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Abstract: Lithium-rich layered oxides are recognized as promising materials for Li-ion batteries,
owing to higher capacity than the currently available commercialized cathode, for their lower cost.
However, their voltage decay and cycling instability during the charge/discharge process are problems
that need to be solved before their practical application can be envisioned. These problems are
mainly associated with a phase transition of the surface layer from the layered structure to the spinel
structure. In this paper, we report the AlF3-coating of the Li-rich Co-free layered Li1.2Ni0.2Mn0.6O2

(LLNMO) oxide as an effective strategy to solve these problems. The samples were synthesized via
the hydrothermal route that insures a very good crystallization in the layered structure, probed by
XRD, energy-dispersive X-ray (EDX) spectroscopy, and Raman spectroscopy. The hydrothermally
synthesized samples before and after AlF3 coating are well crystallized in the layered structure with
particle sizes of about 180 nm (crystallites of ~65 nm), with high porosity (pore size 5 nm) determined
by Brunauer–Emmett–Teller (BET) specific surface area method. Subsequent improvements in
discharge capacity are obtained with a ~5-nm thick coating layer. AlF3-coated Li1.2Ni0.2Mn0.6O2

delivers a capacity of 248 mAh g−1 stable over the 100 cycles, and it exhibits a voltage fading rate of
1.40 mV per cycle. According to the analysis from galvanostatic charge-discharge and electrochemical
impedance spectroscopy, the electrochemical performance enhancement is discussed and compared
with literature data. Post-mortem analysis confirms that the AlF3 coating is a very efficient surface
modification to improve the stability of the layered phase of the Li-rich material, at the origin of the
significant improvement of the electrochemical properties.
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1. Introduction

The energy density (E in Wh g−1) of a battery is determined by the amount of charge it can hold
(Ah kg−1) and by the voltage across its terminal (V); optimization of its electrochemical performance is
achieved by an appropriate selection of anode and cathode materials [1]. In this context, layered Li-rich
materials are attracting a lot of attention, because their capacity is the best among the lithium
intercalation materials. In addition, they are not expensive and non-toxic when they are cobalt-free.
Layered lithium-rich cobalt-free manganese-based oxides (LLNMOs) have been widely considered
as new cathode materials for Li-ion batteries [2–40]. They are constituted by the architectural solid
solution yLi2MnO3 (1−y)LiMO2 (M = Mn, Ni), which includes the monoclinic Li2MnO3 (C2/m space
group) and the rhombohedral LiMO2 (R3m space group) phase. Both R3m and C2/m phases have a
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layered structure with a repeating transition-metal layer, oxygen layer, and lithium layer as shown in
Figure 1 [2]. The high specific capacity (>250 mAh g−1) with an average discharge voltage of >3.5 V vs.
Li+/Li and the high energy density approaching 1000 Wh kg-1 are due to the activation of the Li2MnO3

component at potential >4.4 V vs. Li+/Li during the first charge and the structural stability due to the
Mn-rich composition. The early work by Lu et al. [3,4] demonstrated the stable reversible capacity in
the potential window 2.0−4.6 V of the series Li4/3−2x/3NixMn2/3–x/3O2, in which Li1.11Ni0.33Mn0.56O2

(x = 0.33) exhibited a specific capacity of ~230 mAh g−1. Then Kang et al. [5] reported the strong
correlation between structure and electrochemical performance. Among various LLNMO compositions,
Li1.5Ni0.25Mn0.75O2.5 (Li1.2Ni0.2Mn0.6O2 or 0.5Li2MnO3 0.5LiNi0.5Mn0.5O2 in layered notation) has
attracted much interest because it is also considered as an inter-grown composite; this Co-free structure
exhibited the lowest voltage decay rate [6] and was easily synthesized by wet-chemical methods.

In spite of the efforts to obtain good reproducible electrochemical performance, practical
applications of LLNMOs are still hindered by a large irreversible capacity loss in the initial
cycle, severe capacity and voltage fading during long-term cycling, and poor rate capability [7,8].
Upon successive charge-discharge reactions, a surface reconstruction layer (SRL) occurs, which directly
correlates to the electrochemical performance of the electrode. The SRL features are as follows:
(1) creation of oxygen vacancies; (2) migration of transition metal (TM) cations into Li-sites; (3) reduction
of the TM cations to low valence state; and (4) transformation of the lattice structure [9,10].
Zheng et al. [11] evidenced the influence of the synthesis conditions on the voltage decay rate,
concluding that the sol-gel method provides better performance than the co-precipitation technique.
It has been suggested that one of the main reasons for voltage fade is the irreversible migration of TM
to the Li layer promoted by oxygen vacancies [12].

Energies 2020, 13, x FOR PEER REVIEW 2 of 22 

 

layered structure with a repeating transition-metal layer, oxygen layer, and lithium layer as shown 
in Figure 1 [2]. The high specific capacity (>250 mAh g−1) with an average discharge voltage of >3.5 V 
vs. Li+/Li and the high energy density approaching 1000 Wh kg-1 are due to the activation of the 
Li2MnO3 component at potential >4.4 V vs. Li+/Li during the first charge and the structural stability 
due to the Mn-rich composition. The early work by Lu et al. [3,4] demonstrated the stable reversible 
capacity in the potential window 2.0−4.6 V of the series Li4/3−2x/3NixMn2/3–x/3O2, in which 
Li1.11Ni0.33Mn0.56O2 (x = 0.33) exhibited a specific capacity of ~230 mAh g−1. Then Kang et al. [5] reported 
the strong correlation between structure and electrochemical performance. Among various LLNMO 
compositions, Li1.5Ni0.25Mn0.75O2.5 (Li1.2Ni0.2Mn0.6O2 or 0.5Li2MnO3 0.5LiNi0.5Mn0.5O2 in layered notation) 
has attracted much interest because it is also considered as an inter-grown composite; this Co-free structure 
exhibited the lowest voltage decay rate [6] and was easily synthesized by wet-chemical methods. 

In spite of the efforts to obtain good reproducible electrochemical performance, practical 
applications of LLNMOs are still hindered by a large irreversible capacity loss in the initial cycle, 
severe capacity and voltage fading during long-term cycling, and poor rate capability [7,8]. Upon 
successive charge-discharge reactions, a surface reconstruction layer (SRL) occurs, which directly 
correlates to the electrochemical performance of the electrode. The SRL features are as follows: (1) 
creation of oxygen vacancies; (2) migration of transition metal (TM) cations into Li-sites; (3) 
reduction of the TM cations to low valence state; and (4) transformation of the lattice structure [9,10]. 
Zheng et al. [11] evidenced the influence of the synthesis conditions on the voltage decay rate, concluding 
that the sol-gel method provides better performance than the co-precipitation technique. It has been 
suggested that one of the main reasons for voltage fade is the irreversible migration of TM to the Li layer 
promoted by oxygen vacancies [12]. 

 
Figure 1. Schematic view of the crystal structure of Li-rich Li1.2Ni0.2Mn0.6O2. The red, green, silver, 
and purple spheres represent O, Li, Ni, and Mn atoms, respectively. Reproduced with permission 
from [2]. Copyright 2018 Wiley. 

