∞. (40)

It follows from the relation (16), we obtain

‖un+1 − ξ∗‖2 ≤ (1 + ϑ)‖un − ξ∗‖2 − ϑ‖un−1 − ξ∗‖2 + ϑ(1 + ϑ)‖un − un−1‖2

+ 4L1λ‖ρn − vn−1‖2,
(41)

above expression with (30), (40), (37) and Lemma 4 implies that limit of ‖un − ξ∗‖, ‖ρn − ξ∗‖ and
‖vn − ξ∗‖ exists for every ξ∗ ∈ SOLEP( f ,K), means that the sequences {un}, {ρn} and {vn} are
bounded. Next, we need to show that each weak sequential limit point of the sequence {un} belongs
to SOLEP( f ,K). Let z be arbitrary weak cluster point of the sequence {un}, and then there exists a
weak convergent subsequence {unk} of {un} converges to z, this also implies that {vnk} also converge
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weakly to z. Now our aim to prove that z ∈ SOLEP( f ,K). By Lemma 6, the bifunction Lipschitz-type
condition and Lemma 8, we have

λ f (vnk , y) ≥ λ f (vnk , unk+1) + 〈ρnk − unk+1, y− unk+1〉
≥ λ f (vnk−1, unk+1)− λ f (vnk−1, vnk )− λL1‖vnk−1 − vnk‖

2

− λL2‖vnk − unk+1‖2 + 〈ρnk − unk+1, y− unk+1〉
≥ 〈ρnk − vnk , unk+1 − vnk 〉 − λL1‖vnk−1 − vnk‖

2

− λL2‖vnk − unk+1‖2 + 〈ρnk − unk+1, y− unk+1〉

(42)

where y be an any element in Hn. As a result with (31), (36), (37), and due to the boundedness of the
sequence {un} the above inequality tends to zero. By given λ > 0, the assumption (A3) and vnk ⇀ z,
we obtain

0 ≤ lim sup
k→∞

f (vnk , y) ≤ f (z, y), ∀y ∈ Hn.

Due to z ∈ K ⊂ Hn, we obtain f (z, y) ≥ 0, ∀y ∈ K. This implies that z belongs to SOLEP( f ,K).
Thus Lemma 5, ensures that {ρn}, {un} and {vn} weakly converges to ξ∗ as n→ ∞.

Remark 2. For ϑn = ϑ = 0 in Algorithm 1 gives the results as in [35,36].

4. Inertial Popov’s Two-Step Subgradient Extragradient Algorithm for Strongly
Pseudomonotone EP

The second algorithm is also an inertial algorithm that is able to solve the strongly
pseudomonotone equilibrium problem. However, the advantage of this algorithm is that there is no
need for prior information regarding the strongly pseudomonotone constant γ and Lipschitz constants
L1, L2. Let {λn} ⊂ (0,+∞) be a non-increasing sequence, so that the following conditions are satisfied:

(T1) : lim
n→∞

λn = 0 and (T2) :
∞

∑
n=1

λn = +∞. (43)

Assumption 2. Let a bifunction f : E×E→ R satisfies the following conditions:

(B1) f (ũ, ũ) = 0, ∀ũ ∈ K and f is strongly pseudomontone on K;
(B2) f meet the Lipschitz-type condition on E with two positive constants L1 and L2;
(B3) f (ũ, .) is sub-differentiable and convex on E for all ũ ∈ E.

Lemma 11. Assume that f : E×E→ R satisfies the conditions (B1)–(B3). Let the solution set SOLEP( f ,K) is
nonempty. For each ξ∗ ∈ SOLEP( f ,K), we have

‖un+1 − ξ∗‖2 ≤ ‖ρn − ξ∗‖2 − (1− 4λnL1)‖ρn − vn‖2 − (1− 2λnL2)‖un+1 − vn‖2

+ 4λnL1‖ρn − vn−1‖2 − 2γλn‖vn − ξ∗‖2.

Now, we are in a position to provide our second convergence result of this work.

Theorem 2. Assume that f : E× E → R satisfies the conditions (B1)–(B3). Let {un}, {vn} and {ρn} are
sequences in E generated by Algorithm 2 and ϑn is non-decreasing sequence with 0 ≤ ϑn ≤ ϑ <

√
5− 2.

Subsequently, {un}, {vn} and {ρn} strongly converge to an element ξ∗ in SOLEP( f ,K).
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Algorithm 2 (Two-step Subgradient Extragradient Algorithm for Strongly Pseudomonotone EP)

Initialization: Choose u−1, u0, v0 ∈ E, 0 ≤ ϑn ≤ ϑ <
√

5 − 2 and a sequence {λn}
satisfying (43). Set

u1 = arg min{λ0 f (v0, y) +
1
2
‖ρ0 − y‖2 : y ∈ K},

v1 = arg min{λ1 f (v0, y) +
1
2
‖ρ1 − y‖2 : y ∈ K},

where ρ0 = u0 + ϑ0(u0 − u−1) and ρ1 = u1 + ϑ1(u1 − u0).

Iterative steps: Assume that un−1, un, vn−1 and vn are known for n ≥ 1 and

Hn = {z ∈ E : 〈ρn − λnωn−1 − vn, z− vn〉 ≤ 0},

where ωn−1 ∈ ∂ f (vn−1, vn).

Step 1: Compute

un+1 = arg min{λn f (vn, y) +
1
2
‖ρn − y‖2 : y ∈ Hn},

where ρn = un + ϑn(un − un−1).

Step 2: Compute

vn+1 = arg min{λn+1 f (vn, y) +
1
2
‖ρn+1 − y‖2 : y ∈ K},

where ρn+1 = un+1 + ϑn+1(un+1 − un).

Step 3: If un+1 = ρn and vn = vn−1, then STOP. Otherwise set n := n + 1 and go to Step 1.

