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Abstract: As data centers have become increasingly important in recent years their operational
management must attain higher efficiency and reliability. Moreover, the power consumption of a
data center is extremely large, and it is anticipated that it will continue to increase, so energy saving
has become an urgent issue concerning data centers. In the meantime, the environment of the server
rooms in data centers has become complicated owing to the introduction of virtualization technology,
the installation of high-heat density information and communication technology (ICT) equipment and
racks, and the diversification of cooling methods. It is very difficult to manage a server room in the
case of such a complicated environment. When energy-saving measures are implemented in a server
room with such a complicated environment, it is important to evaluate “temperature risks” in advance
and calculate the energy-saving effect after the measures are taken. Under those circumstances, in this
study, two prediction models are proposed: a model that predicts the rack intake temperature (so that
the temperature risk can be evaluated in support of energy-saving measures implemented in the
server room) and a model that evaluates the energy-saving effect (in relation to a baseline). Specifically,
the models were constructed by using machine learning. The first constructed model evaluates
the temperature risk in a verification room in advance, and it was confirmed that the model can
evaluate the risk beforehand with high accuracy. The second constructed model—“baseline model”
hereafter—supports energy-saving measures, and it was confirmed that the model can calculate the
baseline (energy consumption) with high accuracy as well. Moreover, the effect of proposal process
of energy-saving measures in the verification room was verified by using the two proposed models.
In particular, the effectiveness of the model for evaluating temperature risk in advance and that of a
technology for visualizing the energy-saving effect were confirmed.

Keywords: temperature prediction; energy simulation; baseline; machine learning; data center; server
room; temperature environment; energy saving; continuous and reliable operation

1. Introduction

Information and communications technology (ICT) systems have become important tools for
building the infrastructure that supports social life. Against that background, the role of data
centers—which manage that information—is becoming more important [1]. Moreover, the power
consumption of a data center is huge, and it is predicted to increase from now onwards; accordingly,
reducing that power consumption has become an urgent issue [1,2]. In the meantime, owing to factors
such as cloud computing, virtualization technology, high heat-generation density of ICT equipment,
and diversification of cooling methods, the environment surrounding a data center is becoming ever
more complicated [3,4]. Even with such a complex environment, a data center must be operated at
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higher efficiency and higher reliable. Under such circumstances, various energy-saving measures for
data centers are being studied. Among them, energy saving related to cooling, which accounts for
about 40% of power consumption of a data center, is drawing attention [5]. However, implementing
energy-saving measures in an operating server room faces two major obstacles.

One obstacle is proper temperature management. In particular, if a “service-level agreement”
(SLA) between the operator of a data center and the users of that data center has been signed, the rack
intake air temperature must be kept below a certain temperature. As a result, the demand for proper
temperature control is a very high [5]. However, it is very difficult to properly control temperature in a
complicated environment in which things dynamically change both temporally and spatially. In such
an environment, if energy-saving measures related to cooling are implemented without evaluating
the temperature risk in advance, so-called “hot spots” may occur and cause deterioration of service
quality or suspension of services. In addition, it can be seen that temperature management is important
because there is a demand for sudden rise suppression measures such as aisle containment and thermal
storage systems for these problems. Tsukimoto et al. evaluate the temperature-rise suppression when
CRAC is outage [6]. Lin et al. constructed a model to calculate the temperature rise after the CRAC
was stopped and showed the possibility that the calculated result could be used for cooling and power
design [7]. Garday et al. evaluate the effect of thermal storage when DC is outage [8]. Tsuda et al. and
Niemann et al. conduct a comparative experiment on the aisle container method from the viewpoint of
the influence of the intake temperature of the ICT equipment [9,10]. Therefore, it is very important
to consider thermal environment, and we focused on the technology that predicts the rack intake
temperature with high accuracy in advance, which realizes appropriate temperature management in
the server room.

Several approaches to predicting temperature can be taken. One approach is to calculate the
temperature at representative points by using the heat-balance equation. Although this approach can
predict the temperature of representative points, it is difficult to predict the temperature of each rack
unit in a server room. The other approach is to use simulation tool (for example, a computational
fluid dynamics (CFD) tool for thermal-fluid simulation). In previous studies using CFD include the
following. Sakaino uses CFD to set the CRAC based on the load balance of the ICT equipment and to
predict the temperature environment in the server room [11]. Winbron et al. and Lin et al. use CFD to
understand the effect of aisle containment on the temperature environment of the server room [12,13].
Jinkyun et al. use CFD to predict the change of temperature environment in the server room when
a power outage or CRAC failure is occurred. They propose a method to use the result in the design
of emergency power supply equipment [14]. Zavřel et al. use the simulation tool TRANSYS [15] to
calculate the temperature rise when CRAC is stopped, and report on the consideration of the backup
system of the power supply equipment and thermal storage to maintain the intake temperature of
the ICT device properly [16]. Kummert et al. use the same simulation tool TRANSYS and propose a
control method for a cooling system that can maintain an appropriate temperature environment when
the CRAC is stopped [17]. Thus, This CFD and some simulation tool can predict the temperature of the
entire server room. However, these approaches are difficult to adapt to multiple server rooms because
modeling and calculation based on some simulation tools take a considerable amount time. What’s
more, owing to the characteristics of a server room, the simulation results and measurement values
often deviate. Tuning of simulation tool parameters for each room is therefore required. To solve
these problems, a “rack intake temperature prediction model”—which is constructed by machine
learning using data from a server room—that performs self-learning with high accuracy is proposed as
described hereafter.

