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Abstract: Fault diagnosis techniques can be classified into passive and active types. Passive approaches
only utilize the original input and output signals of the system. Because of the small amplitudes,
the characteristics of incipient faults are not fully represented in the data of the system, so it is
difficult to detect incipient faults by passive fault diagnosis techniques. In contrast, active methods can
design auxiliary signals for specific faults and inject them into the system to improve fault diagnosis
performance. Therefore, active fault diagnosis techniques are utilized in this article to detect and
isolate incipient faults based on the fault structure. A new framework based on observer approach
for active fault diagnosis is proposed and the geometric approach based fault diagnosis observer is
introduced to active fault diagnosis for the first time. Based on the dynamic equations of residuals,
auxiliary signals are designed to enhance the diagnosis performance for incipient faults that have
specific structures. In addition, the requirements that auxiliary signals need to meet are discussed.
The proposed method can realize the seamless combination of active fault diagnosis and passive fault
diagnosis. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed
approach, and it is indicated that the proposed method significantly improves the accuracy of the
diagnosis for incipient faults.

Keywords: active fault diagnosis; geometric approach; auxiliary input; fault structure; incipient
faults

1. Introduction

With the progress of science and technology, modern industrial systems have become more and
more complex, and that leads to higher security risks. Many serious faults are evolved from incipient
faults. If faults can be detected as early as possible, measures can be taken to avoid the propagation of
faults and avoid the occurrence of vicious accidents, and huge economic and social benefits will be
produced. Fault diagnosis techniques, which can judge whether a fault occurs and identify the type
and size of the fault, are important means to improve system safety and reliability [1–4]. In the past
few decades, extensive research on fault diagnosis techniques has been made and a series of research
results has been published in this area [5–9].

Fault diagnosis techniques can be divided into passive and active types [10]. Passive fault diagnosis
(PFD) approaches only utilize the original input and output signals of the system, and, when the fault
characteristics are not fully represented in the data, the diagnosis performance is not good. For example,
due to the existence of system noise or uncertainty, system changes caused by incipient faults with small
amplitudes are indistinguishable from system changes caused by system noise or uncertainty. In addition,
the feedback controller in closed-loop system will cover up or compensate the system abnormality caused
by fault to a certain extent, which will lead to the poor performance of passive fault diagnosis. In contrast
to PFD, active fault diagnosis (AFD) will actively design auxiliary signals according to the fault modes
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and inject them into systems to excite fault characteristics and improve diagnostic performance [1].
Therefore, active fault diagnosis techniques are utilized in this article to detect and isolate incipient faults.

According to the author’s knowledge, active fault diagnosis framework was first proposed by
Zhang et al. [11] in 1988. Subsequently, some scholars carried out research on active fault diagnosis
techniques and achieved some results [12]. The Youla–Jabr–Bongiorno–Kucera (YJBK) parameter was
employed to build the AFD for incipient faults in [13]. Marseglia et al. [14] considered the design of an
input signal required to detect and isolate faults by solving a Mixed Integer Quadratic Program (MIQP).
Lin et al. [15] studied active online diagnosis in discrete event systems. Nikoukhah et al. [16] proposed
a method to design an auxiliary signal for active failure detection in uncertain linear systems based on
the assumption that system noise is bounded. Wang et al. [17] assumed that the disturbance is bounded
and proposed an active mechanism to detect multiple modes of operation. Heirung et al. [18] employed
the Kolmogorov metric to distinguish a set of system models subject to stochastic disturbances.
Blackmore et al. [19] developed an active estimation method for jump Markov linear systems.

As far as the author knows, the number of research results on the application of observer
method in active fault diagnosis is limited. Only a few results have been published. Yang et al. [20]
designed appropriate auxiliary signals to make the residuals more sensitive to faults and improve the
performance of fault diagnosis. Blanchini et al. [21] combined the residual generator with the set-based
active fault diagnosis method. By designing a proper residual generator, the residuals generated by
different models were restricted to different sets. Scott et al. [22] utilized zonotopes to characterize the
set of inputs that were used for active fault diagnosis, and an observer-based method was given for
reducing the complexity of this program. Based on zonotopes, a new class of sets called constrained
zonotopes was introduced to contain interest sets for estimation and control [23]. Using constrained
zonotopes, Raimondo et al. [24] proposed a set-valued observer to achieve rigorous closed-loop active
fault diagnosis in a moving horizon framework. The observer method is widely used in passive fault
diagnosis, and it is a possible way to realize the combination of active fault diagnosis and passive
fault diagnosis. This is another motivation of our work and we want to discuss the application of an
observer method in active fault diagnosis.

