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Abstract: The increasing amount of renewable energy sources in the electrical energy system leads to
an increasing number of converter-based generators connected to the electrical power grid. Other
than conventional power plants that are often connected to the grid via synchronous generators,
converter-based generators do not provide mechanical inertia intrinsically. Therefore, ensuring
frequency stability in the electrical power grid might become even more difficult in the future.
With the concept of synthetic inertia, the converter-based generators partially imitate the behavior
of conventional generators. By implementing such a concept in converters, they are capable of
contributing to frequency stability as well. This paper compares two strategies to realize synthetic
inertia by modeling converter-based generators in MATLAB/SIMULINK and simulating their behavior
in a small Microgrid. The results prove that any kind of realization of synthetic inertia helps
to improve frequency stability. Each of the two investigated strategies may have their scope of
application in a future electrical energy system.

Keywords: converter; synthetic inertia; frequency stability

1. Introduction

Generators in conventional power plants provide mechanical inertial response due to their rotating
masses. The entirety of all rotating masses results in a network inertia constant, which represents a
characteristic value of how the electric power grid instantaneously reacts to power disturbances caused
by imbalances between load and generation. The globally desired goal of reducing greenhouse gases
by integrating renewable energy sources (RES) into the power grid generally leads to a displacement
of conventional power plants. In further consequence, the network inertia constant in the electric
power system decreases, since a high amount of RES is mainly based on converter-based generators,
which do not inherently provide an inertial response. A decreased network inertia constant may
lead to critical stability challenges [1]. Results of a reduced inertia in the system are more frequent
large frequency deviations which may affect system operation, security and reliability by overloading
transmission lines, damaging equipment or triggering system defence plans and protection relays [2].
Such frequency stability issues due to reduced inertia already appear today, especially in smaller
interconnected areas such as in the United Kingdom [3] or the Nordic synchronous area [4]. According
to [5], the predicted decrease of system inertia in the regional group Central Europe may not lead to
an unacceptable frequency behavior in the near future. But particularly in the case of a system split
after a disturbance, the resulting imbalance combined with low inertia could result in unstable system
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behavior. The purpose of the concept of synthetic inertia (SI) is to mimic the behavior of the inertial
response of synchronous generators. The aim of its implementation in converter-based generators is to
maintain frequency stability in a future electric power system with a high amount of RES integrated
in the grid. Several studies have already shown the usefulness of the concept of synthetic inertia
to improve resilience in the electric power system [6,7]. A possible challenge for the introduction
of synthetic inertia is the lack of harmonized requirements in international grid codes and financial
incentives to equip converters with the capability to provide such a service. Possible ways to realize a
market for providing synthetic inertia are discussed in [8,9].

There are several strategies to realize synthetic inertia. The paper [10] presents an overview
of current state-of-the-art strategies to realize synthetic inertia and compares them. Conventional
converter control of grid-connected converters is mainly based on a “grid-following” approach, which
means that the converter synchronizes with a stable voltage at its terminals. Some converters are
capable of producing an output voltage on their own. A corresponding converter control is usually
referred to as “grid-forming” control. The most straightforward approach to realize synthetic inertia is
based on a grid-following approach where the local frequency measurement is used in order to provide
a power reference that behaves identical to the inertial response of conventional generators according
to the swing equation. Such an approach has been studied in several works [11-13]. However, the
necessary power output for such a grid-following approach to realize synthetic inertia is coupled with
a delay of the frequency measurement that may lead to instabilities [14]. Therefore, recent activities
concentrate on grid-forming control techniques, which do not necessariliy have such an inherent delay,
but are capable of instantly providing a power response in case the frequency changes. The “virtual
synchronous machine” is a popular concept that implements such an approach and goes beyond by
trying to exactly imitate the behavior of a synchronous machine [15]. Converters implementing such a
control approach are also called “synchronverters” [16]. A variety of reasearch activities investigated
strategies to emulate synchronous machines in the converter control [17-19]. However, according to
Milano et al. [1] this approach has its limitations and may also be a wasteful approach, considering
that many strengths of a converter-based generator become unused, as for example its very fast control
system emulates the comparably slow dynamics of a synchronous machine. An overview of possible
grid-forming control strategies such as droop control, synchronverters, machine matching control or
virtual oscillator control is given in [20].

Based on the control approach that is used, which is either a grid-following or a grid-forming
control approach, the converter control has to be designed accordingly. Basic structures to realize the
converter control including the grid synchronization, the voltage and current control, as well as the
PWM generation are presented in [21]. Several studies investigated the behavior of grid-following
and grid-forming approaches to realize synthetic inertia via simulations by using and expanding
these basic control structures. An example of a simulation of the behavior of different grid-forming
strategies to realize synthetic inertia is performed in [22]. By using an IEEE nine-bus test system,
Ref. [22] proves that the presence of grid-forming converters improves the frequency stability metrics
compared to a test system without their integration. The paper also reveals that under large load
disturbances it is vital to implement a current limiting scheme. In [23] a qualitative analysis of the
characteristics of grid-following and grid-forming control topologies to provide a transient response is
carried out. A minimum measuring period of about 20 ms to detect the grid voltage and to generate a
corresponding response in grid-following converters is stated as the major drawback of grid-following
converters compared to grid-forming converters in [23], especially since grid-forming converters are
theoretically capable of injecting power into the grid instantaneously after a grid event. However,
a comparison of the effectiveness of the two approaches to realize synthetic inertia may still be an issue
to be investigated in more detail, especially as most existing converters are based on a grid-following
control structure, also due to its easier and cheaper implementation. Changing the control approach of
existing converters to a grid-forming control approach is not an option, but upgrading a grid-following
approach by a corresponding realization of synthetic inertia may be a feasible option. In addition,
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there are several open questions of how to realize a grid-forming control structure, e.g., an appropriate
current limitation. Therefore, this paper investigates the differences between a grid-following and a
grid-forming control approach in more detail in order to compare their effectiveness.