The other obstacle is to understand the effects of energy-saving measures. When implementing
energy-saving measures, it is important to be able to quantitatively understand the extent of the
energy-saving effect of each measure. If the energy-saving effect cannot be properly determined,
the user will not know how effective the measure is; thus, the motivation for implementing that
energy-saving measure will be reduced, and the measure itself may not be implemented at all. It is
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therefore considered important to calculate the power consumption in the server room (“baseline”
hereafter) when energy-saving measures are not implemented. As for energy-service-company (ESCO)
projects targeting building equipment, the energy-saving effect may be evaluated by using statistical
values (such as average and minimum) of past data (the previous year’s data, for example) as the
baseline [18]. Jian et al. estimate yearly power consumption of cooling system by using maximum
and minimum value of some facilities [19]. However, it is not desirable to use statistical values such
as average, minimum or maximum values of past data as a baseline in an environment that changes
fluidly in time and space (like a server room), since it is unknown whether the effect can be properly
evaluated. In addition, when evaluating energy saving measures, it is preferable to estimate the
baseline on a monthly, daily, or hourly basis rather than on an annual basis. Other approach is energy
simulation (For example, CFD is used in DC, TRANSYS [15] and EnergyPlus are used in buildings).
Maurizio et al. use TRANSYS and calculate the energy consumption in the electric steelmaking plants
to evaluate energy and cost by selecting cooling methods [20]. Chao et al. use EnergyPlus to calculate
energy consumption for three type building (large office, small office, residence) [21]. Cheng et al.
report the results of calculation to use EnergyPlus based on BIM [22]. Stefan et al. combine EnergyPlus
and CFD to calculate COP of cooling system in the building [23]. However, as with temperature
prediction, it takes a lot of time to build a model and set boundary conditions, and its versatility is low.
There is also a technique for formulating a baseline by regression equation using historical data for the
issues related to energy simulation. Chao et al. constructed a regression model and confirmed that
energy in large office, small office, and residence can be predicted with high accuracy [21]. In addition,
Massimiliano et al. constructed a multiple regression model based on the outside air temperature, etc.,
and showed that the power consumption in the building can be predicted [24]. From these studies,
it is considered that the baseline can be estimated quickly and with high accuracy by using a model
constructing from the past data. Also, baseline technology is often applied to office buildings and
residence, and there are not many studies on baselines for CRAC in server room. In the present study,
we therefore propose a model that calculates the baseline for CRACs in a server room that is suitable
for their current operation. The model is constructed by using machine learning with data from a
server room, and it can perform self-learning with high accuracy.

When implementing energy-saving measures for data centers, it is important to execute the
following four steps appropriately: (i) Planning of the measures, (ii) evaluate the temperature risk
before implementing them, (iii) implement them, and (iv) evaluate their energy-saving effects (Figure 1).
Accordingly, in this study, two models are proposed: a “rack intake temperature prediction model”
that evaluates the temperature risk before implementing the energy-saving measures; and a “baseline
model” that supports the evaluation of the energy-saving effect. The accuracy of each model was
evaluated by experiments in a verification room. Energy-saving measures were implemented by
applying these highly accurate models, and the effectiveness of each model was confirmed.
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2. Verification Data Conditions

2.1. Verification Room

The configuration of the verification room is outlined in Figure 2, and its specification is
listed in Table 1. The verification room is equipped with two computer room CRACs (CRACs),
two “task-ambient” CRACs (racks A3 and B5), and 26 racks (four rows, A to D) for ICT equipment.
The target of the energy-saving measures in this study is two of the CRAC (excluding the task-ambient
type ones). The verification room is configured in the “cold-aisle containment” manner [8].
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Table 1. Specifications of verification server room and CRAC.

Item Data

Room size (m2) 140
Number of racks for ICT equipment 26

Number of CRACs 2
Number of task-ambient CRACs 2
Cooling capacity of CRAC (kW) 45

2.2. Verification Data

In recent years, data center infrastructure management (DCIM) systems, which support efficient
operation by integrated management of various facilities and equipment in data centers, have become
a focus [25,26]. Also, in previous study, we have summarized concepts and examples of effects related
to DCIM [27]. We use the DCIM as an onsite data collecting system installed inside a server room
(Figure 3). The data collecting system is connected to the CRAC, rack intake temperature sensors,
and power-distribution units (PDUs) for the racks via local area network (LAN). This system collects
and stores data from the connected devices and devices. The data-collection interval for the CRACs
and temperature sensors is one minute, and that for the rack PDUs is five minutes. The rack intake
temperature prediction model uses the data accumulated by the data-collection system. In this study,
values aggregated over a 30-min average were used. Rack intake temperature is defined as the value
taken by the temperature sensor installed on the rack surface at a height of 1.5 m (Figure 4).

The operation data listed in Table 2 was used for constructing and evaluating the rack intake
temperature prediction model and the baseline model for the CRACs. The models were evaluated during
the period from 21 October to 23 December, 2019; that is, the effectiveness of each model was verified
by simulating an energy-saving measure that changes the setting of the CRAC return temperature.

Table 2. Data-set periods used with each model.

No Verification Model Period

1 Rack intake temperature
prediction model

1 April to 30 April, 2016
2 1 May to 31 October, 2017
3 Baseline model 1 May to 31 December, 2017
4 Both models 21 October to 23 December, 2019
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3. Construction of Prediction Model

The rack intake temperature prediction model and the model for calculating the energy-
consumption baseline for the CRACs are described hereafter.