There are many kinds of observers that can be used for system fault diagnosis, such as
Luenberger observer, sliding mode observer, geometric observer, and some hybrid algorithms [25,26].
The geometric observer, which is proposed by Massoumnia et al. [27], has the characteristic that the
observer output is only affected by one fault and is robust to all other faults. This feature makes
it perform fault detection and fault isolation simultaneously. Thanks to its excellent properties, the
geometric observer has been generalized to solve the fault detection and isolation problems for many
systems, such as bilinear systems, Markov jump systems, periodic systems, linear parameter-varying
systems, and so on [28–31]. However, to the best of the author’s knowledge, there have been no results
of introducing it into active fault diagnosis.

In this paper, the fault diagnosis observer based on a geometric approach is introduced into
active fault diagnosis for linear systems for the first time and the contributions of this paper can be
summarized as follows:

1. A new framework of the fault-structure-based active fault diagnosis is proposed, and the geometric
observer is introduced to active fault diagnosis. Using the geometric observer, active fault detection
and isolation can be realized simultaneously.

2. The requirements of the auxiliary signals are given, and the corresponding auxiliary signals are
designed to detect incipient faults. The amplitudes of the designed auxiliary signals are very
small and therefore they have little effect on the system performance.

3. This proposed method can realize the combination of active fault diagnosis and passive fault
diagnosis. For incipient faults, auxiliary signals are designed to carry out active fault diagnosis.
For significant faults, passive fault diagnosis can be directly carried out without modifying
the observer.
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The rest of the paper is outlined as follows. The framework of fault-structure-based active fault
diagnosis using geometric observer is proposed in Section 2. In Section 3.1, the design process of fault
diagnosis observer based on geometric approach is detailed. According to the dynamic equation of
residual, the appropriate auxiliary signals are designed in Section 3.2 and the corresponding evaluation
functions are given in Section 3.3. The effectiveness of the proposed approach is verified through
numerical simulations in Section 4. Finally, this paper is concluded with some conclusions.

2. Problem Formulation

In this section, the AFD problem for the linear time-invariant (LTI) systems based on fault
structure is defined. The framework of the approach is shown in Figure 1, assuming that the system is
in operation and there are original inputs uk. As can be seen, observer methods are introduced into
active fault diagnosis and a set of special auxiliary signals ak are designed to assist in the diagnosis
of faults with specific structures. The designed auxiliary signals can enhance the performance of
faults in the residuals and improve the diagnosis performance for incipient faults. According to the
classification of auxiliary signals in [1], the designed auxiliary signals are system-friendly. It is worth
noting that the observer only uses the original input of the system (the set input in the open-loop
system or the input calculated from the controller in the closed-loop system) and the system output
data, and does not directly use the designed auxiliary signals.

Active Fault Diagnosis
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Figure 1. Framework of the fault-structure-based active fault diagnosis.

Consider the following nm linear time-invariant systems:

xk+1 = A[i]xk + B[i]uk + B[i]
a a[i]k + B[i]

d dk

yk = C[i]xk + D[i]
d dk

(1)

where xk ∈ X is the state of the system with dimension nx, yk ∈ Y is the output of the system with
dimension ny, uk ∈ U is the input of the system with dimension nu, and dk denotes the unknown

disturbance with bounded power or energy. In particular, a[i]k is the designed auxiliary signal for fault

mode i. The output matrices C[i] are right invertible, and system matrices A[i], B[i], C[i], B[i]
a , B[i]

d , D[i]
d are

known constant matrices with appropriate dimensions. The index i ∈ I = {0, 1, . . . , nm − 1} represents
the i-th model. Let i = 0 represent the nominal model without fault and the rests represent different
fault modes. In addition, the following assumptions are given.