Proof. The proof is the identical as the proof of Theorem 1, but there are still few changes. We provide
the proof for the readable purpose. By Lemma 11 and adding 4L1λn‖ρn+1− vn‖2 in both sides, we have

‖un+1 − ξ∗‖2 + 4L1λn‖ρn+1 − vn‖2

≤ ‖ρn − ξ∗‖2 − (1− 4L1λn)‖ρn − vn‖2 − (1− 2L2λn)‖un+1 − vn‖2

+ 4L1λn‖ρn − vn−1‖2 − 2γλn‖vn − ξ∗‖2 + 4L1λn‖ρn+1 − vn‖2. (44)

By using the definition of ρn in Algorithm 2, we have

‖ρn − ξ∗‖2 = (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2. (45)

By using the definition ρn+1 in Algorithm 2, we also have

‖ρn+1 − vn‖2 ≤ (1 + ϑn)‖un+1 − vn‖2 + ϑn(1 + ϑn)‖un+1 − un‖2. (46)
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Combining the expression (44)–(46), we obtain

‖un+1 − ξ∗‖2 + 4L1λn+1‖ρn+1 − vn‖2

≤ (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + ϑn(1 + ϑn)‖un − un−1‖2

+ 4L1λn‖ρn − vn−1‖2 − (1− 4L1λn)‖ρn − vn‖2 − (1− 2L2λn)‖un+1 − vn‖2

+ 4L1λn(1 + ϑn)‖un+1 − vn‖2 + 4L1λnϑn(1 + ϑn)‖un+1 − un‖2 − 2γλn‖vn − ξ∗‖2 (47)

≤ (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + 4L1λn‖ρn − vn−1‖2

+ ϑn(1 + ϑn)‖un − un−1‖2 + 4L1λn(1 + ϑn)‖un+1 − un‖2 − 2γλn‖vn − ξ∗‖2

−
(
1− 2L2λn − 4L1λn(1 + ϑn)

)
2

[
2(‖un+1 − vn‖2 + ‖ρn − vn‖2)

]
. (48)

Next, we let $n = 1−2L2λn−4L1λn(1+ϑn)
2 and

Φn = ‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2 + 4L1λn‖ρn − vn−1‖2.

Due to the above substituting the expression (48) turns into the following:

Φn+1 ≤ Φn + ϑn(1 + ϑn)‖un − un−1‖2 + 4L1λnϑn(1 + ϑn)‖un+1 − un‖2

− $n‖un+1 − ρn‖2 − 2γλn‖vn − ξ∗‖2,
(49)

By the definition ρn+1, we have

‖un+1 − ρn‖2 ≥ (1− ϑn)‖un+1 − un‖2 + (ϑ2
n − ϑn)‖un − un−1‖2. (50)

Combining the expression (49) and (50), we obtain

Φn+1 ≤ Φn + ϑn(1 + ϑn)‖un − un−1‖2 + 4L1λnϑn(1 + ϑn)‖un+1 − un‖2

− 2γλn‖vn − ξ∗‖2 − $n(1− ϑn)‖un+1 − un‖2 − $n(ϑ
2
n − ϑn)‖un − un−1‖2

= Φn + Rn‖un − un−1‖2 −Qn‖un+1 − un‖2 − 2γλn‖vn − ξ∗‖2, (51)

where Rn := ϑn(1+ ϑn) + $nϑn(1− ϑn) and Qn := $n(1− ϑn)− 4L1λnϑn(1+ ϑn). In addition, we also
take Ψn = Φn + Rn‖un − un−1‖2. It follows from (51) that

Ψn+1 −Ψn ≤ −(Qn − Rn+1)‖un+1 − un‖2 − 2γλn‖vn − ξ∗‖2. (52)

Since λn → 0, then there exists a finite number n0 ∈ N such that

0 < λn <
1
2 − 2ϑ− 1

2 ϑ2

L2(1− ϑ)2 + 2L1(1 + ϑ + ϑ2 + ϑ3)
, n ≥ n0.

Similarly, it follows from (24) and expression (52) implies that

Ψn+1 −Ψn ≤ −δ‖un+1 − un‖2 ≤ 0, n ≥ n0. (53)
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The above implies that the sequence {Ψn} is non-increasing for n ≥ n0. From the value of Ψn,
we have

‖un − ξ∗‖2 ≤ Ψn + ϑn‖un−1 − ξ∗‖2

≤ Ψn0 + ϑ‖un−1 − ξ∗‖2

≤ · · · ≤ Ψn0(ϑ
n−n0 + · · ·+ 1) + ϑn−n0‖un0 − ξ∗‖2

≤ Ψn0

1− ϑ
+ ϑn−n0‖un0 − ξ∗‖2. (54)

From the definition of Ψn+1 with the expression (54), we obtain

−Ψn+1 ≤ ϑn+1‖un − ξ∗‖2

≤ ϑ‖un − ξ∗‖2

≤ ϑ
Ψn0

1− ϑ
+ ϑn−n0+1‖un0 − ξ∗‖2

≤ ϑ
Ψn0

1− ϑ
+ ‖un0 − ξ∗‖2. (55)

It is follows from (53) and (55) that

δ
k

∑
n=n0

‖un+1 − un‖2 ≤ Ψn0 −Ψk+1

≤ Ψn0 + ϑ
Ψn0

1− ϑ
+ ‖un0 − ξ∗‖2

≤ Ψn0

1− ϑ
+ ‖un0 − ξ∗‖2, (56)

letting k→ ∞ in the expression (56), we obtain

∞

∑
n=1
‖un+1 − un‖2 < +∞ implies that ‖un+1 − un‖ → 0 as n→ ∞. (57)

From the expression (20) and (57), we obtain

‖un+1 − ρn‖ → 0 as n→ ∞. (58)

The expression (55) implies that

−Φn+1 ≤ ϑ
Ψn0

1− ϑ
+ ‖un0 − ξ∗‖2 + Rn+1‖un+1 − un‖2. (59)

It follows from (48) for all n ≥ n0, such that(
1− 2L2λn − 4L1λn(1 + ϑ)

)[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Φn −Φn+1 + ϑ(1 + ϑ)‖un − un−1‖2 + 4L1λnϑ(1 + ϑ)‖un+1 − un‖2.