3.1. Aim of Each Construction Model

In our research, as described in Section 1, we propose energy-saving measures in data center with
a load that is highly fluid in time and space, including the prior assessment temperature risk and the
verification of the effect of energy-saving measures, in response to the issue of energy-saving in data
centers. As a technical issue to realize the proposal, we think that the technology to predict the rack
intake temperature and calculate the baseline of CARC is necessary, and this chapter describes the
construction method for the two models.

Regarding prediction rack intake temperature, there is a problem that in the previous research
it took a lot of time to build a high accuracy model using CFD. Therefore, we construct and verify
models which are multiple machine learning methods that can be constructed by self-learning using
past data, and our goal is to construct highly accurate models. In addition, regarding the baseline,
there is a problem that it is difficult to apply the baseline of CRAC in data center with a load that is
highly fluid in time and space by using the past statistical values (max value, minimum value) that
are often tackled in the past studies. We aim to build and verify a highly accurate model of machine
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learning that can be built by self-learning using past data, using multiple methods selected from the
viewpoint of AI’s explanatory power.

3.2. Outline of Prediction Model of Rack Intake Temperature

The model that predicts rack intake temperature is described first.

3.2.1. Construction of Model for Predicting Rack Intake Temperature

As for this prediction model, rack intake temperature in one hour (or in 30 min) is the target
variable. The explanatory variables used in the prediction are listed in Table 3. The prediction model
divides the data set into a learning period and a verification period, and the model constructed by using
the data set for the learning period is evaluated with the data set for the verification period. In this
verification, data acquired up to n days before the verification period was set as the learning-period data.

Table 3. Explanatory variables used in the model for predicting rack intake temperature.

No. Explanatory Variable

1 CRAC power consumption
2 CRAC COP
3 CRAC cooling capacity
4 Return temperature of CRAC
5 Supply temperature of CRAC
6 Power consumption of entire server room
7 Power consumption of each rack

3.2.2. Methods Used by the Model for Predicting Rack Intake Temperature

In a previous study, we were studying a model that predicts rack intake temperature after 30 min
due to changes in ICT equipment in the server room and confirmed that it is possible to predict with
high accuracy when using two methods (gradient boosting decision tree (GBDT) and a state space
model) [28]. Based on the results, three methods, which are linear regression that are commonly used
and two methods of the previous study, were selected as candidates. (Table 4).

Table 4. Methods selected as candidates for rack intake temperature prediction model.

No. Method

1 Linear regression
2 Gradient-boosting decision tree (GBDT)
3 State-space model

First, the prediction model using each method was verified by using a dataset for April 2016,
and the accuracy of each method was evaluated, and the features of each method were identified.
According to the results of the evaluations, the methods were narrowed down, further verified and
evaluated in detail by using a dataset acquired from May to October 2017, and the model was selected.
When the gradient-boosting decision tree (GBDT) was selected as the machine-learning method,
the library “XGBoost,” which is a Python implementation of scikit-learn, was used. The grid-search
method was used with parameters set as follows: learning rate: 0.1; lower limit of loss reduction due to
addition of leaves: 0; maximum depth of tree: 3; ratio of randomly sampled samples (data): 1; and ratio
of columns randomly extracted from each decision tree: 1. As for other parameters, the default values
in the library were used. In the periods other than No. 1, the parameters optimized by the grid
search were also optimized by the same method. When the state-space model was selected as the
machine-learning method, the python library “statsmodels” was used. Parameters were estimated by
using a Monte Carlo filter and pseudo-Newton method.
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3.2.3. Method for Evaluating the Model for Predicting Rack Intake Temperature

The rack intake temperature prediction model was evaluated by using the following four
evaluation indices:

1. Correlation coefficient (R): R expresses the explanatory power of the predicted value of the
objective variable.

2. Correct answer rate: The ratio of the number of predicted values within ±0.5 ◦C of the measured
value to the total number of predicted values

3. Root-mean-square error (RMSE): The accuracy of the three machine-learning methods is evaluated
in terms of RMSE, which is a commonly used index for numerical prediction.

4. Maximum peak error: As for predicting server-room temperature, maximum peak error is significant
if the actual measured value and the predicted value deviate greatly. The error by which the
actually measured value is larger than the predicted value is therefore defined as maximum
peak error.

3.3. Outline of Baseline Model of CRAC

The baseline model for CRAC is overviewed as follows.

3.3.1. Construction of a Baseline Model for CRAC

The purpose of the baseline model is to determine the effect of energy-saving measures.
The objective variable of the model is therefore the power consumption of CRAC when the energy-saving
measure is not implemented. The baseline model calculates power consumption in real time when the
energy-saving measure is not implemented; that is, it not the model that predicts the future from that
time point. The explanatory variables used are listed in Table 5. The dataset is divided into a learning
period and a verification period, and the model constructed by using the learning-period dataset is
evaluated by using the verification-period dataset. In this verification, the data collected up to n days
before the verification period was set as the data for the learning period.

Table 5. Explanatory variables used by the baseline model.