Several strategies have been employed to enhance the electrochemical properties of any cathode 
materials and reduce the voltage decay rate upon long-term cycling. The first approach is surface 
modification, since the coat can protect the active particles against corrosion and dissolution, and 
improve the electrical contact between powders (for a review, see [1]). Various substances have been 
deposited on the surface of active particles such as Li+-conductor (Li2ZrO3, LiAlO2) [13,14], inert 
compound (AlF3, Al2O3) [15], wide-gap semiconductor (ZnO) [16], and carbon [17,18]. Li1.2Ni0.2Mn0.6O2 
nanoparticles (100–200 nm in size) coated with a thin layer of Li2ZrO3 obtained through a 
synchronous lithiation strategy delivered a capacity of circa 169 mAh g−1 over 100 cycles at current 
density 200 mA g−1 [13]. ZnO coating also improved the electrochemical properties of 
0.5Li2MnO3·0.5LiNi0.5Mn0.5O2; a specific discharge capacity of 215 mAh g-1 was reported after 10 
cycles for ZnO treated LLNMO against 181 mAh g−1 for pristine electrode [19]. Enhanced 
electrochemical properties were observed for Li1.2Ni0.2Mn0.6O2 synthesized nickel enrichment is a 
second way to mitigate the voltage fading. For example, Shi et al. [20] demonstrated that Ni ions act 
as stabilizing ions to inhibit the Jahn–Teller effect of active Mn3+ ions in 0.5Li2MnO3 
0.5LiNi0.8Co0.1Mn0.1O2. Doping or cationic substitution is another successful method to reduce the 
voltage drop [21,22]. Substitution of a small amount of M3+ (M = Al, Cr, Fe, Co) for Mn4+ and Ni2+ in 

Figure 1. Schematic view of the crystal structure of Li-rich Li1.2Ni0.2Mn0.6O2. The red, green, silver,
and purple spheres represent O, Li, Ni, and Mn atoms, respectively. Reproduced with permission
from [2]. Copyright 2018 Wiley.

Several strategies have been employed to enhance the electrochemical properties of any cathode
materials and reduce the voltage decay rate upon long-term cycling. The first approach is surface
modification, since the coat can protect the active particles against corrosion and dissolution,
and improve the electrical contact between powders (for a review, see [1]). Various substances
have been deposited on the surface of active particles such as Li+-conductor (Li2ZrO3, LiAlO2) [13,14],
inert compound (AlF3, Al2O3) [15], wide-gap semiconductor (ZnO) [16], and carbon [17,18].
Li1.2Ni0.2Mn0.6O2 nanoparticles (100–200 nm in size) coated with a thin layer of Li2ZrO3 obtained
through a synchronous lithiation strategy delivered a capacity of circa 169 mAh g−1 over 100 cycles
at current density 200 mA g−1 [13]. ZnO coating also improved the electrochemical properties of
0.5Li2MnO3·0.5LiNi0.5Mn0.5O2; a specific discharge capacity of 215 mAh g-1 was reported after 10 cycles
for ZnO treated LLNMO against 181 mAh g−1 for pristine electrode [19]. Enhanced electrochemical
properties were observed for Li1.2Ni0.2Mn0.6O2 synthesized nickel enrichment is a second way to
mitigate the voltage fading. For example, Shi et al. [20] demonstrated that Ni ions act as stabilizing ions
to inhibit the Jahn–Teller effect of active Mn3+ ions in 0.5Li2MnO3 0.5LiNi0.8Co0.1Mn0.1O2. Doping or
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cationic substitution is another successful method to reduce the voltage drop [21,22]. Substitution of
a small amount of M3+ (M = Al, Cr, Fe, Co) for Mn4+ and Ni2+ in Li(Li0.2Mn0.6Ni0.2)O2 sensitively
influences the length of the plateau region due to the changes in the metal–oxygen bond covalence [23].
Ba doping improves the first-cycle Coulombic efficiency of Li1.2Mn0.6Ni0.2O2 by mitigating the
oxidation of O2− ions [24]. The synergetic effects of coating and doping were used by Liu et al. who
synthesized Li1.2Ni0.2Mn0.6O2 by co-precipitation technique with 3 wt.% LiAlO2 coat and 0.8% Cr
doping [14]: (i) the spinel phase was suppressed, (ii) the midpoint voltage increased from 2.746 to
3.128 V, and (iii) higher DLi contributed to good rate capability. Nevertheless, even though doping
was able to significantly improve the electrochemical performance of the material, it did not solve the
problem of side reactions with the electrolyte, dissolution, and phase transition of the surface layer to
the spinel phase. Surface modification remains mandatory. However, the efficiency of the coating is
also debated, because it depends on several parameters, including full surface coverage, thickness of
the coating layer, the composition of the coat, and the morphology of the particles. This last parameter
also plays an important role. In particular, use of nano-sized particles is needed for any cathode
element to shorten the diffusion path. However, in the particular case of the α-NaFeO2 structure of
Li1.2Ni0.2Mn0.6O2 considered here, it is also necessary to increase the size of the active (010) lattice
planes at the surface.

As an experimental fact, the crystal morphology of LLNMOs and subsequent electrochemical
performance are strongly dependent on the synthesis technique. Many methods have been
tested to prepare “optimized” Li1.2Ni0.2Mn0.6 O2 powders such as the solid state reaction [17,25],
sol-gel process [15,26], co-precipitation method [27–29], combustion process [30,31], sol-freeze-drying
method [32], ball-milling [33], hydrothermal [34–37], templating process [38], microwave heating
process [39,40], and lithium ion-exchange reaction [41]. Currently, well-crystallized LLNMO materials
prepared via wet-chemical synthesis are subjected to post-annealing treatment, i.e., typically a two-step
calcination at ~350/900 ◦C for 10/4 h in air [36,42–44]. Among these methods, the co-precipitation
process is a widely used synthesis approach to obtain spherical and mono-dispersed materials [45].
However, prolongated post-treatment provide big particles that limit the rate capability. Liu et al. [35]
revealed the influence of the synthesis techniques on the voltage fading rate in the Li1.2Ni0.2Mn0.6O2

electrode, with a decrease of this rate in the sequence co-precipitation > sol-gel > hydrothermal method.
Therefore, hydrothermal synthesis seems to be the best synthesis route.