(60)
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Consider the expression (60) for n0, n0 + 1, · · · , k. Summing them up, we obtain

(
1− 2L2λn − 4L1λn(1 + ϑ)

) k

∑
n=n0

[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Φn0 −Φk+1 + ϑ(1 + ϑ)

k

∑
n=n0

‖un − un−1‖2 +
4L1

2L2 + 4L1
ϑ(1 + ϑ)

k

∑
n=n0

‖un+1 − un‖2

≤ Φn0 + ϑ
Φn0

1− ϑ
+ ‖un0 − ξ∗‖2 + Rk+1‖uk+1 − uk‖2

+ ϑ(1 + ϑ)
k

∑
n=n0

‖un − un−1‖2 +
4L1

2L2 + 4L1
ϑ(1 + ϑ)

k

∑
n=n0

‖un+1 − un‖2

=
Φn0

1− ϑ
+ ‖un0 − ξ∗‖2 + Rk+1‖uk+1 − uk‖2

+ ϑ(1 + ϑ)
k

∑
n=n0

‖un − un−1‖2 +
4L1

2L2 + 4L1
ϑ(1 + ϑ)

k

∑
n=n0

‖un+1 − un‖2, (61)

By letting k→ ∞ in the expression (61) implies that

∑
n
‖un+1 − vn‖2 < +∞ and ∑

n
‖ρn − vn‖2 < +∞, (62)

and
lim

n→∞
‖un+1 − vn‖ = lim

n→∞
‖ρn − vn‖ = 0. (63)

We can easily derive the following relationship:

lim
n→∞

‖un − vn‖ = lim
n→∞

‖un − ρn‖ = lim
n→∞

‖vn−1 − vn‖ = 0. (64)

By using the value ρn, we obtain

‖ρn − vn−1‖2 ≤ (1 + ϑ)‖un − vn−1‖2 + ϑ(1 + ϑ)‖un − un−1‖2. (65)

Now, summing up equation (65) for n = n0, n0 + 1 · · · , k, we obtain

k

∑
n=n0

‖ρn − vn−1‖2 ≤ (1 + ϑ)
k

∑
n=n0

‖un − vn−1‖2 + ϑ(1 + ϑ)
k

∑
n=n0

‖un − un−1‖2 (66)

The above expression with (57) and (62) implies that

∞

∑
n=1
‖ρn − vn−1‖2 < +∞. (67)

Furthermore, the expression (47) gives that

‖un+1 − ξ∗‖2

≤ (1 + ϑ)‖un − ξ∗‖2 − ϑ‖un−1 − ξ∗‖2 + ϑ(1 + ϑ)‖un − un−1‖2 + 4L1λn‖ρn − vn−1‖2.
(68)

The above expression through (57), (67), and Lemma 4 implies that

lim
n→∞

‖un − ξ∗‖ = l. (69)
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The expression (64) with (69), we obtain

lim
n→∞

‖ρn − ξ∗‖ = lim
n→∞

‖vn − ξ∗‖ = l. (70)

Now, we are showing that the sequence {un} converges strongly to ξ∗. Due to the condition on
λn for all n ≥ n0, we can easily observe the following inequality:

0 < λn <
1

2L2 + 4L1
, ∀n ≥ n0.

It follows from Lemma 11, such that

2γλn‖vn − ξ∗‖2 ≤ ‖ρn − ξ∗‖2 − ‖un+1 − ξ∗‖2 + 4L1λn‖ρn − vn−1‖2, ∀n ≥ n0. (71)

From the expression (45) and (71), we obtain

2γλn‖vn − ξ∗‖2 ≤ −‖un+1 − ξ∗‖2 + (1 + ϑn)‖un − ξ∗‖2 − ϑn‖un−1 − ξ∗‖2

+ ϑn(1 + ϑn)‖un − un−1‖2 + 4L1λn‖ρn − vn−1‖2

≤ (‖un − ξ∗‖2 − ‖un+1 − ξ∗‖2) + 2ϑ‖un − un−1‖2

+ (ϑn‖un − ξ∗‖2 − ϑn−1‖un−1 − ξ∗‖2) + 4L1λn‖ρn − vn−1‖2. (72)

It follows from expression (72) that

k

∑
n=n0

2γλn‖vn − ξ∗‖2

≤ (‖un0 − ξ∗‖2 − ‖uk+1 − ξ∗‖2) + 2ϑ
k

∑
n=n0

‖un − un−1‖2

+ (ϑk‖uk − ξ∗‖2 − ϑn0−1‖un0−1 − ξ∗‖2) +
4L1

2L2 + 4L1

k

∑
n=n0

‖ρn − vn−1‖2

≤ ‖un0 − ξ∗‖2 + ϑ‖uk − ξ∗‖2 + 2ϑ
k

∑
n=n0

‖un − un−1‖2 +
4L1

2L2 + 4L1

k

∑
n=n0

‖ρn − vn−1‖2

≤ M,

(73)

for M ≥ 0. It implies that
∞

∑
n=1

2γλn‖vn − ξ∗‖2 < +∞. (74)

By the Lemma 2 and (74) implies that

lim inf ‖vn − ξ∗‖ = 0. (75)

Finally, expression (69) and (75) provide that limn→∞ ‖un− ξ∗‖ = 0. This completes the proof.

5. Application to Variational Inequality Problems

For considering Algorithm 1 and Theorem 1, we can able to write the next result for solving
variational inequality problems that involve pseudomonotone and Lipschitz continuous operator.

Corollary 1. Assume that H : K → E be a Lipschitz continuous with the constant L and pseudomonotone
operator. Let {un}, {vn} and {ρn} be sequences generated, as follows:
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(i) Choose u−1, u0, v0 ∈ E, 0 ≤ ϑn ≤ ϑ <
√

5− 2 and λ(ϑ, L1, L2) > 0. Compute{
u1 = PK(ρ0 − λHv0), where ρ0 = u0 + ϑ0(u0 − u−1),
v1 = PK(ρ1 − λHv0), where ρ1 = u1 + ϑ1(u1 − u0).

(ii) Given un−1, un, vn−1, and vn for each n ≥ 1, and construct the half-space first as

Hn = {z ∈ E : 〈ρn − λHvn−1 − vn, z− vn〉 ≤ 0}.

(iii) Evaluate {
un+1 = PHn(ρn − λHvn), where ρn = un + ϑn(un − un−1),
vn+1 = PK(ρn+1 − λHvn), where ρn+1 = un+1 + ϑn+1(un+1 − un),

where λ > 0, such that

0 < λ <
1
2 − 2ϑ− 1

2 ϑ2

L2(1− ϑ)2 + 2L1(1 + ϑ + ϑ2 + ϑ3)
and 0 ≤ ϑn ≤ ϑ <

√
5− 2,

with L1 = L2 = L
2 . Subsequently, sequence {un}, {ρn} and {vn} converge weakly to ξ∗ ∈ SOLVI(H,K).