No. Explanatory Variable

1 CRAC cooling capacity
2 Outside-air temperature
3 Power consumption of each rack

3.3.2. Methods Used by Baseline Model

In recent years, “explainable” AI (XAI), which can explain prediction results by machine learning
and processes in humans, has received increasing attention [29,30]. This explainable model allows
the user to explain and understand the result calculated by the model. It is essential that the model
for determining the effect of energy-saving measures targeted in this study should be explainable to
scholars with specialized skills and operators who carry out practical work. In addition, as in the
ESCO business, compensation may be paid for energy-saving effects; accordingly, from the standpoint
of data-center businesses too, it is desirable to be able to confirm the likelihood of effects. The baseline
model should therefore have high explanatory power. In this study, therefore, a total of three methods
were selected: (1) linear regression (which is considered to be highly explanatory); (2) a decision-tree
and, (3) gradient-boosting decision tree (which is an application of a decision-tree model that is expected
to improve accuracy). Also, a state-space model. In addition, the state-space model (time-series model)
used as a candidate for the rack intake temperature prediction model in this model has the feature that it
is updated sequentially with data acquired at the preceding n time points. Therefore, when calculating
the baseline without energy-saving measures implemented, it is a problem that prediction accuracy
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decreases because the prediction result is used for the next prediction; thus, subject was excluded from
the method used by the baseline model.

3.3.3. Method for Evaluating Baseline Model

Accuracy of the baseline model was evaluated by using evaluation indices 1, 3, 4 and 5. This is
because it was considered inappropriate to use evaluation index 2 (correct-answer rate) because the
power consumption of the CRAC has a change significantly compared to temperature. Also, in the
baseline model, NMBE is added as indices. This is a commonly used index when performing energy
simulations [31,32]:

1. Correlation coefficient (R): R expresses the explanatory power of the predicted value of the
objective variable.

3. Root-mean-square error (RMSE): The accuracy of the three machine-learning methods is evaluated
in terms of RMSE, which is a commonly used index for numerical prediction.

4. Maximum peak error: As for predicting server-room temperature, maximum peak error is significant
if the actual measured value and the predicted value deviate greatly. The error by which the
actually measured value is larger than the predicted value is therefore defined as maximum
peak error.

5. Normalized Mean Bias Error (NMBE): NMBE is a normalization of the MBE index that is used to
scale the results of MBE, making them comparable. This index is used by IPMVP.

4. Results

4.1. Evaluation of Accuracy of Temperature-Prediction Model

4.1.1. Primary Evaluation of Prediction Model and Narrowing Down of Prediction Methods

A model for predicting the rack intake temperature was constructed using each method under the
assumption that the verification period was the last week of April 2016 and the learning period was the
previous 21 days, and the accuracy of the model was evaluated. Evaluation values when each method
was used are listed in Table 6. According to these values, evaluation indexes 1 to 3 used the average of
evaluation values for all racks, and evaluation index 4 used the maximum value of the peak error for
all racks. According to these results, it is clear that GBDT and the state-space model give similar values
for evaluation indexes 1 to 4, meaning that the predictions by those methods achieve high accuracy.
On the contrary, although linear regression gives similar correct-answer rate and peak error to those
given by GBDT and the state-space model, correlation coefficient R and RMSE are low, so it can be
concluded that the accuracy of linear regression is low compared to the other two methods. In light of
that result, hereafter, GBDT and the state-space mode are focused on and investigated in detail.

Table 6. Evaluation index of each model (April 2016).

Method
Evaluation Index

R Correct-Answer Rate RMSE Max Peak Error

Linear regression 0.34 0.86 0.36 0.97
GBDT 0.81 0.99 0.11 1.07

State-space model 0.94 0.99 0.10 1.04

4.1.2. Secondary Evaluation of Prediction Model and Determination of Prediction Method

The two methods narrowed down in Section 4.1.1 are summarized in Figures 5 and 6, and Table 7.
As for the secondary evaluation conducted from May to October 2017, the learning and verification
periods were taken as one month each, and the data of the month previous to the verification-target
month was set as the learning period (Table 8). Evaluation values that compare the measured rack
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intake temperature with the temperature predicted by using each prediction model are listed in Table 9.
Evaluation indexes 1 to 3 are average evaluation values for all racks, and evaluation index 4 is the
maximum evaluation value for all racks, and these values were obtained by tabulating the prediction
results for each month. It is clear from these results that the prediction values are extremely high and
the prediction achieves high accuracy regardless of which of the two prediction models is used. It is
also clear that the evaluation values (R and correct-answer ratio) given by the state-space model are
higher than those given by GBDT, although they are only slightly higher over the entire period.
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Table 7. Methods selected as a candidate for rack intake temperature prediction model.

Method Explanation

GBDT As an ensemble learning method using decision trees, a prediction
method used in regression and classification problems [33]

State-space model Prediction method used for time-series problems [34]

Table 8. Relationship between learning period and evaluation period.

2017

May June July August September October

Learning Evaluation
Learning Evaluation

Learning Evaluation
Learning Evaluation

Learning Evaluation

Table 9. Evaluation indices for each method (May to October 2017).