Assumption 1. This paper only considers the system parameter faults and actuator faults that are represented
by A[i] and B[i] respectively. Thus, it is hypothesized that C[0] = C[1] = · · · = C[nm−1], B[0]

d = B[1]
d = · · · =

B[nm−1]
d and D[0]

d = D[1]
d = · · · = D[nm−1]

d .



Energies 2020, 13, 4475 4 of 17

Assumption 2. The auxiliary signal is injected into the input directly, the matrix B[i]
a is the same as B[i].

Assumption 3. Assume that each fault model represents only one fault mode and the fault is time-invariant.

In view of the two different fault types, the processing procedures are given as follows.
Case I: Suppose that the system parameter fault causes the system matrix to change from A[0]

to A[i]. According to Assumption 3, we have B[i] = B[0] in this case. Defining Â[i] := A[i] − A[0], it is
easy that

xk+1 = (A[0] + Â[i])xk + B[i]uk + B[i]
a a[i]k + B[i]

d dk

= A[0]xk + B[0]uk + B[i]
a a[i]k + B[0]

d dk + Â[i]xk

(2)

It is assumed that the fault only affects a certain column of matrix A[0], not the entire matrix.
In other words, Â[i]xk can be expressed as L[i]m[i]

k , where L[i] is a column vector used to represent the

fault signature and m[i]
k indicates the fault signal that related to state xk.

Case II: In the case of actuator fault, system input matrix changes from B[0] to B[i]. Define
B̂[i] := B[i] − B[0]. Similar to Case I, we have A[i] = A[0] and

xk+1 = A[i]xk + (B[0] + B̂[i])uk + B[i]
a a[i]k + B[i]

d dk

= A[0]xk + B[0]uk + B[i]
a a[i]k + B[0]

d dk + B̂[i]uk

(3)

According to the hypothesis, B̂[i]uk can also be rewritten as L[i]m[i]
k , where L[i] is also a column

vector used to represent the fault signature and m[i]
k indicates the fault signal that related to input uk.

Combining the above two cases, the i-th, i = 1, . . . , nm − 1 fault model can be reconstructed as

xk+1 = A[0]xk + B[0]uk + L[i]m[i]
k + B[i]

a a[i]k + B[0]
d dk

yk = C[0]xk + D[0]
d dk

(4)

For i = 0, let L[0] = 0nx×1.
It is time for us to put forward the problem of fault-structure-based active fault diagnosis for LTI

systems. For each fault mode i, an observer and an auxiliary signal a[i]k are designed to enhance the

performance of the fault L[i]m[i]
k in the observer output, and then carry out fault detection and isolation.

The observer and auxiliary signal are designed according to the fault structure L[i].

3. Main Results

In this section, the proposed method is introduced in detail.

3.1. Geometric Observer Design

In this paper, the geometric observer proposed by Massoumnia in [27] is adopted as the
structure-enhanced observer. For fault mode i, the observer is designed as follows:

z[i]k+1 = F[i]z[i]k − E[i]yk + G[i]uk

r[i]k = M[i]z[i]k − H[i]yk

(5)

where z[i]k is the observer state and r[i]k is the observer output serving as residual signal. F[i], E[i], G[i],
M[i], and H[i] are observer parameters that need to be designed. It is worth noting that the observer
only uses the original input uk and the system output data yk, and does not directly use the designed
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auxiliary signal a[i]k . For the purpose of fault isolation, it is expected that the residual r[i]k is only affected
by fault mode i and the corresponding auxiliary signal, but not by other fault modes. That is to say,

m[i]
k 7→ r[i]k is input observable

m[j]
k 7→ r[i]k = 0, ∀j 6= i

(6)

On the observers that satisfy condition (6), we have the following lemma.

Lemma 1. A set of structure-enhanced observers (5) that satisfy condition (6) exists if

L[i] ∩ S [i]∗ = 0, i ∈ {1, . . . , nm − 1} (7)

where L[i] = span(L[i]) is the range of L[i] and S [i]∗ = infS(∑j 6=i L[j]). S(L) denotes the group of all
(C, A)-unobservability subspaces containing L, and for the concept of (C, A)-unobservability subspaces, please
refer to [27].