From the consideration on Algorithm 2 and Theorem 2, we state the following result for
the class of variational inequality problems involving strongly pseudomonotone and Lipschitz
continuous operator.

Corollary 2. Assume that H : K → E is a Lipschitz continuous and strongly pseudomonotone operator with
the constant L. Let {un}, {vn} and {ρn} are the sequences generated as follows:

(i) Choose u−1, u0, v0 ∈ E, 0 ≤ ϑn ≤ ϑ <
√

5− 2 and a sequence {λn} satisfying (43). Compute{
u1 = PK(ρ0 − λ0Hv0), where ρ0 = u0 + ϑ0(u0 − u−1),
v1 = PK(ρ1 − λ1Hv0), where ρ1 = u1 + ϑ1(u1 − u0).

(ii) Given un−1, un, vn−1, and vn create a half space for each n ≥ 1, such that

Hn = {z ∈ E : 〈ρn − λn Hvn−1 − vn, z− vn〉 ≤ 0}.

(iii) Compute {
un+1 = PHn(ρn − λnHvn), where ρn = un + ϑn(un − un−1),
vn+1 = PK(ρn+1 − λn+1Hvn), where ρn+1 = un+1 + ϑn+1(un+1 − un),

where 0 ≤ ϑn ≤ ϑ <
√

5− 2, with L1 = L2 = L
2 . The sequence {un}, {ρn} and {vn} converge strongly to

ξ∗ ∈ SOLVI(H,K).

6. Computational Experiment

Some numerical results will be presented in this section to show the performance of our
proposed methods. The MATLAB codes run in MATLAB version 9.5 (R2018b) on a PC (with Intel(R)
Core(TM)i3-4010U CPU @ 1.70GHz 1.70GHz, RAM 4.00 GB).

6.1. Nash-Cournot Equilibrium Model of Electricity Markets

The Nash–Cournot equilibrium model of electricity markets in [20] is considered in this example.
Assume that there are three companies (i = 1, 2, 3) generating electricity. These three companies has
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generating units denoted as U1 = {1}, U2 = {2, 3} and U3 = {4, 5, 6}, respectively. Let uj denote
the generating power of the each unit for i = {1, 2, 3, 4, 5, 6}. Next, we take the electricity price P as
P = 378.4− 2 ∑6

j=1 uj. The cost of generating the j unit is written as:

cj(uj) := max{ ◦cj(uj),
•
cj(uj)},

where
◦
cj(uj) :=

◦
αj
2 u2

j +
◦
β juj +

◦
γj and

•
cj(uj) :=

•
αjuj +

•
β j
•
β j+1

•
γj

−1
•
βj (uj)

(
•
βj+1)
•
βj . Table 1 provides the

values of the unknown parameters. Consider that the profit of the firm i is

Fi(u) := P ∑
j∈Ii

uj − ∑
j∈Ii

cj(uj) =
(

378.4− 2
6

∑
l=1

ul

)
∑
j∈Ii

uj − ∑
j∈Ii

cj(uj),

with u = (u1, · · · , u6)
T corresponding to the constraint set u ∈ C := {u ∈ R6 : umin

j ≤ uj ≤ umax
j },

with umin
j and umax

j values given in Table 2. Consider the equilibrium function f by

f (u, v) :=
3

∑
i=1

(
φi(u, u)− φi(u, v)

)
,

where

φi(u, v) :=
[

378.4− 2
(

∑
j 6∈Ii

uj + ∑
j∈Ii

vj

)]
∑
j∈Ii

vj − ∑
j∈Ii

cj(vj).

The Nash–Cournot equilibrium models of electricity markets can be seen as an equilibrium
problem in the following way (see [44] for more details):

Find ξ∗ ∈ K such that f (ξ∗, y) ≥ 0, ∀y ∈ K.

During the numerical example in Section 6.1, we take the values u−1 = (10, 10, 20, 17, 8, 14)T ,
u0 = (10, 20, 30, 10, 0, 1)T , v0 = (48, 48, 30, 27, 18, 24)T .

Table 1. The values of parameters are used in the cost function.

j
◦
αj

◦
βj

◦
γj

•
αj

•
βj

•
γj

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000
2 0.0350 1.75 0.00 1.7500 1.0000 28.5714
3 0.1250 1.00 0.00 1.0000 1.0000 8.0000
4 0.0116 3.25 0.00 3.2500 1.0000 86.2069
5 0.0500 3.00 0.00 3.0000 1.0000 20.0000
6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

Table 2. The parameter values use for constraint set.

j 1 2 3 4 5 6

umin
j 0 0 0 0 0 0

umax
j 80 80 50 55 30 40

6.1.1. Algorithm 1 Behaviour for Different Values of ϑn:

Figure 1 and Table 3 characterize the behaviour of error term Dn = ‖un+1− un‖ ≤ TOL regarding
Algorithm 1 (Algo1) with respect to different values of ϑn in terms of the number of iterations and
elapsed time, respectively.
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Figure 1. Experiment in Section 6.1.1: Algorithm 1 behaviour for different values of ϑn.

Table 3. Experiment in Section 6.1.1: Algorithm 1 performance for varying parameters extrapolation
factor ϑn.

Algo.name ϑn λ ξ∗ Iter. Time TOL

Algo1 0.22 0.02 (46.6525, 32.1462, 15.0018, 25.0170, 10.8987, 10.8982)T 4824 138.915365 10−4

Algo1 0.18 0.02 (46.6525, 32.1460, 15.0020, 25.0104, 10.9019, 10.9016)T 4949 166.620335 10−4

Algo1 0.14 0.02 (46.6525, 32.1460, 15.0020, 25.0035, 10.9050, 10.9053)T 5193 127.834772 10−4

Algo1 0.10 0.02 (46.6726, 32.1460, 15.0020, 24.9969, 10.9080, 10.9089)T 5432 136.310422 10−4

Algo1 0.05 0.02 (46.6526, 32.1460, 15.0020, 24.9885, 10.9118, 10.9134)T 5721 142.108161 10−4

Algo1 0.01 0.02 (46.6526, 32.1460, 15.0020, 24.9818, 10.9149, 10.9170)T 5945 144.356535 10−4

Algo1 0.001 0.02 (46.6726, 32.1460, 15.0021, 24.9787, 10.9163, 10.9187)T 6043 157.711757 10−4

6.1.2. Algorithm 1 Comparison with Existing Algorithms:

Figure 2 and Table 4 explain the numerical comparison between Algorithm 1 (EgA) in [19],
Algorithm 1 (PEgA) in [21], Algorithm 3.1 (PSgEgA) in [35,36] and Algorithm 1(Algo1).