Method
Evaluation Index

R Correct-Answer Rate RMSE Max Peak Error

GBDT 0.82 0.62 0.35 2.77
State-space model 0.98 0.99 0.14 2.20
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Next, the accuracy of the two methods, GBDT and state-space model, was further examined on
the basis of temporal changes in the measured and predicted temperatures. Measured rack intake
temperature for rack A1 in July 2017 and time-series changes of values predicted by each prediction
model are respectively shown in Figure 7. According to these figures, the predicted temperature values
follow the time-series changes in measured values closely. Measured rack intake temperatures for
rack A7 in July 2017 and time-series changes of temperatures predicted by each prediction model are
respectively shown in Figure 8. These figures show that the error between the measured temperatures
and the temperature predicted by the model using GBDT increased on prediction date 5 July 2017. It is
considered that this increased error is due to two reasons: (i) the effect of the intake temperature of rack
A7 at this time point during the learning and verification periods being the lowest of all the racks and
(ii) in the case of GBDT, if the input fluctuates significantly, the prediction result cannot be handled
and becomes worse. On the contrary, as shown in Figure 8b and Table 9, in the case of the state-space
model, which gives higher evaluation values than those of GBDT, the result obtained at the previous
time point is reflected in the prediction model, and the model is updated sequentially; as a result,
the ability to follow extrapolation is high, and is considered that good prediction results were obtained.
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4.1.3. Detailed Evaluation of the Determined Prediction Model

To understand the features of the prediction model, the effects of each explanatory variable and
learning period on prediction accuracy are considered hereafter.

1. Effect of explanatory variables on accuracy

When building a predictive model, the choice of explanatory variables is paramount. This is
because not only the choice of explanatory variables affects accuracy but also the time required to
build a prediction model changes significantly. Therefore, to study the effect of each explanatory
variable on the accuracy of the prediction model, change in RMSE was observed when the explanatory
variables were changed in two major ways. RMSE was used because it makes it possible to quantify
and evaluate the effect of the explanatory variables on the accuracy of the model by evaluating how
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much a predicted value has changed from the actual value during a certain period. One model was
verified when one explanatory variable was removed from all the explanatory variables, and the other
model was verified when only one explanatory variable was used as an explanatory variable. In period
No. 2 (May 1 to October 31, 2017; see Table 2), the effect of the explanatory variables was evaluated
in terms of the value of RMSE, and the results are listed in Table 10. It can be seen that when one
explanatory variable is removed from all explanatory variables, the RMSE value drops significantly
only when the CRAC return temperature is removed from the explanatory variables. When the other
explanatory variables were removed, RMSE does not change much. Next, as for the verification using
only one variable as the explanatory variable, the best RMSE was obtained when only CRAC return-air
temperature was used as the explanatory variable. These results demonstrate that return temperature
of the CRAC significantly influences prediction accuracy. Furthermore, the time required for building
the model did not significantly change when the explanatory variables were changed. This is probably
because (i) the explanatory variables used in this study were not large in number and (ii) increasing or
decreasing the number of variables had a small effect on building the model.

Table 10. RMSE when explanatory variable is changed.

Explanatory Variable Used RMSE

Without CRAC power consumption 0.13
Without CRAC COP 0.13

Without CRAC cooling capacity 0.13
Without return temperature of CRAC 0.18
Without supply temperature of CRAC 0.13

Without power consumption of entire server room 0.13
Without power consumption of each rack 0.14

Only CRAC power consumption 0.22
Only COP of CRAC 0.21

Only CRAC cooling capacity 0.22
Only return temperature of CRAC 0.15
Only supply temperature of CRAC 0.21

Only power consumption of entire server room 0.22
Only power consumption of each rack 0.18
(Reference) when all variables are used 0.14

2. Effect of learning period on accuracy

When constructing a predictive model, it is paramount to consider the length of the learning
period. This is because the learning-period length significantly influences not only prediction accuracy
(as in the case of explanatory variables) but also the time associated with the construction of the
prediction model. Therefore, in this section, to consider the influence of the learning period for the
prediction model on the accuracy, the model was verified by changing the learning period while using
the data for August 2017. The effect on prediction accuracy when the learning period was varied was
evaluated in terms of the value of RMSE, and the evaluation results are listed in Table 11. As shown
by the results in Table 12, RMSE does not significantly change when the learning period is varied.
On the contrary, although the time required for learning increased by a maximum of about two times,
that increased time did not cause any operational problems when only the server room in this study
was targeted. These results indicate that when constructing a prediction model, it is possible to highly
accurately predict temperature if data covering about one week is available. Note that the shortest
learning period that can achieve high prediction accuracy was left for future study.
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Table 11. Relationship between learning period and evaluation period.

2017

May June July August September October November December

learning evaluation
learning evaluation

learning evaluation
learning evaluation

learning evaluation
learning evaluation

learning evaluation

Table 12. RMSE when the learning period is varied.

Learning Period RMSE

7 days before the evaluation period 0.12
14 days before the evaluation period 0.13
21 days before the evaluation period 0.12
31 days before the evaluation period 0.14
61 days before the evaluation period 0.12
91 days before the evaluation period 0.13

4.1.4. Summary of Evaluation of Accuracy of Temperature Prediction Model

As explained hereafter, it was confirmed that the model for predicting rack intake temperature
using the state-space model, which was narrowed down from the models constructed by multiple
methods, can predict the temperature with high accuracy. Moreover, the effect of each explanatory
variable used in the proposed model was evaluated, and the results of that evaluation demonstrate that
the return temperature of the CRAC is important in regard to predicting the rack intake temperature
using this state-space-based prediction model. After that, the effect of the learning period on the
accuracy of the proposed model was evaluated, and the results of the evaluation performed in the
verification room show that it is possible to predict temperature with high accuracy using about one
week’s worth of learning data.