This paper is structured as follows. Section 2 presents the basics on realizing synthetic inertia by
describing the inertial response of conventional generators. Building on that, Section 3 describes the
models in Section 3.2 and Section 3.3 that are used to investigate two strategies to realize synthetic
inertia. Section 4.2.1 presents simulation results of a load-step in a Microgrid. Section 4.2.2 presents
the results of a sensitivity analysis and Section 5 concludes the paper.

The nomenclature used in this paper is described in the following. Uppercase and lowercase
letters are used to distinguish between unit-based and normalized values. Uppercase letters are
used for unit-based values, while lowercase letters are used for normalized values. The unit of the
normalized values is described with “pu”. To distinguish between phasors and instantaneous values,
the index “t” is used for instantaneous values. Symbols in bold indicate a vector. Nominal values are
described with the index “n”. A summarized list of all symbols used in this paper can be found below.

2. Strategies to Realize Synthetic Inertia

The majority of generators in power plants are synchronous machines. A change of their electrical
load leads to a mechanical torque on the rotor of these synchronous machines. The rotor of these
synchronous machines has a certain mass, which manifests itself in the form of inertia in case of a load
change. Based on the swing equation, the electromagnetic torque M and the mechanical torque M,
coming from a turbine are set in context by

My —M=J& 1)

where w is the rotational speed, o is its derivative and ]| is the rotation inertia of the synchronous
machine. The relationship between the power difference of mechanical power P, and electrical power
P during a load-step then becomes

Py — P = AP = Jow @)

2
by multiplying the equation above by w. By introducing the inertia constant H = % I ;‘; L and the starting

time constant T4 = 2H, the equation can be rearranged to

Tipww = gw% = pr% 3)
n

where S, is the nominal apparent power and w, is the nominal rotation speed of the synchronous
machine. The load-frequency control in a synchronous area in a first step is handled via the so-called
“frequency containment reserves” (FCR). The droop control of FCR is realized in the speed governor of
a synchronous machine, whose reference power output is proportional to the change of speed. In the
equation above, according to Zhong and Weiss [24] the FCR can be taken into account by adding a
second term

1
Tpww = pr% + EAwwn 4)

where ¢ = g is the droop, which is a proportional factor with [0] = %ﬂl By assuming w ~ wjy

Sn
the equation can be rearranged to
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1
Taw = Apwy + —Aw ©)

Imitating a power output according to Equation (5) in converter-based generators is termed as
“synthetic inertia”. This paper considers two approaches to realize such a synthetic inertia:

e  “Active synthetic inertia”, realized by using a grid-forming control strategy that relies on
determining the grid angle based on Equation (5) and

o  “Passive synthetic inertia”, realized by calculating a reference power according to Equation (4)
that is used in the control of a grid-following converter.

The first approach is the best way to imitate the behavior of a synchronous machine but its
drawback is the complex control structure that has to be implemented in a converter. The quality of the
power output of the second approach, on the other hand, relies mainly on the quality of the frequency
measurement device that is used, whose design is a trade-off between accuracy and speed. An actual
implementation of the two approaches is described in Section 3.

3. Model Description

As already mentioned in Section 2, the realization of an “active synthetic inertia” is based on
grid-forming converters. Grid-forming converters actively control their output voltage and therefore
are capable of building an island grid. Active synthetic inertia in grid-forming converters can be
realized by calculating a reference grid angle 6 based on Equation (5), which is used in the converter
control instead of using a fixed value wyt. Section 3.2 describes the realization of active synthetic
inertia in more detail. Section 2 also describes the basis for the realization of “passive synthetic inertia”,
which is the only way to realize synthetic inertia in grid-following converters. Passive synthetic inertia
is based on a calculation of the reference power based on Equation (5). The grid synchronization of
grid-following converters measures the grid angle 6 and the grid frequency f. The latter can be used in
a feed-forward control to calculate a reference power according to Equation (5). Section 3.3 describes
the realization of passive synthetic inertia in more detail. For both approaches of realizing synthetic
inertia, a simplified model of a converter is used in this paper. The model of the three-phase voltage
source converter (VSC) used in Figure 1 represents a two-level converter consisting of a DC-link and
an inverter, followed by an LC-filter. To simplify matters, the DC link is represented by a constant
voltage source. The inverter is modeled by a self-commutated three-phase bridge that is controlled by
a pulse-width modulation (PWM) signal. The output filter consists of an LC-filter, with the resistance
representing the parasitic resistance of the inductance.