Proof of Lemma 1. This lemma can be directly generalized from theorem 4 in reference [27], and the
proof is omitted here.

Using the geometric method, the observer parameter matrices can be calculated according to the
following steps:

1. For fault mode i, calculate the unobservability subspaces S [i]∗;
2. Find matrix D[i]

0 satisfying (A[0] + D[i]
0 C[0])S [i]∗ ⊂ S [i]∗;

3. Calculate the canonical projection P[i] : X → X/S [i]∗;
4. Let A[i]

0 denote the map induced by A[0] + D[i]
0 C[0] on the factor space X/S [i]∗;

5. Calculate matrix H[i] satisfying ker H[i]C[0] = S [i]∗ + ker C[0];
6. According to the equation M[i]P[i] = H[i]C[0], we get M[i];
7. Let F[i] = A[i]

0 + D[i]
1 M[i]. By designing appropriate D[i]

1 , the spectrum of F[i] can be configured,
or disturbance suppression can be performed;

8. Let E[i] = P[i]D[i]
0 + D[i]

1 H[i] and G[i] = P[i]B[0].

At this point, all parameter matrices of the observer have been obtained. Define e[i]k = z[i]k − P[i]xk,
then it follows that

e[i]k+1 =F[i]z[i]k − E[i]yk + G[i]uk − P[i]
(

A[0]xk + B[0]uk + L[i]m[i]
k + B[i]

a a[i]k + B[0]
d dk

)
=F[i]z[i]k −

(
P[i]D[i]

0 + D[i]
1 H[i]

) (
C[0]xk + D[0]

d dk

)
− P[i]A[0]xk − P[i]L[i]m[i]

k

− P[i]B[i]
a a[i]k − P[i]B[0]

d dk

=F[i]z[i]k − A[i]
0 P[i]xk − D[i]

1 M[i]P[i]xk −
(

P[i]D[i]
0 D[0]

d + D[i]
1 H[i]D[0]

d + P[i]B[0]
d

)
dk

− P[i]L[i]m[i]
k − P[i]B[i]

a a[i]k

=F[i]e[i]k −
(

P[i]D[i]
0 D[0]

d + D[i]
1 H[i]D[0]

d + P[i]B[0]
d

)
dk − P[i]

(
L[i]m[i]

k + B[i]
a a[i]k

)
r[i]k =M[i]z[i]k − H[i]

(
C[0]xk + D[0]

d dk

)
=M[i]z[i]k −M[i]P[i]xk − H[i]D[0]

d dk

=M[i]e[i]k − H[i]D[0]
d dk

(8)

Remark 1. According to lemma 1 and the design steps of the observer, it is obvious that P[i]L[j] = 0, j 6= i.
Thus, r[i]k is only sensitive to fault mode i and robust to other fault modes. This is why we call the observer the
fault-structure-based observer or structure-enhanced observer.
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Remark 2. For system disturbance dk, H∞ technique or other appropriate methods can be used to design
observer matrices and suppress the influence of disturbance signal on residual [32].

3.2. Auxiliary Input Design

In this section, the problem about how to design auxiliary signals to enhance the performance
of fault features in residuals is introduced. It can be seen from Equation (8) that, in addition to the
disturbance, the observer output is jointly affected by fault signal L[i]m[i]

k and the auxiliary signal

B[i]
a a[i]k . It is natural to think whether we can design a suitable auxiliary signal in the same direction as

L[i] to enhance the fault performance. Auxiliary signals shall meet the following requirements:

1. B[i]
a a[i]k should be in the same direction as L[i].

2. B[i]
a a[i]k should not be too large, mainly for the following two reasons. First, during system

operation, a[i]k cannot seriously affect system performance. Second, a[i]k cannot completely cover

the fault signal L[i]m[i]
k to prevent inability to distinguish whether a fault occurs.

3. B[i]
a a[i]k cannot be too small to enhance fault characteristics.

4. The auxiliary signal a[i]k should be actually generatable, and the signal form should be as simple
as possible, such as constant signal or piecewise constant signal.