4.2. Evaluation of Accuracy of Baseline Model

4.2.1. Primary Evaluation of Baseline Model and Narrowing Down of Prediction Methods

During the period from May 1 to December 31, 2017, the learning and verification periods were
both set to one month, prediction models was constructed by using each method (linear regression,
decision tree, and GBDT), and the prediction accuracy of each model was evaluated (Table 13). As for
these values, evaluation indexes 1 and 2 are average evaluation values for each month, and evaluation
index 4 is the maximum value for each month. According to these results, GBDT achieved the best
values and linear regression achieved the worst values of evaluation indices (1), (3) and (4). Also,
indices (1), (3) and (4) values given by the prediction model using the decision-tree method are worse
than those given by GBDT. This finding is considered to be explained by the fact that in contrast to the
decision-tree method, GBDT features added “boosting” for weighting, and the presence or absence of
that boosting affects prediction accuracy. Regarding indices (5), linear regression is better than other
methods, and we discuss about this indices and results in detail next section.
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Table 13. Evaluation index for each model (April 2016).

Method
Evaluation Index

(1) R (3) RMSE (4) max peak error (5) NMBE

Linear regression 0.82 1.00 4.75 0.61
Decision tree 0.85 0.61 3.11 1.00

gbdt 0.88 0.56 2.56 1.37

4.2.2. Secondary Evaluation of Baseline Model and Determination of Prediction Method

The evaluation values for each month during the period from May 1 to December 31, 2017 are
listed in Tables 14–17 and plotted in Figures 9–12. Regarding the correlation coefficients listed in
Table 14 and plotted in Figure 9, all methods show numerical values with high correlation, and it can be
considered that prediction can be performed with high accuracy. Regarding the correlation coefficients
listed in Table 14 and Figure 9, all three methods give numerical values with high correlation, so it can
be considered that the prediction has high enough accuracy. Even so, for any month, GBDT did not give
the worst value of the three methods; in fact, the results show that it often gave the best value. As for
RMSE listed in Table 15 and plotted Figure 10, compared with the other methods, linear regression
does not give the best value for any month, and its fluctuation per month is the largest. In addition,
RMSE values given by the decision-tree method and GBDT are close. Although RMSE varies slightly
in a similar manner to the correlation coefficient, the values given by GBDT are the best for several
of the months. Regarding peak error listed in Table 16 and plotted in Figure 11, linear regression
gives the best values for four of the months (July, October, November, and December). However,
fluctuations of peak error per month are larger (minimum: 0.48 kW (July) and maximum: 4.75 kW
(September)) than those of the other two methods. Although the peak errors of the decision-tree
method and GBDT are close, GBDT gives the better value for many months. It is concluded from
these results that linear regression is unsuitable as the baseline model because the evaluation indices
related to prediction accuracy (i.e., RMSE and peak error) fluctuate from month to month. In addition,
both the decision-tree method and GBDT give high correlation coefficients, and it is concluded that
they can predict temperature with high accuracy. However, it is considered that GBDT, which on the
whole gives better values than those of the decision tree, has superior robustness and is suitable as the
baseline model. Accordingly, the model using GBDT was evaluated as explained hereafter.

Table 14. Correlation coefficient for each method per month. (bold and underline means a best value
of each month).

Method
2017

June July August September October November December

Linear regression 0.77 0.90 0.87 0.87 0.94 0.67 0.67
Decision tree 0.84 0.85 0.84 0.84 0.94 0.75 0.91

GBDT 0.90 0.89 0.89 0.88 0.95 0.70 0.94

Table 15. RMSE for each method per month. (bold and underline means a best value of each month).

Method
2017

June July August September October November December

Linear regression 2.35 0.61 0.67 0.68 0.56 0.84 1.28
Decision tree 0.83 0.69 0.64 0.64 0.44 0.37 0.69

GBDT 0.66 0.62 0.56 0.57 0.54 0.41 0.61
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Table 16. Peak error for each method per month. (bold and underline means a best value of each month).

Method
2017

June July August September October November December

Linear regression 3.85 0.48 4.71 4.75 0.68 0.51 0.40
Decision tree 2.20 1.10 2.20 2.37 2.78 2.35 3.11

GBDT 1.64 0.75 2.22 2.20 1.14 2.56 2.16

Table 17. NMBE for each method per month. (bold and underline means a best value of each month).

Method
2017

June July August September October November December

Linear regression 30.28 3.83 −0.73 0.93 6.86 10.27 15.25
Decision tree −7.33 3.74 −2.22 −2.61 −4.54 0.64 5.31

GBDT 6.78 3.69 −2.14 −2.44 −7.73 −1.52 7.29
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To understand the features of the baseline model, the effects of each explanatory variable and 

learning period on prediction accuracy are considered hereafter. 

1. Effect of explanatory variables on prediction accuracy 

The choice of explanatory variables is paramount when building a predictive model. That 

is because not only the learning period affects prediction accuracy but also the time required to 

build the model changes significantly with the explanatory variables chosen. Furthermore, 

when using the baseline model to verify the energy-saving effect of measures, it is important 

that estimated values that play no part in an energy-saving effect can be understood by or 

explained to the user. Accordingly, to investigate the influence of each explanatory variable on 

prediction accuracy of the baseline model, the “degree of importance” of the explanatory 

variables was estimated. Degree of importance means to what extent each explanatory variable 

contributes to improving prediction accuracy. Regarding the model when November 2017 was 
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Regarding the NMBE listed in Table 17 and Figure 12, since the recommended range per month
proposed by IPMVP is ±20%, it can be seen that the range is achieved by the decision-tree or GBDT.
In addition, linear regression was the best value of NMBE when evaluated over the entire period.
However, when analyzed monthly, the variation in linear regression was very large. Since NMBE does
not use absolute values, the evaluation results vary greatly depending on the period. In the following,
the RMSE, which uses absolute values, will be used to evaluate the error as a whole. For these reasons,
the indices (1), (3), and (4) are used for evaluation thereafter.