In the present work, the voltage decay in long-term cycled Li1.2Ni0.2Mn0.6O2 is investigated for
pristine and AlF3-coated samples. AlF3 has been chosen as the inert material to coat the particles.
The hydrothermal method has been chosen not only to minimize the fading rate, but also because
it is well suited for the preparation of nano-sized powders with a spherical-like shape that is
considered as the best morphology to optimize the electrochemical properties. The structure and
morphology of the as-prepared sample are analyzed by X-ray diffraction (XRD), Raman spectroscopy,
Brunauer–Emmett–Teller (BET) specific surface area method, scanning electron microscopy (SEM),
and high-resolution transmission electron microscopy (HRTEM). Electrochemical properties are
studied using galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy
(EIS) experiments. Chemical diffusion coefficients of Li+ ions in LLNMO lattices are evaluated.
Finally, the rate capability and cycle ability of LLNMO electrodes are further investigated and
discussed. As a result, importantly, both the rate capability and cycle ability have been improved,
with a capacity of 248 mAh g−1 stable over the 100 cycles. Moreover, the voltage fading rate has been
reduced to 1.40 mV per cycle. These results prove the efficiency of the AlF3 coating to protect the
surface layer of the Li-rich particles.
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2. Materials and Methods

2.1. Preparation of Li1.2Ni0.2Mn0.6O2 Nanoparticles

Li-rich layered Li1.2Ni0.2Mn0.6O2 powders were prepared by a two-step process, i.e., a
hydrothermal synthesis followed by a solid-state calcination. Lithium and transition-metal (TM)
acetates (analytical grade from Merck KGaA, Darmstadt, Germany) were mixed in distilled water
at the stoichiometric composition and stirred for 15 min. A homogeneous slurry was obtained after
adding citric acid drop-wise to the solution under continuous stirring for 6 h with molar ratio 1:1 of
(Li+Ni+Mn):C6H8O7. The pH value was adjusted to to 7–8 with ammonium hydroxide. The slurry was
transferred into a 100 mL Teflon-lined stainless-steel autoclave maintained at a constant temperature of
180 ◦C for 12 h. Then the product was dried and calcined at 500 ◦C for 3 h, and thereafter post-treated
at 900 ◦C for 12 h in air. The AlF3-coating layer was fabricated by the chemical deposition method.
The as-prepared Li1.2Ni0.2Mn0.6O2 powders were immersed in the Al(NO3)3 dilute aqueous solution
heated to 50 ◦C and stirred vigorously. NH4F dilute solution was then added into the solution with the
molar ratio of Al to F of 1:3 corresponding to the 5-wt.% AlF3 coat. After drying at 60 ◦C in a vacuum
oven, the obtained products were heated at 400 ◦C in ambient argon for 4 h to prevent the formation of
Al2O3 and secure the formation of AlF3-coated Li1.2Ni0.2Mn0.6O2. Figure 2 displays the pictures of
both Li1.2Ni0.2Mn0.6O2 samples.
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2.2. Material Characterization

The crystalline phase was identified by XRD using a Philips X’Pert diffractometer (PANalytical,
Orsay, France) equipped with CuKα radiation source (λ = 1.5406 Å). The diffractograms were recorded
at room temperature in the 2θ-range 10–80◦. The experimental patterns were refined by the Rietveld
method with FULLPROF software program. The variance of the relative amounts of atomic components
in the samples were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES,
OPTIMA 7000DV, Perkin Elmer Co., Ltd., UK). The morphology and composition were studied by
SEM (ZEISS model ULTRA 55) coupled with an energy-dispersive X-ray attached analyzer (EDX).
HRTEM images were obtained using an electronic microscope JEOL model JEM-2010. Raman spectra
were taken using a micro-Raman spectrophotometer (Horiba, Longjumeau, France) equipped with an
optical microscope (×100 objective) and a 633 nm He–Ne laser excitation line. Data were recorded in
steps of 1.6 cm−1 with an acquisition time of 30 s. The wavenumber calibration was regularly verified
by using the Raman peak at 520 cm−1 of a silicon crystal as a reference. BET specific surface area
was measured by nitrogen adsorption/desorption at 77 K in a relative pressure P/P0 = 0.0–1.0, with P
and P0 being the equilibrium and saturation pressure, respectively, using a Quantachrome NOVA
automated gas sorption analyzer (Anton Paar GmbH, Blankenfelde-Mahlow, Germany). The pore size
distribution and pore volume were estimated using the Barrett–Joyner–Halenda (BJH) method [46].

Electrochemical tests were conducted on CR2025-type coin cells assembled in a glove box
(moisture and oxygen content ≤5 ppm) under argon atmosphere. The procedure to fabricate the
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cathode was as follows: 85 wt.% active material, 10 wt.% carbon black as conductive medium,
and 5 wt.% polyvinylidene fluoride (PVDF) in N-methyl pyrrolidinone (NMP) solvent were mixed
and ground to generate a homogeneous slurry. The slurry was then spread onto an aluminum foil
current collector and dried at 80 ◦C for 2 h to remove the solvent before being pressed. Using such a
cathode (loading of ~2 mg cm−2), the electrochemical cells fabricated with lithium sheet as the counter
electrode, Celgard 2500 film as the separator filled with 1 mol L–1 LiPF6 in a mixture of ethylene
carbonate (EC)/dimethyl carbonate (DMC) (1:1) solution (LP30, Merk) as electrolyte. The galvanostatic
charge–discharge GCD) cycles were performed using a potentiostat/galvanostat (workstation VMP3
Bio-Logic, Seyssinet-Pariset, France) in the potential range 2.0–4.8 V. EIS data were collected using a
phase sensitive multimeter (model PSM 1700, UK) in the frequency range 0.01 Hz–100 kHz using a
voltage bias of 5 mV.

3. Results

3.1. Structure and Composition

The relative concentration of atoms was measured by ICP-AES. Results listed in Table 1 show that
the chemical composition of the LLNMO samples is close to the theoretical stoichiometry. Moreover,
the amount of Al is consistent with the value expected by the surface treatment. The ~2% loss of
Li in pristine LLNMO should be attributed to its departure from the surface during the calcination
process. Figure 3 displays the Rietveld refinement of the XRD patterns of pristine and AlF3-coated
Li1.2Ni0.2Mn0.6O2 oxides. For both samples, these results suggest the structural co-existence of the
Li2MnO3 (C2/m S.G.) and LiNi0.5Mn0.5O2 (R3m S.G.) phases. XRD diagrams exhibit the typical
diffraction patterns of the α-NaFeO2-type layered structure with the R3m space group (hexagonal
setting) [47]. Additional reflections appeared in the 20–21◦ 2 θ-region that are the fingerprints
of the Li2MnO3-type C2/m phase. Such a superstructure suggests the presence of Li+ ions in the
transition-metal layer of Li1.2Ni0.2Mn0.6O2. The existence of this secondary phase is also detected by
Raman spectroscopy, as it will be evidenced in the following. For the coated sample, the XRD features
are unchanged in agreement with other works [48,49].

Table 1. Elemental composition of LLNMO samples analyzed by ICP-AES.

Sample Li Ni Mn Al

Pristine 1.18 0.21 0.59 -
AlF3-coated 1.20 0.19 0.61 0.048
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XRD patterns were recorded using a CuKα source (λ = 1.5406 Å).