Algorithm 1 (EgA) in [19]: Choose u0 ∈ E and 0 < λ < min{ 1
2L1

, 1
2L2
}.

vn = arg min{λ f (un, y) + 1
2‖un − y‖2 : y ∈ K},

un+1 = arg min{λ f (vn, y) + 1
2‖un − y‖2 : y ∈ K}.

(76)

Algorithm 1 (PEgA) in [21]: Choose u0, v0 ∈ E and 0 < λ < min 1
2L2+4L1

.
un+1 = arg min{λ f (vn, y) + 1

2‖un − y‖2 : y ∈ K},

vn+1 = arg min{λ f (vn, y) + 1
2‖un+1 − y‖2 : y ∈ K}.

(77)

Algorithm 3.1 (PSgEgA) in [35,36]: Choose u0, v0 ∈ E and 0 < λ < min 1
2L2+4L1

.

(i) 
u1 = arg min{λ f (v0, y) + 1

2‖u0 − y‖2 : y ∈ K},

v1 = arg min{λ f (v0, y) + 1
2‖u1 − y‖2 : y ∈ K}.

(ii) Given un−1, un, vn−1, vn for n ≥ 1 and construct a half space as

Hn = {z ∈ E : 〈un − λωn−1 − vn, z− vn〉 ≤ 0}, where ωn−1 ∈ ∂ f (vn−1, vn).
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(iii) 
un+1 = arg min{λ f (vn, y) + 1

2‖un − y‖2 : y ∈ Hn},

vn+1 = arg min{λ f (vn, y) + 1
2‖un+1 − y‖2 : y ∈ K}.

(78)

0 1000 2000 3000 4000 5000 6000 7000 8000
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10-4
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100

0 50 100 150 200 250 300

Elapsed time [sec]
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10-2

10-1

100

Figure 2. Comparison of Algorithm 1 with Algorithm 1 in [19], Algorithm 1 in [21], and Algorithm 3.1
in [35,36].

Table 4. Experiment in Section 6.1.2: Algorithm 1 comparison with existing algorithms using two
different values of ϑn.

Algo.name ϑn λ ξ∗ Iter. Time TOL

EgA – 0.02 (46.6526, 32.1469, 15.0012, 24.9783, 10.9154, 10.9200)T 7180 264.156236 10−4

PEgA – 0.02 (46.6526, 32.1460, 15.0021, 24.9784, 10.8164, 10.9188)T 6055 210.681669 10−4

PSgEgA – 0.02 (46.6525, 32.1463, 15.0017, 25.0004, 10.9058, 10.9076)T 5515 175.840493 10−4

Algo1 0.12 0.02 (46.6725, 32.1463, 15.0017, 25.0181, 10.8976, 10.8982)T 4894 134.245610 10−4

Algo1 0.20 0.02 (46.6725, 32.1463, 15.0017, 25.0326, 10.8910, 10.8904)T 4333 115.599023 10−4

6.1.3. Algorithm 2 Behaviour by Using Different Step-Size Sequences λn

Figure 3 and Table 5 describe the numerical results for error term Dn = ‖un+1 − un‖ ≤ TOL for
Algorithm 2 (Algo2).

Table 5. Experiment in Section 6.1.3: Algorithm 2 numerical values by using different step-size
sequences λn.

Algo.name ϑn λ ξ∗ Iter. Time TOL

Algo2 0.12 1
n+1 (46.6526, 32.1467, 15.0011, 25.1260, 10.8442, 10.8442)T 1254 61.898186 10−4

Algo2 0.12 1
log(n+1) (46.6523, 32.1467, 15.0011, 25.1409, 10.8368, 10.8368)T 442 29.006584 10−4

Algo2 0.12 1
(n+1)(log(n+3)) (46.6524, 32.1467, 15.0011, 25.1011, 10.8566, 10.8566)T 2311 70.849546 10−4

Algo2 0.12 log(n+3)
n+1 (46.6523, 32.1467, 15.0011, 25.1371, 10.8387, 10.8387)T 662 44.766232 10−4

Algo2 0.12 1
log(log(n+20)) (46.6525, 32.1467, 15.0011, 25.1464, 10.8341, 10.8341)T 434 31.504484 10−4
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Figure 3. Algorithm 2 behaviour with respect to different step-size sequences λn.

6.2. Example 2

Assume that f : R×R→ R is defined by

f (u, v) = tan−1(u)(v− u), ∀u, v ∈ R,

where K = [0, 1]. We can easily see that f (u, v) satisfy all of the conditions (A1)–(A4) with Lipschitz-type
constants are L1 = L2 = 1

2 (for more details, see [36]).

6.2.1. Algorithm 1 Performance for Different Values of Extrapolation Factor ϑn:

Figure 4 and Table 6 show the numerical results regarding the error term Dn = ‖un‖ of Algorithm 1
using different values of ϑn in term of the no.of iterations. For these results, we use values u−1 = 1

2 ,
u0 = 1, v0 = 1 and y-axes depict Dn value, whereas x-axes are depicted as the number of iterations.
The input and output values of the parameters are shown in Table 6, which are useful for choosing the
best extrapolation factor value.
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Table 6. Experiment in Section 6.2.1: Algorithm 1 performance for varying parameters extrapolation
factor ϑn.

ϑn λ ξ∗ Iter. Time TOL

0.20 0.050 6.5877 ×10−9 70 0.008866 10−8

0.15 0.050 6.6948 ×10−9 75 0.010382 10−8

0.10 0.050 6.4466 ×10−9 80 0.008518 10−8

0.05 0.050 7.5191 ×10−9 84 0.008378 10−8

0.01 0.050 6.9392 ×10−9 88 0.008989 10−8

0 10 20 30 40 50 60 70 80 90

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

Figure 4. Experiment in Section 6.2.1: Algorithm 1 behaviour regarding different values of ϑn.

6.2.2. Algorithm 1 Comparison with Existing Algorithm

Figure 5 and Table 7 illustrate the comparison of our proposed Algorithm 1 (Algo1) with the
existing Algorithm 3.1 (PSgEgA) that appears in the paper of Liu [36]. For these results, the stopping
criterion is (Dn = ‖un‖) and y-axes depict Dn value, whereas the x-axes are depicted as the number of
iterations. The input and output values for the parameters are written in Table 7.