4.2.3. Detailed Evaluation of Baseline Model

To understand the features of the baseline model, the effects of each explanatory variable and
learning period on prediction accuracy are considered hereafter.

1. Effect of explanatory variables on prediction accuracy

The choice of explanatory variables is paramount when building a predictive model. That is
because not only the learning period affects prediction accuracy but also the time required to build
the model changes significantly with the explanatory variables chosen. Furthermore, when using
the baseline model to verify the energy-saving effect of measures, it is important that estimated
values that play no part in an energy-saving effect can be understood by or explained to the user.
Accordingly, to investigate the influence of each explanatory variable on prediction accuracy of the
baseline model, the “degree of importance” of the explanatory variables was estimated. Degree of
importance means to what extent each explanatory variable contributes to improving prediction
accuracy. Regarding the model when November 2017 was the learning period and December 2017 was
the evaluation period, the results obtained by using the existing python library and calculated by using
(xgb.plot_importance(x)) and default gain are shown in Figure 13. This result indicates that cooling
capacity has the greatest effect on prediction accuracy. And although the degrees of importance of
the other explanatory variables are less than half, they cannot be ignored and are considered to be
important explanatory variables. Although it is a more complicated method than linear regression
or decision-tree method, GBDT makes is possible to understand a part of the logic by showing the
importance of the explanatory variable for the target variable as shown in the figure.

2. Effect of learning period on accuracy

With regard to the methods narrowed down as described in the previous section, the effect of
length of learning period on prediction accuracy is considered hereafter. The evaluation period was
fixed to one month (November or December 2017), and the learning period was changed from the last
week to the last six months (Table 18). The evaluation indices for the accuracy during the one-month
evaluation period (November or December 2017) when the learning period was changed are listed in
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Tables 19 and 20. It can be concluded from the results in these tables that the relationship between the
learning period and the evaluation indices is insignificant when the learning period is more than the
previous three weeks. On the contrary, in the case of a very short learning period, such as one week,
the results indicate that the accuracy values decrease.
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Table 18. Explanatory variables used in the baseline model.

Learning Period No. Explanatory Variable Evaluation Period

1 Previous week

November and December, 2017

2 Previous two weeks
3 Previous three weeks
4 Previous month
5 Previous two months
6 Previous three months
7 Previous four months
8 Previous five months
9 Previous six months

Table 19. Evaluation indices when learning period is changed (evaluation month: November).

Evaluation Index
Learning Period No.

9 8 7 6 5 4 3 2 1

Correlation coefficient 0.67 0.53 0.60 0.59 0.52 0.70 0.74 0.52 0.51
RMSE 0.56 0.78 0.61 0.70 0.76 0.41 0.39 0.48 0.46

Peak difference 2.17 3.11 2.51 2.54 2.81 2.56 2.38 2.36 2.39

Table 20. Evaluation indices when learning period is changed (evaluation month: December).

Evaluation Index
Learning Period No.

9 8 7 6 5 4 3 2 1

Correlation coefficient 0.94 0.94 0.95 0.95 0.94 0.94 0.94 0.94 0.88
RMSE 0.59 0.62 0.60 0.58 0.62 0.62 0.60 0.63 0.99

Peak difference 1.36 1.31 1.61 1.64 1.96 2.16 2.11 1.90 1.64

4.2.4. Summary of Evaluation of Accuracy of the Baseline Model

It was confirmed that the baseline model for power consumption of an CRAC can calculate
temperature with high accuracy by constructing a model using GBDT (which was narrowed down
from three methods). Moreover, the effect of each explanatory variable used in the proposed baseline
model was visualized by calculating the degree of importance of each explanatory variable. After that,
the effect of the learning period on prediction accuracy of the proposed model was evaluated, and the
results of that evaluation show that it is possible predict temperature with high accuracy if there is
about three weeks of learning data acquired in the verification room.
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5. Verification of Effectiveness of the Proposed Model When Energy-Saving Measures
Are Implemented

This section presents the results of a preliminary examination and effectiveness verification of
energy-saving measures by using the rack intake temperature prediction model constructed and
evaluated in the previous section and the baseline model for the CRACs.

5.1. Overview of Effectiveness Verification

As for the evaluation period from October to December 2019, the effect and effectiveness of
the proposed model was verified by simulating an energy-saving measure that changes the setting
of return-air temperature of the CRACs. The normal condition of the return temperature of the
CRAC was set to 28 ◦C, and the return temperature setting was changed to 30 ◦C during the
measure-implementation period (two weeks). Note that during the period excluding the verification
experiment simulating the energy-saving measure, the accuracy of each model was verified, and it was
confirmed that it the models can predict and calculate the temperature with high accuracy, as described
in Section 4 (Tables 21 and 22). The results of an evaluation of temperature risk when the energy-saving
measure was implemented and the evaluation results regarding the visualization of effect of the
measure are presented in the following sections.

Table 21. Preliminary evaluation indices of rack intake temperature prediction model (8 November
2019 to 20 November 2019; sample number: 961).