3.1. Design Considerations for the Output Filter

Because of the fast switching inverter, an output filter is required to smooth the AC output
currents. A series inductor fulfills this task. Its value is determined on the basis of the maximum
AC current ripple Al;, that is permissible at the converter output. According to Teodorescu [21] a
corresponding calculation of this value for two-level PWM converters can be carried out by

UpcL
L= P 6
Z’Alrip'fsw ( )

where fs;, is the switching frequency of the PWM generation and Upcy is the DC-link voltage. The
capacitors at the converter output are used to filter the switching frequency harmonics. Figure 1
shows that the capacitor voltage is sensed for the converter control. In this way, the power factor
at the terminals of the converter is reduced because part of the reactive power of the inductors is
compensated for by the capacitors. The desired power factor at the converter output is the basis for
calculating the value of the capacitors. According to Beres et al. [25] this calculation can be carried
out by
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with S, as the nominal apparent power of the converter.

3.2. Model of a Grid-Forming Converter with Active Synthetic Inertia

In order to describe the realization of active synthetic inertia, Figure 1 shows a simplified converter
model of a grid-forming converter and its control.

DC-Link | overter : LC-Filter !
| - : 5 |
: Vo : !
e Lo Ly Ly Ly L :
\ v S Sieof Siesl : ! L1
: o : (TR et
| | ' \ ' L ' L3
. Lo : ERTee .
: upcrL : : I 1 :
I 2 1+ | \ ] I h
: T- D |uLcingg, C—==—/—= |
: v St St St : UN !
: R : !
| V! | | ! N
1 T | T T 1
] 1 \ ! ! |
L e e e e e e == = 1 - o = A = =1 e e e e e e e e e e e e e - == F]
frea |froe |fies measure
Upcr PWM uy,: i
generation
UN, t,ref
cascaded voltage and current
control
/\

US,q14 ref US,dy,ref

power

Pref calculation

Figure 1. Model of a grid-forming converter and its control. The figure also shows relevant voltages
which are marked in blue.

The different components of the control structure are described in the following sections.

3.2.1. Power Calculation

At the output of the converter the instantaneous phase-to-neutral voltages uy; and the
instantaneous phase currents i; are measured. In the “power calculation” these values are used
to calculate the power output by using p = ugj,t -i;. This power is used in the “SI control” to calculate
the reference angle 8 as shown in Figure 2.
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Figure 2. SI control of Figure 1.

The droop share is provided with a rate limiter in order to decouple it from the power output
related to synthetic inertia.

3.2.2. SI Control

Figure 2 is based on Equation (5), which is transformed into the Laplace domain:

1
Tasw = Apwy, + EAw (8)

and integrated to determine the grid angle 6 as follows

1 11

1
6= ;9= 2T, (Pref — p)wn + E(“’n —w) 9

3.2.3. Cascaded Voltage- and Current Control

The grid angle 6, combined with two reference voltages us 4, , ror and us 4 . ror, which represent
the direct/active- and quadrature/reactive-, positive-sequence component of the voltage space vector
us £, are used as input of the “cascaded voltage- and current control”. This cascaded voltage- and
current control is shown in Figure 3.

It consists of the voltage control (lower part in the figure) and the current control (upper part in
the figure), which both use the synchronous reference frame (SRF) to control the direct/active- and
quadrature/reactive- voltage- and current component via PI-controllers. Park-transformations are
used to calculate the voltage space vector ug 4, and the current space vector ig 4, based on the measured
voltages uy ; and the measured currents i;. To decouple the direct/active- and quadrature/reactive
components in the current control the decoupling terms ;-1 have to be taken into account. Across the
LCfilter a voltage drop occurs that can be described by the difference between the voltage u; ¢ ; at the
output of the inverter and the voltage uy ; at the converter output. The voltage drop over the LC-filter
can be calculated by using the normalized inductance !

wy - L
ui
n

| — (10)

with the equation

@ s +isaR — il i&q) an

u =ugg, +j—1 igg, = ) .
LCSdq = Usdq T, B isda (“s,q HisgR+ 0l isa



Energies 2020, 13, 3491 7 of 21

1S,dy 4 ref US,dy

Iy

——Pabc is.dg ., Us,dqiy,ref a0 S
—0 dq0 A4
d g abc
P iS,q14,ref US,q14
US,dy,ref
M’L_Dabc Us,dg1+
[ dq0

US,q1y,ref

Figure 3. Cascaded voltage- and current control of Figure 1 (R of Equation (11) is neglected). In order
to improve clarity, the connection between ug 4, and ug 4, as well as the connection between is 4, , ref
and ig g, s €ach from voltage control to current control are not shown directly but indicated in blue
for the voltages and in red for the currents.

The same applies to the voltage control by using the decoupling terms [-c to take into account
the currents through the capacitors in the LC-filter. The value of these currents can be calculated by
using the normalized capacitance c

w; C
c= (12)
Sn
with the equation
. . W —Ug, Lo
1LCsdg = Usdg "] ;€ = ( " dqﬁ"c ) (13)
A Wy,

The voltage control delivers a reference current space vector ig 4, , s which is used in the current
control. The current control delivers an instantaneous reference voltage vector uy ; .y which is used as
input of the “PWM generation”.