Table 7. Experiment in Section 6.2.2: Algorithm 1 comparison with Algorithm 3.1 in [35,36].

Algorithm u−1 u0 v0 ϑn λ ξ∗ Iter. Time TOL

PSgEgA — 1 1 — 0.1 7.9278 × 10−11 110 0.001014 10−10

Algo1 0.5 1 1 0.16 0.1 6.5112 × 10−11 92 0.006082 10−10

PSgEgA — 0.5 0.5 — 0.1 6.9204 × 10−11 107 0.006580 10−10

Algo1 1 0.5 0.5 0.16 0.1 7.1870 × 10−11 87 0.006919 10−10

PSgEgA — 0.2 0.2 — 0.1 7.7873 × 10−11 102 0.007282 10−10

Algo1 1 0.2 0.2 0.16 0.1 7.1827 × 10−11 66 0.000688 10−10
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Figure 5. Experiment in Section 6.2.2: Comparison of Algorithm 1 with Algorithm 3.1 in [35,36].

6.3. Nash–Cournot Oligopolistic Equilibrium Model

Consider a Nash–Cournot oligopolistic equilibrium model [19] based on n companies that
manufacture the same commodity. Each company produces ui amount of commodity and u denotes
a vector whose entries ui. The price function for each company i is defined by Pi(S) = φi − ψiS,
where S = ∑m

i=1 ui and φi > 0, ψi > 0. Now, consider a profit function for each company i are
Fi(u) = Pi(S)ui − ti(ui), where ti(ui) is the value tax and fee for producing ui. Let Ki = [umin

i , umax
i ]

is the set of action of each company i and accumulated actions for whole model taken the form as
K := K1×K2× · · · ×Kn. In addition, each company wants to get peak revenue on the assertion that the
output of the other companies is an input parameter. The strategy being used to deal with this sort of
model mainly focuses on the well-known Nash equilibrium idea. A point u∗ ∈ K = K1×K2× · · · ×Kn

is equilibrium point of the model if

Fi(u∗) ≥ Fi(u∗[ui]), ∀ui ∈ Ki, ∀i = 1, 2, · · · , n,

with vector u∗[ui] denote a vector achievement from u∗ by considering u∗i with ui. Let f (u, v) :=
ϕ(u, v)− ϕ(u, u) with ϕ(u, v) := −∑n

i=1 Fi(u[vi]) and the problem of determine the Nash equilibrium
point is

Find u∗ ∈ K : f (u∗, v) ≥ 0, ∀v ∈ K.

Next, the bifunction f is written as

f (u, v) = 〈Pu + Qv + q, v− u〉,

where q ∈ Rm and the matrices P, Q are

Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 0 0
0 0 1 1.5 0
0 0 0 0 2

 , P =


3.1 2 0 0 0
3 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3


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with q = (1, 2,−1, 2,−1)T andK = {u ∈ R5 : −2 ≤ ui ≤ 5}. During this example, we use the values of
the parameters u−1 = (1, 2, 1, 2, 0)T , u0 = (1, 3, 1, 1, 2)T and v0 = (1, 2, 1, 1, 2)T .

6.3.1. Algorithm 2. Behaviour for Different Step-Size Sequences λn:

The class of step-size sequences {λn} used in the experiments are:

(I) λn = 1
(n+2)q , q ∈ {1.0; 0.8; 0.5; 0.3; 0.1};

(II) λn = 1
(log(n+3))q , q ∈ {7; 5; 3; 2; 0.5}.

Figures 6 and 7 describe the numerical results for Algorithm 2 (Algo2) by using the above define
classes of step-size sequences.
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Figure 6. Experiment in Section 6.3.1: Algorithm 2 behaviour with respect to step-size sequences
λn = 1

(n+2)q .

0 50 100 150

Number of iterartions

10-30

10-25

10-20

10-15

10-10

10-5

100

105

0 2 4 6 8 10 12 14

Elapsed time [sec]

10-30

10-25

10-20

10-15

10-10

10-5

100

105

Figure 7. Experiment in Section 6.3.1: Algorithm 2 behaviour with respect to step-size sequences
λn = 1

(log(n+3))q .

6.3.2. Algorithm 2. Comparison with Existing Algorithms

Figure 8 describes the numerical results of Algorithm 2 (Algo2) using the stepsize sequences
λn = 1

n+1 .
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Figure 8. Experiment in Section 6.3.2: Comparison of Algorithm 2 with Algorithm 1 (EgM) in [23] and
Algorithm 3.1 (PEgM) in [45].

Discussion About Numerical Experiments: We have the following observations regarding the
above-mentioned experiments:

(1) Figures 1 and 4 and Tables 3 and 6 reported results for Algorithm 1 while using different values
for ϑn. From these results, we can see that the value of θn nearer the upper bound value

√
5− 2 is

more appropriate and enhances the effectiveness of the suggested algorithms.
(2) It can also be acknowledged that the efficiency of the algorithm depends on the complexity of the

problem and tolerance of the error term. More time and a significant number of iterations are
required in the case of large-scale problems. In this situation, we can see that the certain value of
the step-size enhances the performance of the algorithm and boosts the convergence rate.

(3) From Figure 5 and Table 7, it can also be noted that the choice of the initial points and the
complexity of the bifunction affect the performance of algorithms in terms of the number of
iterations and time of execution in seconds.

(4) We have the following observation from Figure 3 and Figures 6–8 with Table 5.

(i) No previous information of Lipschitz-constant L1, L2 is required for running algorithms
on Matlab.

(ii) In fact, the convergence rate of algorithms depends entirely on the convergence rate of
step-size sequences λn.

(iii) The convergence rate of the iterative sequence often depends on the complexity of the
problem as well as on the size of the problem.

(iv) Due to the variable step-size sequence, a specific step-size value that is not appropriate for
the current iteration of the method often causes inconsistency and a hump in the behavior
of the iterative sequence.