According to Equation (8), auxiliary signal a[i]k should meet B[i]
a a[i]k = αL[i]m[i]

k , α 6= 0. Select an
appropriate α, auxiliary signal that meets the conditions that can be designed. Next, some analysis is
conducted about the fault-structure-based active fault diagnosis method proposed in this paper and
some discussions are presented.

Remark 3. Based on the geometric observer, the method in this paper can only carry out active fault diagnosis
for the faults that B[i]

a a[i]k = αL[i]m[i]
k , α 6= 0 is solvable. In practical applications, this condition can be relaxed

as ‖B[i]
a a[i]k − αL[i]m[i]

k ‖ < ε, α 6= 0, ε > 0, where ε > 0 is a human-selected threshold, measuring the degree of
direction mismatch.

Remark 4. Auxiliary signal a[i]k is related to the fault condition of the actuator and needs to be designed

according to the input matrix B[i]
a of the faulty system.

Remark 5. The proposed method can only diagnose whether a fault has occurred in a certain fault direction L[i],
and cannot distinguish the specific fault types. If the fault directions of two faults are the same, they cannot be
distinguished unless the other characteristics such as the amplitude of the two faults are significantly different.

Remark 6. The selection of α should be appropriate. If it is too small, the enhancement effect is not obvious. If it
is too large, the characteristics of fault itself will be covered. Both of the two cases will lead to the fault failing to
be diagnosed.

Remark 7. The fault diagnosis framework proposed in this paper can seamlessly integrate passive fault diagnosis
with active fault diagnosis. For small faults, auxiliary signals are designed and injected into the system to
enhance the performance of faults in residuals, and active fault diagnosis is performed. For significant faults,
there is no need to design auxiliary signals, and the designed geometric observer can effectively perform passive
fault diagnosis.

3.3. Residual Evaluation

According to Remark 1, r[i]k is only affected by fault L[i]m[i]
k and has successfully been decoupled

from all other faults L[j]m[j]
k , j 6= i. Accordingly, fault detection and fault isolation can be completed at

the same time.
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In this section, the following residual evaluation function is chosen:

J[i]k =

(
1
Tr

k

∑
k−Tr

r[i]Tk r[i]k

) 1
2

(9)

where Tr is the length of the evaluation time window. Subsequently, the threshold selection method is
given as follows:

J[i]th = sup
L[i]=0, dk , ak

J[i]k (10)

Based on the above evaluation functions and thresholds, the occurrence of a fault can be alarmed
through the following decision rules:

J[i]k > J[i]th ⇒ fault mode i occurs,

J[i]k ≤ J[i]th ⇒ fault mode i dose not occur.
(11)

Remark 8. When there is noise or disturbance in the system, selecting appropriate evaluation functions will
have a good effect on the performance of fault diagnosis. Smoothing the residual signals within a certain time
window can effectively reduce the influence of noise and improve the diagnosis effect.

4. Numerical Simulation

In this section, the proposed scheme is applied to the widely used three-tank benchmark system
to demonstrate the effectiveness of the strategy [9,33]. As shown in Figure 2, the three-tank system has
three outputs y = [h1, h2, h3]

T and two inputs u = [u1, u2]
T .

Figure 2. Structure of the three-tank system [33].

The target liquid level of three-tank system is h? = [0.4, 0.2, 0.3]T and two PI controllers are used to
control liquid levels h1 and h2 and the parameters are KP = 1× 10−5 and KI = 2× 10−6. The nonlinear
continuous-time model of the system can be obtained according to the generalized Torricelli Law.
Furthermore, the sampling period is set to Ts = 0.1 s. After linearization and discretization at the
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equilibrium point, the linear discrete-time system model can be obtained. A detailed process can refer to
Appendix A. The system parameters are as follows:

A[0] =

0.9988649 0.0000006 0.0011344
0.0000006 0.9979022 0.0011339
0.0011344 0.0011339 0.9977311

 ,

B[0] =

6.4898198 0.0000014
0.0000014 6.4866925
0.0036853 0.0036841

 ,

C[0] =

1 0 0
0 1 0
0 0 1

 , D[0]
d = 100×

1 0 0
0 1 0
0 0 1

 ,

B[0]
d =

6.4898198 0.0000014 0.0036853
0.0000014 6.4866925 0.0036841
0.0036853 0.0036841 6.4861359