From the Rietveld refinement results (Table 2), the lattice expansion occurred in both the a and
c directions when LLNMO particles are coated with AlF3. Thus, the volume of the elementary unit



Energies 2020, 13, 3487 6 of 22

cell increases slightly with the coating. In stoichiometric Li1.2Ni0.2Mn0.6O2, the valence state of Mn
and Ni ions are +4 and +2, respectively [50,51]. The primary effect of the AlF3 coating is a reduction
of the loss of Li ions at the surface of particles that provokes an increase of the Li2MnO3 component
content and, consequently, an increase of the amount of Mn3+ ions. The slight change of the lattice
parameters is explained by consideration of the ionic radii of Mn ions. The increase in a and c is
attributable to the bigger ionic radius of Mn3+ ions in octahedral coordination (58 pm against 53 pm
for Mn4+ ions) [52]. It also gives evidence that an internal composite structure exists in the Li-rich
oxide framework. This increasing concentration of Mn3+ has been reported to be beneficial to the
electrochemical performance. The existence of Mn3+ causes a gradual activation of Li2MnO3, which
results in a capacity increase upon cycling [53]. For the R3m phase of Li1.2Ni0.2Mn0.6O2, the refinement
involved fixing the Mn occupancy and varying the ratios of the Ni and Li occupancies on the TM
and Li sites. The degree of Ni occupancy in the interlayer Li sites (cationic mixing) is rather low at
1.33% and 1.25% for pristine and coated LLNMO samples, respectively. There are several indicators to
evaluate the presence of Li-Ni anti-sites (cation mixing). First, the c/a lattice parameter ratio evidences
the deviation of the rock–salt structure (i.e., c/a > 4.90). The second indicator is the peak intensity ratio
R1 = I003/I104; the higher R1, the lower amount of undesirable Li-Ni anti-sites and better hexagonal
structure [54]. The third fingerprint of the hexagonal ordering is defined by the factor R2 = (I006 +

I102)/I101; the lower the R2, the better the hexagonal ordering [55,56]. The values of R1 and R2 reveal
that the hydrothermally synthesized LLNMO samples have a perfect layered structure. As seen in
Table 2, the Rietveld refinement results are consistent with the direct observation of the XRD peak
intensity ratios showing the lower cation mixing with well-ordered rhombohedral structures for the
AlF3 coated LLNMO sample.

Table 2. The structural parameters obtained from Rietveld refinements for pristine and AlF3-coated
Li1.2Ni0.2Mn0.6O2 powders prepared by hydrothermal method via citric acid chelator.

Crystal Data Pristine
LLNMO AlF3-Coated LLNMO

a (Å) 2847(3) 2852(1)
c (Å) 14,216(6) 14,235(0)
V (Å3) 99.82 99.97
c/a 4.992 4991
I(003)/I(104) 1.41 1.45
(I(006) + I(102))/I(101) 0.42 0.41
Coherent length (Lc) (nm) 68 65
Strain × 10−2 2.45 2.12
Reliability factors
Rw (%) 6.22 7.55
Rexp (%) 4.71 6.23
Ni2+ (in Li layer of R3m) 0.0133 0.0125
Phase fraction (mol %)
R3m 48.2 49.5
C2/m 51.8 50.5

The local deformation of the crystal structure is investigated by the analysis of the broadening of
the XRD reflections according to the Williamson–Hall relationship [57,58]:

B cosθ= 4 <e> sinθ + Kλ/Lc (1)

where B is the full-width at half-maximum (FWHM), K is the crystallite shape factor (assumed to be
0.9), <e> is the micro-strain field, Lc is the size of the crystallites (coherence length), θ is the diffraction
angle and λ is the X-ray wavelength of the source. The microstrain is extracted from the slope of the
plot of B cosθ vs. sinθ in Figure 4, and Lc is determined by extrapolation of the straight line to sinθ = 0.
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Both samples have identical Lc of 65 ± 5 nm. The results show that the microstrain of 2.45 × 10−2 for
pristine LLNMO slightly reduces to 2.12 × 10−2 for the coated sample. The smaller value of <e> in
the AlF3-coated sample proves that the thin layer stabilizes the lattice structure, a consistent result
with the fact that the coating process has reduced the number Li-Ni anti-sites by ~7%. The decrease
of the strain field gives evidence of a better structural stability of the coated sample than the pristine
one, as expected from the above discussion devoted to the lattice parameters and the consideration of
ionic radii.Energies 2020, 13, x FOR PEER REVIEW 7 of 22 
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Figure 4. Analysis of the full-width at half-maximum (FWHM) of the XRD reflections according to
Equation (1).

The porosity of hydrothermally synthesized LLNMO samples was studied by N2

adsorption/desorption tests. Figure 5a,b presents the N2 adsorption/desorption isotherm and the
pore-size distribution (inset) for pristine and AlF3-coated LLNMO samples. An increase in the amount
of adsorbed N2 with increase of the P/P0 value and the appearance of a hysteresis loop are observed in
the isotherm curves. Results obtained from BJH analysis are listed in Table 3. The average BJH pore
width is in the range 4.5–5.5 nm, which indicates that these holes are mainly mesopores with total
pore volume of 0.45 cm3 g−1. These features are fingerprints of a hierarchical mesoporous structure of
LLNMO powders that promotes the Li+ ion kinetics [59]. Suib et al. [60] described the formation of
mesoporosity by aggregation of nanoparticles along their lateral faces. In the same way, the mesopores
(~5 nm) correspond here to the voids existing between randomly-packed nanoparticles of ~150 nm in
diameter inside secondary particles (agglomerates) of ~600 nm in size, as we will see on TEM images
reported later in this work.

BET analysis shows that pristine and AlF3-coated LLMNO samples have a specific surface area
of 11.5 and 9.2 m2 g−1, respectively, which is advantageous for enhancing the transport of Li+ ions
in the secondary particles. These values are comparable with those reported by Chang et al. [61] for
Li-rich Li1.27Cr0.2Mn0.53O2 oxides prepared by milling-assisted solid-state process. Xiang et al. [62]
reported the influence of polyvinyl alcohol (PVA) as chelating agent on the BET surface area for
Li1.2Ni0.2Mn0.6O2 prepared by sol-gel technique (varying from ~10 m2 g−1 for PVA-0% to ~33 m2

g−1 for PVA-15%). Zhang et al. [63] showed that 3-µm sized secondary particles, which consisted
of self-assembled crystallites ~150 nm in size, demonstrated optimized mesostructuration partially
mitigating the voltage fading. The equivalent particle size of the samples can be calculated from the
BET data and compare with SEM images. The average particle diameter (in nm) is expressed by the
relation [64]:

LBET =
6000

SBETd
(2)

where SBET is the specific surface area (in m2 g−1) measured by BET experiments and d the gravimetric
density (4.53 g cm−3 for NMO). The BET surface area and the average particle size results are found in
Table 3. We observe a relatively good agreement between particle size values LBET and LTEM evaluated
from BET and measured from TEM images, respectively.
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Table 3. Brunauer–Emmett–Teller (BET) specific surface area, calculated average particle size from BET
data (LBET) using Equation (2), mean particle size measured using TEM imaging (LTEM) and results
obtained from Barrett–Joyner–Halenda (BJH) analysis for hydrothermally prepared LLNMO samples.