3.2.4. Tuning Considerations

The tuning of the cascaded control structure relies on a decoupled consideration of the voltage-
and the current control which is achieved by tuning the current control much faster (about ten
times) than the voltage control. The tuning then can be performed in a stepwise approach according
to Henninger [26]. In a first step the current control is tuned. By using the decoupling network
shown in Figure 3 the active- and reactive currents can be controlled separately via PI-controllers.
According to Yazdani and Iravani [27] the tuning of these PI-controllers can be carried out as follows.
The PI-controllers are represented by R;(s) in the Laplace domain
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K

Ri(s) = Kip+ == (14)
By neglecting the dynamics of the PWM generation and the inverter, which are considered to act very
fast due to high switching frequency, the plant only consists of the LC-filter. Therefore, the transfer

function of the LC-filter G;(s) can be described by

1
Gi(s) = —=& 15
I( ) 1_‘_3% (15)
resulting in a loop gain Lj(s) of
Ki1
_ _Kip STES
LI(S) = R[(S)G[(S) = ST S+% (16)

Li(s)

5L () has a first-order

By choosing K;p = % and K;; = § the closed-loop transfer function
behavior with a freely selectable time constant T

According to Henninger [26] the voltage controller can be tuned in a second step. The
PI-controllers of the voltage control are represented by Ry;(s) in the Laplace domain

Ku,1
Ry(s) =Kuyp + T (17)

From the point of view of the voltage control, the transfer function of the plant also includes the
transfer function of the current control. Due to the tuning of the current control it can be taken into
account by a simple first-order transfer function. The voltage output of the converter only depends
on the current through the capacitance of the LC-filter. As a consequence, the transfer function of the

plant can be summarized as

1 1
Gio(s) — 1 18
u(s) 1+ 15 sC (18)
This results in a loop gain L (s) of
K 1 1
Lu(s) = Ru(s)Gu(s) = (KU,P + g“) T ossC (19)
1

whose parameters Ky p and Kij j can be tuned by using the symmetrical optimum according to Yazdani

and Iravani [27] with
C |1—sindy
Kup=—/———7—5— 20
wr 7; \ 14 sin®p 20)

Ku/p 1-— Sil’lq)R
T, 1+sin®g

and

Ky, = (21)

where ®p, is the desired phase margin.

3.2.5. PWM Generation

The PWM generation generates the PWM-signals fj11, fi12 and fi13 based on the instantaneous
reference voltage vector UN f e f- These PWM-signals control the switches Sy11, Siro and Syps. The
complementary switches S};,, S}, and S}, 5 are controlled by the PWM-signals f;,, f{;, and fJ; 5.
In order to speed up the simulation, this paper uses an average-model based VSC, which is available
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in MATLAB/SIMULINK [28]. As the reference voltage uy s can be used directly as an input of the
VSC model, an actual representation of the PWM generation is not necessary.

3.3. Model of a Grid-Following Converter with Passive Synthetic Inertia

In order to describe the realization of passive synthetic inertia, Figure 4 shows a simplified
converter model and its control of a grid-following converter.

DC-Link \ ' Inverter | LC-Filter :
L igog |
A B L FSPRK B ' R L :
! | | 1Ly S1L2 STL3 : | L1
| : : , ':l_m ! L2
| v ! T i L3
; upcrL | X : | :
1 2 1+ ! 1 ! ! !
! T- | ! | |uLcing, C == —=—=—= !
: | v S St St ' UIN,¢|!
| ! : | : N

PWM Grid cungt | iy
generation synchronization
AN

UN t,ref ¢ f
Inverter current
control
. A - A
vS,q11,ref
Gref (Reactive power sequence
control Uit analyzer
A

Figure 4. Model of a converter and its control, which is capable of providing passive synthetic inertia.
The figure also shows relevant voltages which are marked in blue.

For the PWM generation the same properties as for Section 3.2.5 apply.

3.3.1. Grid Synchronization and Sequence Analyzer

Compared to a grid-forming converter that generates its own angle 0 in order to build a reference
signal for the PWM generation, a grid-following converter relies on an angle 8 that is determined from
the voltages uy ; measured at the terminals of the converter. The “grid synchronization” accomplishes
this task. The most common structure for grid synchronization is based on the synchronous reference
phase-locked loop (SRF-PLL) which is shown in Figure 5.
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\ Low-pass
Nt Jabe filter
u
"D dqop—>-4 N PID MIntegrator 9 >

Figure 5. Grid synchronization of Figure 4 realized as SRF-PLL.

Via a Park-transformation the voltage vector uy ; is transformed into a voltage space vector in
the dg-plane, whose reactive/quadrature component us ; is controlled via PID-controller in order to
synchronize the output 6 of an integrator with the measured voltage vector uy ;. In the case of an
unsymmetrical voltage vector uy ; or in case it contains harmonics the reactive/quadrature component
us 4 oscillates. In order to provide a frequency measurement by the SRF-PLL, therefore, a filtering
method is necessary. Figure 5 shows a low-pass filter to accomplish this task. The speed and accuracy
of active synthetic inertia depends heavily on the tuning of this low-pass filter.