 ,

B[1] =

6.4898198 0.0000014
0.0000014 6.4866925
0.0036853 0.0036841

× [0.99 0
0 1

]
,

A[2] =

0.9988649 0.0000006 0.0011344
0.0000006 0.9978972 0.0011339
0.0011344 0.0011339 0.9977311



After transforming the fault models, we get L[1]m[1]
k = −0.01 × [6.4898198, 0.0000014,

0.0036853]Tu1,k and L[2]m[2]
k = −[0, 0.000005, 0]Tx2,k, where u1,k is the input of actuator u1 at time k

and x2,k is the value of state x2 at time k. Two fault modes can represent actuator fault and system
parameter fault, respectively, and the fault signatures L[1] and L[2] satisfy Lemma 1. In the simulation
experiment, the disturbance is set to be dk = [2× v1, 2× v2, 1× v3]

T × sin(k/10) × 10−6, where
vi, i = 1, 2, 3 are independent random variables uniformly distributed on [−0.5, 0.5].

4.1. Simulation Results of the Proposed Method

According to the steps in Section 3.1, the corresponding geometric diagnosis observers are
designed as follows:

F[1] = 0.9339441, M[1] = 1, G[1] =
[
6.4898167 0

]
,

E[1] =
[
−0.0649202 0 −0.0010982

]
,

H[1] =
[
0.9999998 0.0000001 −0.0005682

]
,

F[2] = 0.9330108, M[2] = 1, G[2] =
[
0 −6.4866894

]
,

E[2] =
[
0 0.0648908 0.0010971

]
,

H[2] =
[
−0.0000001 −0.9999998 0.0005680

]
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It can be seen that both failure modes are time-invariant, so the auxiliary signals can just select
the constant signals to meet the requirements. According to Section 3.2, the auxiliary signals for two
faults are designed as a[1] = [−7× 10−7, 0]T and a[2] = [0, −6× 10−7]T , respectively. The length of
the evaluation window is set to be Tr = 10 s, and the thresholds are selected as J[1]th = 9.2× 10−5 and

J[2]th = 8.2× 10−5.

Remark 9. ‖B[2]
a a[2]k − αL[2]m[2]

k ‖ 6= 0 for all α, but it can be very small when selecting proper a[2]k and α.
Therefore, the diagnosis effect of fault mode i = 2 is good as well.

Next, the diagnosis results of the proposed method for two fault modes i = 1 and i = 2
are introduced.

Case I: When the system is fault-free and both auxiliary signals are put into the system,
the simulation results are shown in Figure 3. It can be seen from Figure 3a that the injection of
auxiliary signals has very little effect on the system performance because the auxiliary signal itself
is much smaller than the input of the system. Figure 3b,c show the evaluation functions before and
after the injection of auxiliary signals when the system is fault-free. In practice, the thresholds can be
selected as the maximum value of the evaluation functions without faults through multiple tests.

(a) (b)

(c)

Figure 3. Simulation results of the system without faults and two auxiliary signals a[1] and
a[2] are injected into the system at 200 s: (a) system outputs; (b) the evaluation function of the
residual r[1] and the corresponding threshold; (c) the evaluation function of the residual r[2] and
the corresponding threshold.
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Case II: Assume fault mode i = 1 occurs at 200 s, and the diagnosis results are shown in Figure 4.
Figure 4a shows the system outputs before and after the fault occurrence. It can be seen that the fault
is very small and has a slight impact on the system performance. Figure 4b,c respectively show the
fault diagnosis results without and with auxiliary signal a[1], indicating that the auxiliary signal can
enhance the performance of fault in residual and greatly enhance the detection ability of incipient fault.
Figure 4d is the evaluation function corresponding to observer output r[2] with auxiliary input a[1].
It can be seen that it is not affected by fault mode i = 1 and auxiliary signal a[1], which shows that this
method can isolate faults effectively.