Sample BET
(m2 g−1)

LBET
(nm)

LTEM
(nm)

Pore Size
(nm)

Pore Volume
(cm3 g−1)

Pristine 11.5 115 150 4.6 0.45
AlF3 coated 9.2 144 180 5.2 0.49

The crystal structure of Li-rich layered oxides is currently discussed assuming either the
existence of solid solution according to the substitution of M in LiMO2 [65,66] or the formation
of a composite of LiMO2 and Li2MnO3 [67,68]. The X-ray diffraction analysis clearly pleads for
the second model. This hypothesis is also confirmed by Raman spectroscopy, which is efficient
in probing the short-range order (local structure) of materials. Regarding the vibrational modes
of Li1.2Ni0.2Mn0.6O2 (0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 in layered notation), two Raman-active modes
(A1g + Eg) are expected for LiMO2 (M = Ni or Mn, D3d

5 symmetry) [69,70], while six Raman active
modes (4Ag + 2Bg) are predicted for Li2MnO3 (C2h

3 symmetry) [71]. In Figure 6, we observe two peaks
at 603 and 482 cm−1, which are assigned to the stretching ν(MO6) and bending δ(O-M-O) vibration
with M = Mn4+, Ni2+ belonging to the LiNi0.5Mn0.5O2 phase and three peaks at 587, 437, and 416 cm−1

attributed to the Li2MnO3 phase. The extra-peak at ca. 650 cm−1 is attributed to the stretching vibration
ν(Mn3+O6). The calculated spectrum is shown in Figure 6 (black line). The Raman spectrum of the
surface-modified LLNMO sample does not exhibit any frequency shift with respect to the pristine one.
This indicates that the AlF3 coating does not influence the Li-rich local structure, and that neither Al
nor F penetrated into the samples in agreement with the XRD analysis.
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3.2. Morphology

The morphology of LLNMO powders has been investigated by SEM and HRTEM imaging.
Figure 7 presents the SEM images combined with the EDX spectrum of the surface of AlF3-coated
sample. The SEM images show regular particles with similar morphology (almost monodisperse).
The homogeneous size distribution of agglomerates ~200 nm is noticeable without difference between
pristine and AlF3-coated particles. The EDX spectrum (Figure 7c) of the AlF3-coated sample exhibits
only the additional peak of Al, because the peak of fluorine merges with that of Mn. No other element
was detected, giving evidence of the absence of any impurity in all the samples. From this experiment,
the concentration of Al is found to be 5.15 wt.%.
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Figure 7. SEM images of (a) pristine LLNMO and (b) AlF3-coated LLNMO. (c) EDX spectrum of
AlF3-coated LLNMO.

The HRTEM images for all the samples are reported in Figure 8. The 200 nm-thick agglomerates
of the Li1.2Ni0.2Mn0.6O2 samples are made of well-crystallized particles 95 nm in size. The comparison
between HRTEM images shows that the coating had no effect on the size of particles. There is no
effect on the shape, confirming that the coating of only 5–7 nm thickness does not change the structure
nor the morphology of the powders [72,73]. This is due to the relatively low temperature of 400 ◦C
used during the coating process, which is much smaller than the temperature at which the particles
could start to coalesce. The distance between neighboring fringes shown in insets is 0.47 nm, which is
assigned to (003), (001), or both planes for rhombohedral, monoclinic, or both phases, respectively.
Such features are commonly observed in Li-rich samples of different compositions [74].
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3.3. Electrochemical Properties

Electrochemical properties of LLNMO samples have been investigated by galvanostatic charge-
discharge and electrochemical impedance spectroscopy. In this study, we consider the total charge
delivered by each component of the LLNMO cathodes (xLi2MnO3·(1−x)LiNi0.5Mn0.5O2). As x = 0.5
for Li1.2Ni0.2Mn0.6O2, the theoretical specific capacity is 369 mAh g−1 (229 mAh g−1 for 0.5Li2MnO3 +

140 mAh g−1 for 0.5LiNi0.5Mn0.5O2). This value is exactly the theoretical capacity, based on complete
extraction of lithium (1.2 Li per Li1.2Ni0.2Mn0.6O2 formula unit) [75–77]. The theoretical discharge
capacity, based on the mass of the discharged rock-salt product after the first charge/discharge cycle,
is 280 mAh g−1. Note that for unknown reasons, some authors used the value of 200 mAh g−1.
For clarity, we use the current density expressed in mA g−1 with the correspondence 1C = 369 mA g−1

for all the electrodes.
Figure 9a,b display the GCD curves of pristine and AlF3-coated Li1.2Ni0.2Mn0.6O2 electrodes,

respectively, performed at 0.15C rate in the potential window 2.0–4.8 V. The shape and change after
the first activation cycle are consistent with literature [9,41,44,50,78–82]. The initial charge occurred
with a well-defined voltage plateau at 4.5 V, which correspond to the irreversible extraction of Li2O
from the Li2MnO3 component [8]. Thus, the strong oxidation of O2– is considered to occur at ca. 4.5 V.
The capacity corresponding to the oxidation of Ni from Ni2+ to Ni4+ (below 4.5 V) is ca. 100 mAh g−1

for both electrodes. During the initial discharge, the pristine and coated LLNMO electrodes delivered
a specific capacity of 242 and 260 mAh g−1, respectively, which was maintained at 219 and 231 mAh
g−1 after 50 cycles. After 100 cycles of charge-discharge at 600 mA g−1 current density, the capacity
retention of ~91% for the coated electrode is higher than that of pristine LLNMO (~59%).
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Figure 10a–c present the differential capacity or incremental capacity (IC) plots (−dQ/dV vs. V) for
discharge curves of LLNMO electrodes at the 3rd and 50th cycles, which not only specify the reduction
potentials but also clearly display the voltage fade issue. In IC plots, the peaks correspond to the
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pseudo plateaus in the GCD curves. The IC curve of the parent LiNi0.5Mn0.5O2 (Figure 10a) confirms
that the peak at ca. 3.74 V is due to the reduction of Ni4+ to Ni3+ during the insertion of Li+ ions in the
layered framework. This reduction peak (A) occurred at 3.75 and 3.77 V in the discharge profile of
pristine and coated electrodes, respectively. It is shifted down to ~3.65 V after 50 cycles for pristine
Li1.2Ni0.2Mn0.6O2, whereas a shift by only 70 mV is observed for the AlF3-coated electrode. The main
difference between LiNi0.5Mn0.5O2 and Li1.2Ni0.2Mn0.6O2 is the occurrence of the low-voltage cathodic
peak (B) at ca. 3.25–3.35 V, which is assigned to the reduction of Mn4+ to Mn3+ in MnO2 formed during
the first charging reaction [38,59,83]. Note that the reduction peak of Mn4+ is weaker for AlF3-coated
Li1.2Ni0.2Mn0.6O2 than Li1.2Ni0.2Mn0.6O2; however, the voltage decay of the B peak is higher than that
of the A peak.

Figure 11 presents the rate capability and the cycling stability of LLNMO electrodes synthesized
by the hydrothermal method assisted with citric acid. Experiments were carried out in the voltage
range 2.0–4.8 V at various current densities in the range 30–900 mA g−1. As shown in Figure 11a,
specific capacities of 116 and 153 mAh g−1 are obtained at the 900 mA g−1 rate during the discharge
process of pristine and AlF3-coated electrodes, respectively. The decay in the specific capacity was
observed without significant change in the S-shape of the charge and discharge curves. From the
cycling performance shown in Figure 11b, the loss of capacity calculated upon 100 cycles is found to be
0.75 and 0.20 mAh g−1 per cycle for the pristine and AlF3-coated electrodes, respectively. The good
reversibility of the AlF3-coated Li1.2Ni0.2Mn0.6O2 electrode is confirmed by the Coulombic efficiency
remaining around 99.4% over 100 cycles (Figure 11b). The rates of capacity fade for the AlF3-coated
electrode are 0.29 and 0.41 mAh g−1 per cycle, when tested over 80 cycles at current densities of 300 and
900 mA g−1, respectively (Figure 11c). The evolution of the Coulombic efficiency for pristine and
AlF3-coated LLNMO electrodes is presented in Figure 11d. In comparison, the Coulombic efficiency of
76% for pristine LLNMO in the first cycle has increased to 87% after AlF3 coating. Similar behavior
was reported by Liu et al. [43] for ZnAl2O4-coated Li1.2Ni0.2Mn0.6O2 material.