The “sequence analyzer” shown in Figure 4 determines the normalized positive-sequence
voltage 11+ which is used in the active- and reactive power control to calculate a corresponding
current reference.

3.3.2. Active Power and SI Control

The “active power- and SI control” calculates an active current reference signal i 4, ref in the
positive-sequence system. Figure 6 shows the structure of how this task can be accomplished.

U1+

/
Dref 1S,dy s ref
>
f D % . % + > .
— >
+ —/
It

Figure 6. Active power and SI control of Figure 4.

The basic structure of the converter model has already been described in Section 3 and consists of
a simplified DC-Link and an inverter, followed by an output filter. Based on Equation (4) the passive
synthetic inertia is implemented by using the measured frequency of the grid synchronization

Ay = TaSh L+ e (1= F) 22)

df .

The derivative ; in this equation which is also shown in Figure 6 reacts very sensitive to changes
of the frequency. Therefore, an appropriate filtering method has to be implemented. A possible way
to do so is discussed in more detail in Section 4.1. As shown in Figure 6 the droop share is provided
with a rate limiter in order to decouple it from the power output related to synthetic inertia. Besides
this power reference signal Ap, which is only different to zero when frequency gradients occur, the
steady-state power reference signal p,r is added. In order to take into account the voltage u;, this
reference power is divided by u7 . in order to guarantee a corresponding current reference is 4, ser in
steady-state.
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3.3.3. Reactive Power Control

The “reactive power control” provides a current reference signal is ;, . ,.¢ in the positive-sequence
system by calculating

qref
Ury

iS,qH,ref = (23)

3.3.4. Inverter Current Control

The “inverter current control” uses the current reference signals is 4, r.r and is g, rer, which
are components of the current space vector in the dg-plane, the grid angle 8 provided by the grid
synchronization, the measured voltage vector uy  and the current vector i; in order to determine a
voltage reference vector uy 1 ¢ for the PWM generation. The control structure of the current control is
shown in Figure 7 and basically has the same structure as the current control of the cascaded voltage-
and current control shown in Figure 3, which is also based on a synchronous reference frame.

iS,dy 4 ref US,dyy
u
—N?t—DabC uS,dq1+
—>
6 dqo
i
. L e is’qu Us,dq, 4 ,ref 0 UNfref
—D0" dqo -
0 abc

US,quiy,ref Us,q14

Figure 7. Inverter current control of Figure 4. In order to improve clarity, the connection between ug 4,
and ug 4, are not shown directly but indicated in blue.

It uses the angle 6 for Park-transformations of the voltage vector uy  and the current vector i;.
The current components are controlled via PI-controllers each. By using the decoupling terms ;-1 each
component can be controlled separately. Before generating the reference voltage vector uy 4. by an
inverse Park-transformation, the voltage components in the dg-plane are added to the output of the
PI-controller.

3.3.5. Tuning Considerations

In order to tune the PI-controllers of Figure 7 the same considerations as already mentioned
for the current controller in Section 3.2.3 can be applied. This leads to a choice of parameters of the
R

corresponding Pl-controllers of K;p = % and Kj; = .

4. Simulation

Basically, all converter-based technologies are capable of providing synthetic inertia by using one
of the control strategies presented above. However, technologies based on renewable energy sources
may have trouble providing the necessary power response at any given time. For example, there are
wind turbines that are already commercially available today, which are capable of providing synthetic
inertia [29-31]. One approach used in wind turbines to generate an inertial response is to temporarily
increase the active power output based on the energy of the rotating masses. In response to a drop in
grid frequency they temporarily increase their active power even beyond the available power from the
wind by drawing energy from the rotating masses of the generator, the shaft and the blades. But at
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low wind speeds, the available energy in the rotating masses may be too low to provide a noteworthy
amount of synthetic inertia, or the rotor may even stand still, which makes it impossible to provide
inertial response. Assuming that synthetic inertia plays a key role regarding frequency stability in a
future energy system, a certain percentage of technologies providing such a service may be required
to deliver synthetic inertia at any time. Aside from technologies based on renewable energy sources,
battery energy storage systems can meet such a requirement. Furthermore, battery energy storage
systems are considered to be very well-suited to deliver such kind of highly dynamic system service
and are also considered to replace conventional generators, which provide frequency reserves, to some
extent in a future energy system [32]. Therefore, the following simulations consider battery converter
systems for parametrization of the simulation models.

Section 4.1 describes the simulation set-up, Section 4.2 presents relevant simulation results and
Section 4.3 discusses the results.

4.1. Simulation Set-Up

Figure 8 shows a small Microgrid by which the behavior of the two converter models presented
above is investigated. The Microgrid consists of a converter, a line, a load and a synchronous generator.
Via electromagnetic transient (EMT) simulations in MATLAB/SIMULINK, the performance of the active-
and passive synthetic inertia approaches in reaction to load-steps is investigated and compared.

synchronous
converter SS1 550V SS2 550V generator

,_||I|T,__H y I line H @

load

Figure 8. Microgrid used for the simulations.