(a) (b)

(c) (d)

Figure 4. Simulation results of the system with fault mode i = 1 occurring at 200 s: (a) system outputs
without auxiliary signals; (b) the evaluation function J[1] without auxiliary signals; (c) the evaluation
function J[1] with auxiliary signal a[1]; (d) the evaluation function J[2] with auxiliary signal a[1].

Case III: Assume fault mode i = 2 occurs at 200 s, and the diagnosis results are shown in Figure 5.
Similar to Case I, Figure 5a–d show the system outputs, diagnosis results without and with auxiliary
signal a[2] and evaluation function J[1]. Obviously, the proposed method can effectively detect and
isolate fault 2 and improve the diagnosis performance.
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(a) (b)

(c) (d)

Figure 5. Simulation results of the system with fault mode i = 2 occurring at 200 s: (a) system outputs
without auxiliary signals; (b) the evaluation function J[2] without auxiliary signals; (c) the evaluation
function J[2] with auxiliary signal a[2]; (d) the evaluation function J[1] with auxiliary signal a[2].

Case IV: Assume fault modes i = 1 and i = 2 occur simultaneously at 200 s, and the diagnosis
results are shown in Figure 6. Experimental results indicate that the proposed method can still work
well when we aim to actively diagnose both faults simultaneously. Our approach can improve the
fault detection performance and realize fault isolation at the same time.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Simulation results of the system with fault modes i = 1 and i = 2 occurring simultaneously
at 200 s: (a) system outputs without auxiliary signals; (b) system outputs with auxiliary signals; (c) the
evaluation function J[1] without auxiliary signals; (d) the evaluation function J[1] with auxiliary signals;
(e) the evaluation function J[2] without auxiliary signals; (f) the evaluation function J[2] with auxiliary
signals.

Remark 10. When two faults occur at the same time, we can input two auxiliary signals in sequence to diagnose
the two faults in turn. In addition, the two auxiliary signals in this simulation will not affect each other, so two
auxiliary signals can be injected into the system at the same time, and two faults can be detected and isolated at
the same time.
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4.2. Compared with Robust Observer

The well-known robust observer in [34] is also a method that can detect and isolate faults
simultaneously. Robust observer is a kind of passive fault diagnosis method, and it is used as
a comparison method in this section. According to the method proposed in reference [34], if we
want to detect and isolate three kinds of component faults when we use two measures y1 and y2,
three robust observers need to be designed. The detailed design process of robust observer is omitted
here. For convenience, two kinds of fault types are considered in this section, and the corresponding
simulation results are listed for comparison. The same evaluation function in Section 3.3 is used to
process the residual.

Case I: Consider the same failure mode i = 1 as in Section 4.1. The diagnosis results of robust
observer are shown in Figure 7. If the output of the second observer and the third observer exceed the
selected thresholds at the same time, then it is judged that the fault has occurred. It can be seen from
Figure 7b,c that the outputs of the two observers fluctuate greatly after fault i = 1 occurs, which makes
it impossible to diagnose the fault effectively. Compared with Figure 4c, it can be seen that the method
in this paper has better diagnostic performance for fault mode i = 1.

Case II: In this case, assume that actuator 2 fails as the third failure mode i = 3.

B[3] =

6.4898198 0.0000014
0.0000014 6.4866925
0.0036853 0.0036841

× [1 0
0 0.99

]

(a) (b)

(c)

Figure 7. Simulation results of robust observer with fault modes i = 1 occurring at 200 s: (a) evaluation
function of the first robust observer; (b) evaluation function of the second robust observer; (c) evaluation
function of the third robust observer.
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After transforming the fault models, we get L[3]m[3]
k = −0.01 ×

[0.0000014, 6.4866925, 0.0036841]Tu2,k, where u2,k is the input of actuator u2 at time k. The simulation
results are shown in Figures 8 and 9. In the robust observer method, it is judged that the fault has
occurred if the output of the first observer and the third observer exceed the selected thresholds at the
same time. It can be seen that the proposed method has better performance in fault diagnosis of fault
mode i = 3 compared with the robust observer.

(a) (b)

(c)

Figure 8. Simulation results of robust observer with fault modes i = 3 occurring at 200 s: (a) evaluation
function of the first robust observer; (b) evaluation function of the second robust observer; (c) evaluation
function of the third robust observer.