7. Conclusions

Two different approaches are proposed in this paper to deal with two families of equilibrium
problems. The first algorithm is an inertial two-step step proximal-like method that generates a weak
converging iterative sequence and it can solve pseudomonoton equilibrium problems. In addition,
we use the diminishing and non-summable step-size sequence for the second algorithm to achieve the
strong convergence. The key advantage of the second algorithm is that iterative sequences have been
developed with no prior knowledge of a strong pseudomonotonicity and Lipschitz-type constants of
a bifunction. Numerical findings were mentioned to show the numerical efficiency of algorithms as
compared to other algorithms. Such numerical studies imply that the inertial effects normally enhance
the effectiveness of the iterative sequence in this context.



Energies 2020, 13, 3292 26 of 28

Author Contributions: Conceptualization, H.u.R. and P.K.; methodology, M.S., N.A.A. and W.K.;
writing—original draft preparation, H.u.R., P.K. and W.K.; writing—review and editing, H.u.R., P.K., M.S. and
N.A.A.; software, H.u.R., M.S. and N.A.A.; supervision, P.K., M.S. and W.K.; project administration and funding
acquisition, P.K. and W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was financially supported by King Mongkut’s University of Technology Thonburi
through the ‘KMUTT 55th Anniversary Commemorative Fund’. Moreover, this project was supported by
Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart
research Innovation research Cluster (CLASSIC), Faculty of Science, KMUTT. In particular, Habib ur Rehman was
financed by the Petchra Pra Jom Doctoral Scholarship Academic for Ph.D. Program at KMUTT [grant number
39/2560]. Furthermore, Wiyada Kumam was financially supported by the Rajamangala University of Technology
Thanyaburi (RMUTTT) (Grant No. NSF62D0604).

Acknowledgments: The first author would like to thank the “Petchra Pra Jom Klao Ph.D. Research Scholarship
from King Mongkut’s University of Technology Thonburi”. We are very grateful to editor and the anonymous
referees for their valuable and useful comments, which helps in improving the quality of this work.

Conflicts of Interest: The authors declare that they have conflict of interest.

References

1. Blum, E. From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994,
63, 123–145.

2. Fan, K. A Minimax Inequality and Applications, INEQUALITIES III; Shisha, O., Ed.; Academic Press: New York,
NY, USA, 1972.

3. Biegler, L.T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; SIAM-Society
for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; Volume 10.

4. Dafermos, S. Traffic Equilibrium and Variational Inequalities. Transp. Sci. 1980, 14, 42–54. [CrossRef]
5. Ferris, M.C.; Pang, J.S. Engineering and Economic Applications of Complementarity Problems. SIAM Rev.

1997, 39, 669–713. [CrossRef]
6. Nagurney, A. Network Economics: A Variational Inequality Approach; Springer: Dordrecht, The Netherlands,

1993. [CrossRef]
7. Patriksson, M. The Traffic Assignment Problem: Models and Methods; Courier Dover Publications: Mineola, NY,

USA, 2015.
8. Cournot, A.A. Recherches sur les principes mathématiques de la théorie des richesses; Wentworth Press Hachette:

Paris, France, 1838.
9. Arrow, K.J.; Debreu, G. Existence of an Equilibrium for a Competitive Economy. Econometrica 1954, 22, 265.

[CrossRef]
10. Nash, J.F. 5. Equilibrium Points in n-Person Games. In The Essential John Nash; Nasar, S., Ed.; Princeton

University Press: Princeton, NJ, USA, 2002; pp. 49–50. [CrossRef]
11. Nash, J. Non-Cooperative Games. Ann. Math. 1951, 54, 286. [CrossRef]
12. Muu, L.D.; Oettli, W. Convergence of an adaptive penalty scheme for finding constrained equilibria.

Nonlinear Anal. Theory, Methods Appl. 1992, 18, 1159–1166. [CrossRef]
13. Moudafi, A. Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 1999, 15, 91–100.
14. Mastroeni, G. On auxiliary principle for equilibrium problems. In Equilibrium Problems and Variational Models;

Springer: Berlin, Germany, 2003; pp. 289–298.
15. Martinet, B. Brève communication. Régularisation d’inéquations variationnelles par approximations

successives. Rev. Française D’informatique Et De Rech. Opérationnelle. Série Rouge 1970, 4, 154–158. [CrossRef]
16. Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976,

14, 877–898. [CrossRef]
17. Konnov, I. Application of the Proximal Point Method to Nonmonotone Equilibrium Problems. J. Optim.

Theory Appl. 2003, 119, 317–333. [CrossRef]
18. Flåm, S.D.; Antipin, A.S. Equilibrium programming using proximal-like algorithms. Math. Program. 1996,

78, 29–41. [CrossRef]
19. Quoc Tran, D.; Le Dung, M.N.V.H. Extragradient algorithms extended to equilibrium problems. Optimization

2008, 57, 749–776. [CrossRef]
20. Quoc, T.D.; Anh, P.N.; Muu, L.D. Dual extragradient algorithms extended to equilibrium problems.

J. Glob. Optim. 2011, 52, 139–159. [CrossRef]

http://dx.doi.org/10.1287/trsc.14.1.42
http://dx.doi.org/10.1137/S0036144595285963
http://dx.doi.org/10.1007/978-94-011-2178-1
http://dx.doi.org/10.2307/1907353
http://dx.doi.org/10.1515/9781400884087-007
http://dx.doi.org/10.2307/1969529
http://dx.doi.org/10.1016/0362-546X(92)90159-C
http://dx.doi.org/10.1051/m2an/197004R301541
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1023/B:JOTA.0000005448.12716.24
http://dx.doi.org/10.1007/BF02614504
http://dx.doi.org/10.1080/02331930601122876
http://dx.doi.org/10.1007/s10898-011-9693-2


Energies 2020, 13, 3292 27 of 28

21. Lyashko, S.I.; Semenov, V.V. A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium
Programming. In Optimization and Its Applications in Control and Data Sciences; Springer International
Publishing: New York, NY, USA, 2016; pp. 315–325. [CrossRef]

22. Anh, P.N.; Hai, T.N.; Tuan, P.M. On ergodic algorithms for equilibrium problems. J. Glob. Optim. 2015,
64, 179–195. [CrossRef]

23. Hieu, D.V. New extragradient method for a class of equilibrium problems in Hilbert spaces. Appl. Anal.
2017, 97, 811–824. [CrossRef]

24. ur Rehman, H.; Kumam, P.; Cho, Y.J.; Yordsorn, P. Weak convergence of explicit extragradient algorithms for
solving equilibirum problems. J. Inequalities Appl. 2019, 2019. [CrossRef]