The parameters used in the simulation are summarized in Table 1. As already mentioned, the
converter parameters are based on a converter that is used in a battery energy storage system which is
described in more detail in [33]. For the synchronous generator, a MATLAB/SIMULINK-internal pre-set
model is used [28]. As governor for the synchronous generator the MATLAB/SIMULINK-internal “SM
Governor with Droop” is used, where a time constant 75;s ¢ and a droop ¢ are used that are listed in
Table 1. As automatic voltage regulator of the synchronous generator the MATLAB/SIMULINK-internal
model “ST1A Excitation system” with pre-set parameters is used. The constant impedance load is
configured as a base load with 465 kW that is distributed between converter and generators with a
reference power of the converter of 0.1 pu and a reference power of the generator of 0.4 pu.

First-order filter elements with a time constant of 1s are used to implement the rate limiter in the
control structures shown in Figure 2 and Figure 6. As already mentioned above, the realization of
passive synthetic inertia requires several other filter elements. One of such filter elements is needed for
the grid synchronization shown in Figure 5. The frequency output of the SRF-PLL shown in Figure 5
requires an output filter in order to filter asymmetry of the input voltage uy; or harmonics in this
input voltage. In the following simulations, this filter is realized as a second-order filter with a cut-off
frequency of 10 Hz. Another filter element is necessary in the active power and SI control shown in
Figure 6. The use of a numerical derivative without filtering might be very sensitive to the dynamics of
the entire model during simulation. But also in case of the implementation in a real converter system
such a filtering method may be necessary. The frequency in real converter systems is usually measured
in discrete time steps. The corresponding numerical calculation of the derivative might be sensitive to
measurement errors. An appropriate filtering method can be applied to smooth the corresponding
output of this calculation. For the following simulations, the filter element in Figure 6 is modeled as a
first-order filtered-derivative with a time constant of 50 ms.
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4.2. Results

An active power load-step in the Microgrid is the simplest way to compare the behavior of the
two presented control strategies of synthetic inertia. Therefore, Section 4.2.1 presents the simulation
results of a single active power load-step in more detail. Building on that, a sensitivity analysis for
different values of this active power load-step is performed. This sensitivity analysis also investigates
the influence of the starting time constant T4 for both control strategies. Section 4.2.2 presents the
results of this sensitivity analysis.

4.2.1. Simulation of a Single Load-Step for Both Models

In order to investigate the reaction to a load-step, the power of the load shown in Figure 8 is
increased by 500 kW, which leads to a maximum power output of the converter if the starting time
constant of T4 = 10s listed in Table 1 is taken into account.

Table 1. Parameters used in the simulation.

Converter Generator Line
Parameter Value Parameter Value Parameter Value
u, 550V u, 550V R 0.01Q2
Sy 650 kVA Su 1MVA L 0.1mH
Upcr, 900V
L 260 uH
R 1mQO)

C 342 pF

T 0.1ms TSM,G 5s
K],p 2.6 pu

Ky,1 10pu

dr 60°

Ku,p 0.916 pu

Ku/[ 658 pu

o ﬁ pu o 11W pu
Ta 10s Ty 0.8s

The simulation results of such a load-step at 5s are shown in Figure 9. The figure compares the
behavior of the active synthetic inertia ((a) and (b)) and the passive synthetic inertia ((c) and (d)).
It shows the frequency of the generator fsys and the converter f in (a) and (c), and the normalized
power output of the generator pgsy; and the converter pc in (b) and (d). Figure 9e shows a comparison
of the power outputs pc of active- and passive synthetic inertia. For both variants identical parameters
according to Table 1 are applied.

The comparison of both simulation results shows a significantly improved frequency stability in
case of active synthetic inertia leading to a frequency nadir (minimum frequency) of 49 Hz, compared
to a frequency nadir of 48 Hz in case of passive synthetic inertia. A zoomed area of the relevant time
range of the power output in Figure 9 shows a noticeable delay of passive synthetic inertia compared
to active synthetic inertia. This delay results from the filtering methods used in the SRF-PLL and the
derivative of passive synthetic inertia. Both, the second-order low-pass filter, whose influence can be
seen in the delayed frequency output shown in Figure 9¢, as well as the first-order filtered-derivative
contribute to this delay and cause the power output of passive synthetic inertia not to reach the full
power output of 1 pu as it is the case with active synthetic inertia. Comparing the time of occurrence of
the frequency nadir in Figure 9c with the peak power output of passive synthetic inertia in Figure 9d
shows that the peak power occurs after the frequency nadir. For active synthetic inertia on the other
hand such a comparison in Figure 9a,b shows that the first local frequency nadir occurs about at the
same time as the peak power output of active synthetic inertia.
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Figure 9. Simulation results of a load-step in the Microgrid shown in Figure 8 in case active synthetic
inertia is used in (a,b) and passive synthetic inertia is used in (c,d). (a,c) each show the frequency of the
synchronous machine fgy and the converter f, (c,d) each show the normalized power output of the
synchronous machine pgy and the converter pc. (e) compares the converter power outputs for active-
and passive synthetic inertia where the relevant time range is zoomed out in an additional subfigure.

The frequency nadir is significantly influenced by the Rate of Change of Frequency (RoCoF) at
the beginning of the load-step. The faster the reaction of synthetic inertia, the faster this RoCoF at
the beginning of the load-step can be limited and the less pronounced the frequency nadir becomes.
Therefore, the delayed reaction of passive synthetic inertia leads to a lower frequency nadir than in
case of active synthetic inertia. Of course, it is theoretically possible to minimize the delays due to the
PLL and the derivative computation, but at the cost of increasing the sensitivity of the system towards
noise, faults and other fast transients.