(a) (b)

Figure 9. Simulation results of the proposed method with fault modes i = 3 occurring at 200 s:
(a) the evaluation function J[1] with auxiliary signals. (b) the evaluation function J[2] with auxiliary signals.
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5. Conclusions

This paper has investigated the fault-structure-based AFD problem for the LTI systems using
a geometric observer. The observer designed based on geometric method is only sensitive to faults
in specific direction, so it can be used to monitor the fault with specific structure. According to the
residual formula of the observer, the auxiliary signals have been designed to enhance the fault diagnosis
performance. In addition, the requirements that the auxiliary signals need to meet have been discussed.
In this paper, the geometric approach based fault diagnosis observer has been applied to active fault
diagnosis for the first time, which can realize the seamless combination of active fault diagnosis and
passive fault diagnosis. Simulation experiments have been carried out based on the three-tank system.
The simulation results have shown that the proposed method significantly improved the diagnosis
performance of incipient faults. In the future, we aim to consider the problem of fault estimation when
the fault amplitude is unknown.
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Appendix A

This appendix provides the detailed model and system parameters of the three-tank system
without fault. The relevant parameters of three-tank system are listed as follows:

Si = 0.0154 m2 Sp = 5× 10−5 m2 g = 9.8 m/s2

µ1 = 0.5 µ2 = 0.6 µ3 = 0.5

Step 1: Suppose h1(t) > h3(t) > h2(t). According to the generalized Torricelli criterion, the nonlinear
continuous-time model of three-tank system is established as follows:

d h1(t)
d t

=− 1
Si

µ1Sp

√
2g (h1(t)− h3(t)) +

1
Si

u1(t) +
1
Si

d1(t)

d h2(t)
d t

=
1
Si

µ3Sp

√
2g (h3(t)− h2(t))−

1
Si

µ2Sp

√
2gh2(t) +

1
Si

u2(t) +
1
Si

d2(t)

d h3(t)
d t

=
1
Si

µ1Sp

√
2g (h1(t)− h3(t))−

1
Si

µ3Sp

√
2g (h3(t)− h2(t)) +

1
Si

d3(t)

(A1)

where h1(t), h2(t) and h3(t) are the liquid levels of three tanks, u1(t) and u2(t) are the system inputs,
and d1(t), d2(t) and d3(t) are system disturbances.

Step 2: Set h(t) = [h1(t), h2(t), h3(t)]T , u(t) = [u1(t), u2(t)]T and d(t) = [d1(t), d2(t), d3(t)]T .
Let x(t) = h(t). The target liquid level of three-tank system is set to h? = [h?1 , h?2 , h?3 ]

T . The linear
continuous-time model is obtained by linearizing the model at the target liquid level:

d x(t)
d t

= Acx(t) + Bcu(t) + Bd,cd(t)

y(t) = Ccx(t) + Dd,cd(t)
(A2)
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where

Ac =


−µ1gSp

Si

√
2g(h?1−h?3)

0 µ1gSp

Si

√
2g(h?1−h?3)

0 −µ3gSp

Si

√
2g(h?3−h?2)

− µ2gSp

Si
√

2gh?2

µ3gSp

Si

√
2g(h?3−h?2)

µ1gSp

Si

√
2g(h?1−h?3)

µ3gSp

Si

√
2g(h?3−h?2)

−µ1gSp

Si

√
2g(h?1−h?3)

− µ3gSp

Si

√
2g(h?3−h?2)



Bc =
1
Si

 1 0
0 1
0 0

 , Bd,c =
1
Si

 1 0 0
0 1 0
0 0 1

 , Cc =

 1 0 0
0 1 0
0 0 1

 , Dd,c = 100× Cc

Step 3: For a sampling time Ts, the following discrete-time linear model can be obtained after
discretization:

xk+1 = A[0]xk + B[0]uk + B[0]
d dk

yk = C[0]xk + D[0]
d dk

(A3)

Thus far, the linear discrete-time model of the three-tank system without fault is obtained.
For more detailed information on the three-tank system, please refer to [33].
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