25. Anh, P.N.; An, L.T.H. The subgradient extragradient method extended to equilibrium problems. Optimization
2012, 64, 225–248. [CrossRef]

26. Ur Rehman, H.; Kumam, P.; Je Cho, Y.; Suleiman, Y.I.; Kumam, W. Modified Popov’s explicit iterative
algorithms for solving pseudomonotone equilibrium problems. Optimization Methods and Software 2020, 1–32.
[CrossRef]

27. Vinh, N.T.; Muu, L.D. Inertial Extragradient Algorithms for Solving Equilibrium Problems. Acta Math.
Vietnam. 2019, 44, 639–663. [CrossRef]

28. ur Rehman, H.; Kumam, P.; Kumam, W.; Shutaywi, M.; Jirakitpuwapat, W. The Inertial Sub-Gradient
Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry 2020, 12, 463.
[CrossRef]

29. Hieu, D.V. An inertial-like proximal algorithm for equilibrium problems. Math. Methods Oper. Res. 2018,
88, 399–415. [CrossRef]

30. ur Rehman, H.; Kumam, P.; Abubakar, A.B.; Cho, Y.J. The extragradient algorithm with inertial effects
extended to equilibrium problems. Comput. Appl. Math. 2020, 39. [CrossRef]

31. Hieu, D.V.; Cho, Y.J.; bin Xiao, Y. Modified extragradient algorithms for solving equilibrium problems.
Optimization 2018, 67, 2003–2029. [CrossRef]

32. ur Rehman, H.; Kumam, P.; Argyros, I.K.; Alreshidi, N.A.; Kumam, W.; Jirakitpuwapat, W. A Self-Adaptive
Extra-Gradient Methods for a Family of Pseudomonotone Equilibrium Programming with Application in
Different Classes of Variational Inequality Problems. Symmetry 2020, 12, 523. [CrossRef]

33. ur Rehman, H.; Kumam, P.; Argyros, I.K.; Deebani, W.; Kumam, W. Inertial Extra-Gradient Method for
Solving a Family of Strongly Pseudomonotone Equilibrium Problems in Real Hilbert Spaces with Application
in Variational Inequality Problem. Symmetry 2020, 12, 503. [CrossRef]

34. Muu, L.D.; Quoc, T.D. Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application
to a Nash-Cournot Equilibrium Model. J. Optim. Theory Appl. 2009, 142, 185–204. [CrossRef]

35. Kassay, G.; Hai, T.N.; Vinh, N.T. Coupling popov’s algorithm with subgradient extragradient method for
solving equilibrium problems. J. Nonlinear Convex Anal. 2018, 19, 959–986.

36. Liu, Y.; Kong, H. The new extragradient method extended to equilibrium problems. Rev. De La Real Acad. De
Cienc. Exactas, Físicas Y Naturales. Ser. A. Matemáticas 2019, 113, 2113–2126. [CrossRef]

37. Goebel, K.; Reich, S. Uniform convexity. In Hyperbolic Geometry, and Nonexpansive; Marcel Dekker, Inc.:
New York, NY, USA, 1984.

38. Bianchi, M.; Schaible, S. Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl.
1996, 90, 31–43. [CrossRef]

39. Tiel, J.V. Convex Analysis: An Introductory Text, 1st ed.; Wiley: New York, NY, USA, 1984.
40. Ofoedu, E. Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive

mapping in real Banach space. J. Math. Anal. Appl. 2006, 321, 722–728. [CrossRef]
41. Heinz, H.; Bauschke, P.L.C. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; CMS

Books in Mathematics; Springer International Publishing: New York, NY, USA, 2017.
42. Attouch, F.A.H. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a

Nonlinear Oscillator with Damping. Set Valued Var. Anal. 2001, 9, 3–11. [CrossRef]
43. Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings.

Bull. Am. Math. Soc. 1967, 73, 591–598. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-42056-1_10
http://dx.doi.org/10.1007/s10898-015-0330-3
http://dx.doi.org/10.1080/00036811.2017.1292350
http://dx.doi.org/10.1186/s13660-019-2233-1
http://dx.doi.org/10.1080/02331934.2012.745528
http://dx.doi.org/10.1080/10556788.2020.1734805
http://dx.doi.org/10.1007/s40306-019-00338-1
http://dx.doi.org/10.3390/sym12030463
http://dx.doi.org/10.1007/s00186-018-0640-6
http://dx.doi.org/10.1007/s40314-020-1093-0
http://dx.doi.org/10.1080/02331934.2018.1505886
http://dx.doi.org/10.3390/sym12040523
http://dx.doi.org/10.3390/sym12040503
http://dx.doi.org/10.1007/s10957-009-9529-0
http://dx.doi.org/10.1007/s13398-018-0604-y
http://dx.doi.org/10.1007/BF02192244
http://dx.doi.org/10.1016/j.jmaa.2005.08.076
http://dx.doi.org/10.1023/a:1011253113155
http://dx.doi.org/10.1090/S0002-9904-1967-11761-0


Energies 2020, 13, 3292 28 of 28

44. Maiorano, A.; Song, Y.; Trovato, M. Dynamics of non-collusive oligopolistic electricity markets.
In Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Conference Proceedings
(Cat. No.00CH37077), Singapore, 23–27 January 2000. [CrossRef]

45. Hieu, D.V. Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems.
Numer. Algorithms 2017, 77, 983–1001. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/pesw.2000.850034
http://dx.doi.org/10.1007/s11075-017-0350-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Inertial Popov's Two-Step Subgradient Extragradient Algorithm for Pseudomonotone EP
	Inertial Popov's Two-Step Subgradient Extragradient Algorithm for Strongly Pseudomonotone EP
	Application to Variational Inequality Problems
	Computational Experiment
	Nash-Cournot Equilibrium Model of Electricity Markets
	Algorithm 1 Behaviour for Different Values of n:
	Algorithm 1 Comparison with Existing Algorithms:
	Algorithm 2 Behaviour by Using Different Step-Size Sequences n

	Example 2
	Algorithm 1 Performance for Different Values of Extrapolation Factor n:
	Algorithm 1 Comparison with Existing Algorithm

	Nash–Cournot Oligopolistic Equilibrium Model
	Algorithm 2. Behaviour for Different Step-Size Sequences n:
	Algorithm 2. Comparison with Existing Algorithms


	Conclusions
	References