Energies 2020, 13, x FOR PEER REVIEW 11 of 22 

 

Figure 11 presents the rate capability and the cycling stability of LLNMO electrodes 
synthesized by the hydrothermal method assisted with citric acid. Experiments were carried out in 
the voltage range 2.0–4.8 V at various current densities in the range 30–900 mA g−1. As shown in 
Figure 11a, specific capacities of 116 and 153 mAh g−1 are obtained at the 900 mA g−1 rate during the 
discharge process of pristine and AlF3-coated electrodes, respectively. The decay in the specific 
capacity was observed without significant change in the S-shape of the charge and discharge curves. 
From the cycling performance shown in Figure 11b, the loss of capacity calculated upon 100 cycles is 
found to be 0.75 and 0.20 mAh g−1 per cycle for the pristine and AlF3-coated electrodes, respectively. 
The good reversibility of the AlF3-coated Li1.2Ni0.2Mn0.6O2 electrode is confirmed by the Coulombic 
efficiency remaining around 99.4% over 100 cycles (Figure 11b). The rates of capacity fade for the 
AlF3-coated electrode are 0.29 and 0.41 mAh g−1 per cycle, when tested over 80 cycles at current 
densities of 300 and 900 mA g−1, respectively (Figure 11c). The evolution of the Coulombic efficiency 
for pristine and AlF3-coated LLNMO electrodes is presented in Figure 11d. In comparison, the 
Coulombic efficiency of 76% for pristine LLNMO in the first cycle has increased to 87% after AlF3 
coating. Similar behavior was reported by Liu et al. [43] for ZnAl2O4-coated Li1.2Ni0.2Mn0.6O2 material. 

 
Figure 11. (a) Rate performance (current densities in mA g−1) and (b) cycling stability of pristine and 
AlF3-coated LLNMO electrodes tested at current density of 30 mA g−1. (c) Cyclability of the 
AlF3-coated LLNMO electrode tested at current density of 300 and 900 mA g−1. (d) Coulombic 
efficiency of pristine and AlF3-coated LLNMO electrodes. 

The present electrochemical performances of LLNMO electrodes are comparable with previous 
data. However, there are some differences depending on the morphology of the active particles. 
Hydrothermally synthesized rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 delivered a capacity of 
212 mAh g−1 after 30 cycles at 1C rate (250 mA g−1) [36]. Yang et al. [32] reported a specific capacity of 
~190 mAh g−1 at 1C rate (250 mA g−1) for agglomerated Li1.2Ni0.2Mn0.6O2 particles with a large pore 
volume of 9.2 × 10−3 cm3 g−1 prepared by sol-freeze-drying method. Li1.2Ni0.2Mn0.6O2 nanoparticles (100–200 
nm in size) coated with a thin layer of Li+-conductive Li2ZrO3 coating obtained through a 

Figure 11. (a) Rate performance (current densities in mA g−1) and (b) cycling stability of pristine and
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The present electrochemical performances of LLNMO electrodes are comparable with previous
data. However, there are some differences depending on the morphology of the active particles.
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Hydrothermally synthesized rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 delivered a capacity of
212 mAh g−1 after 30 cycles at 1C rate (250 mA g−1) [36]. Yang et al. [32] reported a specific capacity of
~190 mAh g−1 at 1C rate (250 mA g−1) for agglomerated Li1.2Ni0.2Mn0.6O2 particles with a large pore
volume of 9.2 × 10−3 cm3 g−1 prepared by sol-freeze-drying method. Li1.2Ni0.2Mn0.6O2 nanoparticles
(100–200 nm in size) coated with a thin layer of Li+-conductive Li2ZrO3 coating obtained through a
synchronous lithiation strategy delivered a capacity of circa 169 mAh g−1 over 100 cycles at current
density 200 mA g−1 [13].

To further investigate the effect of the AlF3 coating on resistances and lithium kinetics in LLNMO,
EIS measurements were carried out. Figure 12 presents the EIS spectra investigated after the first cycle
performed at 0.15C rate. As shown in Figure 12a, all of the Nyquist plots of the cells are composed of
three contributions that can be modeled using the equivalent circuit shown as inset: (i) the intercept
of x-axis at high-frequency corresponds to the ohmic resistance (Rs), i.e., electrodes and electrolyte
contributions; (ii) a depressed semicircle in the high-frequency region is ascribed to the charge transfer
impedance (Rct, CPEct) at the electrode/electrolyte interface, in which the constant phase element is
expressed by CPE = 1/T((jω)p) with ω the angular frequency, T a CPE constant and p an exponent
(0 ≤ p ≤ 1, p = 1 for pure capacitance) and j is the imaginary number (j =

√
-1); and finally (iii) an inclined

line (with a slope of ~45◦) at low-frequency reflects the diffusion-controlled process characterized by a
Warburg impedance taken in the infinite limit and expressed by the relation ZW(ω) = σw (1 − j)ω−1/2,
where σw is the Warburg factor [84]. The real part of the impedance Z’(ω) is the sum of the components:

Z’(ω) = Rs + Rct + RSEI +σw ω
−1/2 (3)

From the slope of the Z’ vs. ω−1/2 curves (Figure 12b), we can calculate the apparent chemical
diffusion coefficient of Li+ ions (DLi+) in the electrode using the relation [85]:

DLi+ =
1
2

[
RT

F2ACLiσW

]2
(4)

where R is the gas constant, F is Faraday’s constant, T the absolute temperature, A the surface area
of the electrode-electrolyte interface, and CLi the molar concentration of Li+ ions in the electrode (0.8
mmol cm−3). The fitting parameters are reported in Table 4. Results can be summarized as follows.
The value of Rct for the cell with AlF3-coated Li1.2Ni0.2Mn0.6O2 (65.5 Ω) is smaller than that of pristine
Li1.2Ni0.2Mn0.6O2 (100.3 Ω), demonstrating that the AlF3 coating layer effectively decreases the interface
contact resistance. In addition, the exponent p of the CPE component associated with the charge
transfer is close to unity for both cells, which means that the CPE contribution is essentially capacitive.
This gives evidence of a good homogeneity of the electrode. Note that the contribution of the SEI layer
can be neglected. As a result, the apparent diffusion coefficients of Li+ ions are found to be 2.8 × 10−15

and 1.1 × 10−14 cm2 s−1 in pristine and AlF3-coated Li1.2Ni0.2Mn0.6O2 electrodes, respectively.
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The DLi + calculated values of our hydrothermally synthesized LLNMO samples are slightly
higher than the values reported from Yang et al. [39] and Lin et al. [44]. DLi + of 2.34 × 10−17 and
1.03 × 10−14 cm2 s−1 was reported for pristine LLNMO and LLNMO/graphene structures synthesized
by sonication in ethylene glycol solution [39]. DLi + measured for LLNMO prepared by a sol-gel method
assisted with carbon felt as reactive carrier was 2.49 × 10−16 cm2 s−1 before charging, which is slightly
smaller than 4.71 × 10−16 cm2 s−1 obtained under charge at 4.8 V [44]. In contrast, Sasakawa et al. [86]
reported a higher DLi + value of 1.6 × 10−13 cm2 s−1 in the discharge state of LLNMO particles prepared
by combustion method. The same group of researchers showed that DLi increased with increasing the
charge rate in the potential range 2.5–4.4 V with an average value of 4.5 × 10−13 cm2 s−1 at mid-voltage.