4.2.2. Sensitivity Analysis

In order to investigate the behavior of active- and passive synthetic inertia in dependence of
the size of the load-step and the starting time constant of the converter, a sensitivity analysis is
performed. The active power value of the load-step is varied with values of the set {50, 100, 200, 300,
400, 500} kW and the starting time constant is varied with values of the set {1, 2, 3,4, 5,6, 7, 8, 9} s
for both models. Figure 10 shows the outcome of this sensitivity analysis. It displays the frequency
nadir of the synchronous generator as a consequence of the corresponding load-step. A starting time
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constant of T4 = 0s means that synthetic inertia is inactive and the synchronous generator is the only
equipment in the Microgrid that dynamically stabilizes the frequency.

0 (a) active synthetic inertia

fo3 Lo XX RE
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Figure 10. Comparison of frequency nadir for the sensitivity analysis of active- and passive synthetic
inertia with varying starting time constants T4 of the converter and different load-steps.

As already shown in Figure 9 and described above, passive synthetic inertia is less effective in
improving frequency stability as a consequence of the filtering techniques that are necessary to be
implemented in the converter control. This can also be seen in Figure 10, which shows that compared
to T4 = 0s, where only the synchronous generator stabilizes the Microgrid, already a small starting
time constant of T4 = 1s massively helps to reduce the frequency drop in case of active synthetic
inertia, whereas passive synthetic inertia has much less effect on the frequency nadir. During very
small load-steps, the effectiveness between the two strategies is hardly visible, but becomes clearly
visible with growing values of the load-step. Especially for small values of the starting time constant
T4, the effectiveness of active synthetic inertia is much higher compared to passive synthetic inertia.
With increasing value of the starting time constant, a saturation effect becomes visible for both control
strategies. This saturation effect can be argued with a limited power gradient of both control strategies.
As already described in Section 4.2.1 for passive synthetic inertia, situations may occur when the
RoCoF at the beginning of the load-step is so high that the time which is necessary to reach a certain
amount of power output inherently leads to a certain frequency nadir, regardless of the value of the
starting time constant. This is due to the limited maximum power gradient of the converter and
its control.

The impact of the two control strategies on the RoCoF can be seen more clearly in Figure 11.
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Figure 11. Comparison of the RoCoF over the frequency nadir for the sensitivity analysis of active-
and passive synthetic inertia with varying starting time constants T of the converter and different
load-steps. The small points in the lines indicate the discrete values of the starting time constant which
increases from left to right. The RoCoF is normalized to a value of 30 Hzs~!. The high RoCoF values
result from the relatively low inertia constant of the synchronous machine.

Figure 11 shows the RoCoF over the frequency nadir for all results of the sensitivity analysis.
The starting time constant of T4 = 0s indicates the inactivity of synthetic inertia and is the starting
point for the lines which represent the increasing value of T4, whose course continuously runs from
the left to the right. While the RoCoF in case of using active synthetic inertia reaches its lowest value
already at the lowest value of the starting time constant T4 = 1s, the RoCoF in case of using passive
synthetic inertia continuously decreases with an increasing value of the starting time constant.

4.3. Discussion

Figures 9-11 show that both strategies to realize synthetic inertia are capable of improving
frequency stability during power deviations. The positive effect of synthetic inertia on frequency
stability has already been proven in several other studies [34,35]. The simulations above confirm
these findings. In particular, the use of grid-forming converters and their positive effect on frequency
stability has been shown already [20]. The simulations performed in this paper allow to compare the
effectiveness of the approaches of passive- and active synthetic inertia. With increasing starting time
constant, the effect of passive synthetic inertia increases, while the effect of active synthetic inertia is
already saturated at small values of the starting time constant. Figure 11 shows that the reason lies in
the influence of synthetic inertia on the RoCoF. In case of active synthetic inertia, the minimum of the
RoCoF is reached already at very small values of the starting time constant, whereas in case of passive
synthetic inertia the RoCoF continuously decreases further with increasing value of the starting time
constant. Therefore, the inevitable delay due to filtering methods in case of passive synthetic inertia
can be compensated somewhat by choosing a higher starting time constant. A direct comparison of
a grid-following and a grid-forming approach has also been carried out in [36]. The results in [36]
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show a larger variance of the frequency nadir in case of the grid-following approach, which can be
confirmed by the simulation results generated in this paper. The finding of a higher necessary starting
time constant in case of passive synthetic inertia in order to reach similar frequency metrics compared
to active synthetic inertia resembles the statement in [36] of a necessary higher peak power injection of
grid-following converters to reach similar frequency metrics compared to grid-forming converters.

In order to ensure a flawless operation of the loads connected to a grid, certain requirements
regarding power quality have to be met. One of these requirements are frequency limits within which
a grid has to be operated. According to relevant power quality standards [37], even in island operation
the frequency has to be kept within certain limits. The lower value for this frequency limits during
island operation is 49 Hz [37]. Keeping in mind this requirement, Figure 10 shows that by using
active synthetic inertia, load-steps of up to 500 kW are possible while still remaining in the allowable
frequency range. By using passive synthetic inertia, on the other hand, Figure 10 shows that only a
maximum load-step of 300 kW would be possible.