Table 4. Transport parameters of Li1.2Ni0.2Mn0.6O2 electrodes deduced from EIS measurements.

Sample
Rs
(Ω)

Rct
(Ω)

CPEct σw
(Ω s−1/2)

DLi
(cm2 s−1)T p

pristine 8.4 100.3 2.6 × 10−5 0.91 40.5 2.8×10−15

AlF3 coated 9.1 65.5 4.8 × 10−6 0.94 34.6 1.1×10−14

Generally, a high DLi + value implies a well-ordered layer structure of the cathode material and a
minimum cationic disorder in the Li slabs [87]. Such an Li+ diffusion enhancement is attributed to the
presence of the thin AlF3 layer, which promotes the ionic transport at the electrode-electrolyte interface
and partly suppresses the spinel layer formation. Liu et al. [29] reported DLi values of 8.2 × 10−13 and
3.8 × 10−12 cm2 s−1 for pristine and Li1.3Al0.3Ti1.7(PO4)3 (LATP) coated Li1.2Ni0.2Mn0.6O2, respectively.
The samples were synthesized by co-precipitation with the LATP layer ~4 nm thick and exhibited
a cationic mixing of 2%. Liu et al. [43] estimated DLi values of 8.2 × 10−14 and 7.6 × 10−12 cm2 s−1

at mid-voltage (3.5 V) for pristine and Li1.2Ni0.2Mn0.6O2 coated with 1 wt.% ZnAl2O4. Recently,
Ku et al. [88] proposed a new Li diffusion model based on the correlation between asymmetric TM
migration and Li mobility that explained the non-equivalent intercalation and de-intercalation kinetics.
Chang et al. [61] suggested that the high Li-ion diffusion coefficient of 3.9 × 10−10

·cm2
·s−1 in Li-rich

layered cathode material is caused by the mesoporous network composed of tiny primary particles.
To further verify the improvement of the electrochemical properties of the electrodes,

EIS measurements were conducted at different discharge cycles. Figure 13a,b presents the variation of
the transport parameters Rs, Rct, and σw for both LLNMO samples. Among those parameters listed,
Rct is the most important since it represents the charge transfer within the cathode material. After 50
charge-discharge cycles, Rct increased by a factor of 2 for both electrodes but seems to saturate at ca.
145 Ω for the AlF3-coated LLNMO material. These results show that σw for pristine LLNMO increases
almost linearly upon cycling, while it reaches a value of 50 Ω s−1/2 for the AlF3 coated electrode after
30 cycles.
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Raman spectroscopy is a non-destructive and sensitive method to perform post-mortem studies of
cycled cathode materials [89]. This analytical technique allows the investigations of structural changes
at the particle surface, the electrode degradation, and the formation of spinel-like layer [28,80,83,90].
In which case, such surface modifications are not detected by diffraction techniques. Figure 14 shows
the ex situ Raman spectra of cycled pristine and AlF3-coated LLNMO electrodes after 50 and 100 cycles.
The formation of the spinel-like layer in all cycled LLNMO electrodes is indicated by the shoulder at
~650 cm−1. After long-term cycling (100 cycles) of the pristine LLNMO sample, the intensity of this
spectral feature becomes relatively strong, revealing the formation of a disorder on the particle surface.
Simultaneously, a broadening and a frequency shift of the peak at 416 cm−1, related to the monoclinic
Li2MnO3 phase, are observed. In contrast, the AlF3-coating retards the transformation to the spinel
structure of the Li1.2Ni0.2Mn0.6O2 cathode surface. These studies confirm that the AlF3 coating is a
very efficient surface modification to improve the stability of the layered phase of the Li-rich material,
at the origin of the significant improvement of the electrochemical properties.
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4. Discussion

4.1. Structural Stability

The structural and electrochemical stability of LLNMO strongly depend on synthesis conditions
and operating parameters. The stable performance in relation to initial charge condition shows that a
fast rate of 3C induced a decrease of the Rct resistance and slight increase of the Li+ diffusion coefficient
in the bulk. Our results confirm the efficiency of the AlF3 coating with the optimized concentration
of 5 wt.% [86]. This layer is thick enough to protect the electrode material against the side reactions
with the electrolyte, which reduces the resistance of the SEI layer, and increases the rate capability.
The coating layer also stabilizes the layered network, with two beneficial effects: (i) it increases the cycle
ability, which improves the cycle ability and (ii) it increases the diffusivity of Li+, which contributes to
enhancing the rate capability of the coated particles. In addition, the mesopores increase the effective
surface area in contact with the electrolyte, which explains the high capacities reported in this work.

Improvement of calendar and cycling life together with safety issues of lithium-ion batteries
require sophisticated technology to prevent degradation mechanisms. The surface modification of
the electrode materials is part of the solution [91]. Among the unwanted degradation mechanisms
occurring in LLNMOs, the creation of the solid electrolyte interphase (SEI), growth of a layered-to-spinel
surface layer, unreacted residual lithium ingredients on the particle surface, formation of corrosion pits,
and occurrence of inter-granular cracks inside primary particles have been widely documented [92–98].

To date, few works report the use of AlF3 as a deposit on the surface of Li-rich Mn-rich
particles [48,71,98–100]. Sun et al. [71] consider the AlF3 coating layer as a “buffer” through which the
activity of extracted oxygen is reduced; thus, the electrolyte decomposition is avoided at voltages above
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4.5 V. AlF3 is preferable to Al2O3, which is unstable in Li cells and can be peeled off from the cathode
surface by conversion into AlF3 in the presence of traces of HF in the electrolyte. AlF3 is also preferable
to Li3PO4. Kang and Thackeray reported a surface coating of Li-Ni-PO4, leading to reversible capacity
of 200 mAh g−1 at 1C. They speculated that one of the components Li3PO4 acts as an excellent lithium
ion conductor as well as an efficient protective layer stabilizing the electrode surface, though it is not
clear how Li3PO4 stabilizes the electrode surface [101]. Then, Liu et al. used this coating to stabilize
the interface and reduce the side reaction between the material and electrolyte and thus improve
the cyclic stability of a Li-rich, Mn-containing layered material [101]. Lee et al. [102] synthesized a
Li3PO4-coated Li1.2Mn0.6Ni0.2O2, which delivered 240 mAh g−1 at 0.1C (25 mA g−1), and 205 mAh g−1

after 50 cycles at room temperature, which corresponds to 85% capacity retention over 50 cycles,
compared to ~91% capacity retention after 100 cycles at 2C in our AlF3-coated Li1.2Ni0.2Mn0.6O2

electrode. More recently, Li-rich@Li3PO4 was synthesized via a template of polydopamine [103].
The nanoparticles were 100–200 nm thick, comparable to the particles in the present work (secondary
particles 200 nm, primary particles 95 nm). The beneficial protection effects against side-reactions with
the electrolyte were confirmed. Actually, almost all coatings that are chemically and electrochemically
stable with the carbonate electrolytes (including Li3PO4 and AlF3) have this function (see [104] for
a review). However, the results were not competitive with the results obtained with other coatings
such as AlF3. For instance, at 0.2C (1C = 200 mA g−1) in a potential window from 2.0 to 4.8 V
(the same conditions as in the present work), Li-rich@Li3PO4 delivered a capacity of 230 mAh g−1,
which decreased to 130 mAh g−1 after 100 cycles. Therefore, the Li3PO4 coat fails to reduce the kinetics
of the phase transition to the spinel phase or Mn dissolution in the surface layer of Li1.2Ni0.2Mn0.6O2,
while it was found efficient in the case of NMC (Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2),
where it prevents NiO-like and Co-like phase formations on the surface [105,106]. Zheng et al. [98]
analyzed the fundamental functions of the AlF3 coating and concluded that the coating mitigates
the acidic attack by the electrolyte of spinel-like networks formed on the particle surface. Figure 15
illustrates the transformation mechanism of an active particle of Li-rich layered oxide. Upon repeated
cycling, the morphology of the uncoated particle is modified with the formation a spinel phase and
corrosion pits, whereas a thin layer of coating protects the particles against corrosion and postpones
the spinel growth. The efficiency of the AlF3 coating is also evidenced by the fact that our results
were obtained with only 5-wt.% AlF3, while effective protection of cathode elements often need much
thicker coats; for instance, 12 wt.% in the case of LiAlO2/Al2O3-coated nano-LiCoO2 [107].
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4.2. Voltage Decay

Capacity fading and voltage decay are the important drawbacks of Li-rich cathode materials;
they are the main challenges for the commercialization of LLNMOs. The voltage decay originates
from a gradual phase transformation of the layered phase to a 3 V spinel-like phase. [13,76,108–113].
From GCD curves and dQ/dV plots, Lee and Manthiram showed that the length of the plateau region
during first charge is the primary governing factor in the voltage decay process [111]. From first
principles calculations, Xu et al. [112] have suggested that both the formation of Litet–V(TM)Li–Litet

dumbbell structures (Litet refers to the lithium ion in a tetrahedral site and V(TM)Li refers to the
lithium-ion vacancy in the TM layer) and TM ion migration into the lithium layer can facilitate the
formation of a 3 V spinel-like phase during charging in the high voltage region. The formation of such
Litet–V(TM)Li–Litet dumbbell structures can be expected to increase with the length of the plateau
region during the first charge process since lithium ions from the TM layer will be extracted once all of
the lithium ions are extracted from the lithium layer.

From IC plots (Figure 10) the voltage decay is found to be 2.80 and 1.40 mV per cycle for
pristine and AlF3-coated electrode, respectively, after 50 cycles. Table 5 lists the voltage decay rate
for Li1.2Ni0.2Mn0.6O2 cathode materials synthesized by different methods. Li et al. [76] inhibited
the undesired layered-spinel intergrowth by doping with K+ ions, which weakened the creation of
tri-vacancies in the Li layer and Mn migration. Chong et al. [112] fabricated a spherical core-shell
structure, Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 by in situ hydrothermal technique, which exhibited a
high voltage retention value of 3.335 V after 100 cycles. The most impressive low voltage decay rate
of 1.09 mV per cycle was recently reported by Ding et al. [113] for Li1.2Mn0.6Ni0.2O2 microspheres.
The sophisticated modification made by a three-in-one surface treatment consisted of synchronous
design of oxygen vacancies, spinel-phase integration, and N-doped carbon monolayers.

Table 5. Voltage decay rate for different Li-rich Li1.2Ni0.2Mn0.6O2 cathode materials.

Material ∆V per Cycle (mV) Measurement Conditions Ref.

Al3+ doping 3.50 2.0–4.8 V, 100 cycles @ 25 mA g−1 [26]
Nb5+ doping 2.61 2.0–4.8 V, 100 cycles @ 0.1C [114]
pristine (sol-gel) 1.07 2.0–4.75 V, 200 cycles @ 0.2C [11]
pristine (co-precipitation) 1.25 2.0–4.75 V, 200 cycles @ 0.2C [11]
pristine (hydrothermal) 0.75 2.0–4.75 V, 200 cycles @ 0.2C [11]
Li2ZrO3 coating 1.25 2.5–4.5 V, 100 cycles @ 1C [13]
Li1.3Al0.3Ti1.7(PO4)3 coating 4.68 2.0–4.75 V, 80 cycles @ 0.2C [29]
pristine (co-precipitation) 6.42 2.0–4.8 V, 100 cycles @ 0.2C [14]
LiAlO2 coating 3.31 2.0–4.8 V, 100 cycles @ 0.2C [14]
pristine (co-precipitation) 7.16 2.0–4.75 V, 50 cycles @ 0.2C [43]
ZnAl2O4 coating 5.26 2.0–4.75 V, 50 cycles @ 0.2C [43]
N-doped carbon coating 1.09 500 cycles @ 5C [115]
pristine (hydrothermal) 2.80 2.0–4.8 V, 50 cycles @ 0.1C this work
AlF3 coating 1.40 2.0–4.8 V, 50 cycles @ 0.1C this work

The remarkable results by Zheng et al. deserve to be cited [11]. The voltage fade was mitigated by
improving the atomic level uniformity of elemental distribution at the Li1.2Ni0.2Mn0.6O2 surface.
Studies of the influence of the synthesis methods (i.e., sol-gel (SG), co-precipitation (CP),
and hydrothermal (HT)) on the voltage-decay rate were carried out using secondary ion mass
spectroscopy (SIMS), and it was suggested that one of the main reasons for the high voltage-decay rate
in HT samples is the non-uniform distribution of Ni ions with a Ni-rich particle surface leading to an
easy reduction of the Mn4+ ions. Ni-segregated materials also exhibit poor cycling stability.
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5. Conclusions

In summary, this work has shown that significant improvements of the electrochemical
performance of Li1.2Ni0.2Mn0.6O2 electrode materials synthesized by hydrothermal technique have
been obtained by an optimized AlF3 coating layer (5 wt.%) deposited on the surface of the 200-nm
thick particles. This coating improved all aspects of the electrochemical properties: discharge capacity,
capacity retention (~91% over 100 cycles for the coated electrode in contrast with ~59% for the
pristine one), and rate capability. The mesoporous morphology of hydrothermally synthesized
Li1.2Ni0.2Mn0.6O2 electrode materials contributed to enhancing the capacity. Another advantage
of the AlF3 coating is the smaller loss of the operating voltage, half that of the pristine sample.
Finally, despite certain claims in the literature, these studies have demonstrated the effectiveness of
this coating in terms of structural stability, migration of Mn3+ cations, attenuation of cross growth
in the spinel phase, and protection against side reactions with the electrolyte. Note the results have
been obtained by coating pristine Li1.2Ni0.2Mn0.6O2. The next step should then be to coat doped-
Li1.2Ni0.2Mn0.6O2 using the doping processes mentioned in the introduction, which improved the rate
capability by increasing the diffusion coefficient of Li+ ions in the structure and mitigated the oxidation
of O2– ions, in order to benefit from the synergetic effects.
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