5. Conclusions

This paper compares two possible strategies to realize synthetic inertia in converters. The first
strategy is based on a converter control that provides grid-forming character, while the second strategy
relies on the measurement of the frequency in the grid and the determination of a corresponding power
reference for a conventional grid-following converter control based on this frequency measurement.
According to their implementation the first strategy is called “active synthetic inertia” and the second
is called “passive synthetic inertia” in this paper. For both strategies a simplified converter model and
converter controls corresponding to each strategy are created in MATLAB/SIMULINK. These models
are used in a small Microgrid, consisting of a converter, a line and a synchronous generator with a load
to investigate the behavior of the two strategies in case of a load-step in the Microgrid by simulation.
A sensitivity analysis is performed where the starting time constant and the power of the load-step
are varied in order to compare the influence of the two strategies on the frequency in the Microgrid.
The results show that both strategies are useful for improving frequency stability, but active synthetic
inertia is much more effective than passive synthetic inertia. As the implementation of active synthetic
inertia requires a complex control structure it may not be possible to implement it in existing converter
systems. Passive synthetic inertia on the other hand relies on the determination of a reference power,
which is much easier to retrofit in existing converter systems. Both realizations of synthetic inertia
therefore may be required to guarantee frequency stability in a future power system with reduced
conventional system inertia. One future research goal is the implementation of the presented synthetic
inertia control strategies in real converter systems. Another research goal is the investigation of a
large-scale application of the presented synthetic inertia control strategies in the ENTSO-E regional
group Continental Europe [38]. Assuming decreasing system inertia caused by a smaller number of
conventional generators, the effects of varying shares of converter systems equipped with synthetic
inertia control strategies on the frequency stability will be examined.
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normalized instantaneous current vector

instantaneous value of the current in phase L1

instantaneous value of the current in phase L2

instantaneous value of the current in phase L3

current space vector in the a-plane

current space vector in the dg-plane

reference value of the direct/active, positive-sequence component of the normalized current
space vector

reference value of the quadrature/reactive, positive-sequence component of the normalized
current space vector

direct/active, positive-sequence component of the normalized current output space vector
quadrature/reactive, positive-sequence component of the normalized current output space
vector

quadrature/reactive, positive-sequence component of the normalized current output space
vector

phase-to-phase root-mean-square voltage vector

nominal phase-to-phase voltage

normalized phase-to-phase root-mean-square voltage vector

normalized phase-to-phase root-mean-square voltage between L1-L2

normalized phase-to-phase root-mean-square voltage between L2-L3

normalized phase-to-phase root-mean-square voltage between L3-L1

normalized phase-to-neutral instantaneous voltage vector

normalized phase-to-neutral instantaneous reference voltage vector

normalized phase-to-neutral instantaneous voltage in L1

normalized phase-to-neutral instantaneous voltage in L2

normalized phase-to-neutral instantaneous voltage in L3

normalized voltage space vector in the dg-plane

direct/active, positive-sequence component of the normalized voltage output space vector
quadrature/reactive, positive-sequence component of the normalized voltage output space
vector

reference value of the direct/active, positive-sequence component of the normalized voltage
output space vector

reference value of the quadrature/reactive, positive-sequence component of the normalized
voltage output space vector

complex value of the normalized positive-sequence voltage

magnitude of the normalized positive-sequence voltage

angle of the normalized positive-sequence voltage

DC-link voltage

instantaneous phase-to-neutral voltage in L1 at the inverter output

instantaneous phase-to-neutral voltage in L2 at the inverter output

instantaneous phase-to-neutral voltage in L3 at the inverter output

normalized voltage space vector at the inverter output in the dg-plane

mechanical power

electrical power

normalized active power output of the converter

normalized reactive power output of the converter

reference value of the active power

reference value of the reactive power

angular frequency

nominal angular frequency

inductance of the LC filter

normalized inductance of the LC filter

resistance of the LC filter

capacitance of the LC filter



Energies 2020, 13, 3491 19 of 21

c normalized capacitance of the LC filter

T time constant of the current control loop

Kip proportional controller gain of the current control loop
K integral controller gain of the current control loop
Kup proportional controller gain of the voltage control loop
Ku 1 integral controller gain of the voltage control loop
fsw switching frequency of the switching control

ALy maximum current ripple at the converter output

Sn nominal apparent power of the converter

H inertia constant

TSM,G time constant of generator governor

Ty starting time constant

o droop

] rotation inertia

M electrical torque

My, mechanical torque

dr phase margin

Ri(s) transfer function of the current controller

Gi(s) process transfer function of the current control loop
Li(s) loop gain of the current control loop

Ry (s) transfer function of the voltage controller

Gul(s) process transfer function of the voltage control loop
Ly (s) loop gain of the voltage control loop

fir1 switching signal for the switch Sy

fir2 switching signal for the switch Sz,

fiL3 switching signal for the switch Sy 3

fir1 switching signal for the switch S,

flio switching signal for the switch S/,

fis switching signal for the switch S} 5
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