Method
Evaluation Index

R Correct-Answer Rate RMSE Max Peak Error

State-space model 0.99 0.98 0.14 2.37

Table 22. Baseline evaluation indices when return-temperature setting of CRAC is 28 ◦C (6 December
2019 to 10 December 2019; sample number: 192).

Method
Evaluation Index

R RMSE Max Peak Error

GBDT 0.91 0.26 0.49

5.2. Evaluation of Temperature Risk by Using Rack Intake Temperature Prediction Model

The change in rack intake temperature when the set value of the CRAC return temperature was
changed to 30 ◦C was predicted in advance. Three explanatory variables were selected on the basis
of three viewpoints: rack intake temperature at the previous time point, CRAC return temperature,
and total power consumption of the server room. The rack intake temperature at the previous time
point was selected on the basis of the characteristics of the state-space model using the value of
the target variable at the previous time point. Return temperature was also selected because it is
an important explanatory variable that affects prediction accuracy (as discussed in Section 4.1.4).
Since the set temperature was set to 30 ◦C in this verification, return temperature was also set to
30 ◦C. About total power consumption, it is very difficult to predict the power consumption of each
rack in DC. In previous studies, Mehdi et al. created a scenario to estimate the power consumption
of multiple ICT devices, including the relationship between temperature and ICT equipment power
consumption [35]. In this study, we decided to perform a simulation in the case of the maximum risk by
adopting the maximum power consumption in the past week from the viewpoint of evaluating the risk.
A model constructed as a learning period from November 8 to 29, 2019 was used, and the temperature
for the period from November 21 to December 6, 2019, was predicted to determine, and the predicted
temperature was compared with the measured value (Table 23). From this table, it can be seen that
the calculation results show values very close to the average and median values. In addition, it is
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clear that the error between the maximum value and the calculation result for all racks is within the
range of 2.37 ◦C shown as the peak error in Table 23. This is because the max peak error value in the
preliminary evaluation is considered to be the maximum error held by the model, so (calculation result
+ peak error) should be considered as the maximum rack intake temperature that may occur during
the evaluation period.

Table 23. Relationship between the calculation results at each rack intake temperature and the maximum
and average values of the measured values during the evaluation period.

Rack No Calculation
Results

Max Measured
Value

Error (Max
Measured

Value—Calculation
Results)

Average
Measured

Value

Error (Average
Measured

Value—Calculation
Results)

A1 30.36 32.62 2.26 30.77 0.41
A2 29.52 31.45 1.93 29.52 −0.01
A3 30.63 32.61 1.98 31.09 0.46
A4 29.56 31.57 2.01 29.16 −0.40
A5 33.46 35.00 1.54 32.82 −0.64
A6 29.99 32.11 2.12 29.54 −0.45
A7 31.15 33.35 2.19 31.21 0.05
B1 30.86 32.89 2.03 31.09 0.23
B2 29.31 31.09 1.78 29.04 −0.28
B3 29.48 31.45 1.97 29.11 −0.37
B4 31.48 33.58 2.10 31.43 −0.04
B5 29.38 31.34 1.96 29.47 0.09
B6 31.76 34.06 2.30 31.61 −0.15
B7 29.13 31.46 2.33 29.03 −0.10
C1 30.38 32.67 2.29 30.86 0.47
C2 30.20 32.30 2.10 30.71 0.51
C3 32.85 34.92 2.08 33.15 0.31
C4 29.66 31.44 1.78 29.72 0.06
C5 29.05 30.76 1.71 29.14 0.09
C6 29.87 31.82 1.95 30.01 0.15
C7 28.80 30.53 1.73 28.87 0.07
D1 30.25 32.00 1.745 30.45 0.20
D2 29.99 31.77 1.78 30.20 0.21
D3 30.83 33.09 2.26 31.11 0.28
D4 30.01 31.49 1.48 29.84 −0.17
D5 29.53 31.14 1.61 29.34 −0.18
D6 28.88 30.73 1.85 29.03 0.15
D7 28.62 30.50 1.88 28.83 0.20

Since the maximum rack intake air temperature that may have been calculated during the
preliminary study is larger than the maximum value during the evaluation period, it is considered
useful for the preliminary study (Figure 14). Furthermore, for each rack, it is possible to predict which
rack will become hot, so it is possible to understand the points to be noted when implementing energy
conservation measures. It was confirmed the effectiveness of using this prediction model for the
preliminary examination of temperature risk.
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5.3. Visualization of Energy-Saving Effect by Using Baseline Model

The energy-saving effect was verified when the return-air temperature of the CRAC, which was in
the normal condition, was changed from 28 ◦C to 30 ◦C. The energy-saving effect calculated from the
difference between measured power consumption and the value predicted by the baseline model when
the return-air temperature of the CRAC was increased to 30 ◦C is shown in Table 24, and the time-series
changes are plotted in Figure 15. It is clear that lowering the set temperature twice for about 14 days
has a reduction effect of about 50 kW in terms of power consumption during that period. And it is
clear from Figure 15 that in addition to the time-series changes with a similar tendency, the baseline
shows a slightly higher proportion of high values.

Table 24. Energy-saving effect when return temperature of the CRAC is set to 30 ◦C (21 November
2019 to 6 December 2019; sample number: 706).

Period Points Setting of CRAC
Return Temperature

(Measured Value-Based
Run) Sum of 706 Points

21 November 2019–
6 December 2019 706 30 ◦C 49.15 kW
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Figure 15. Comparison of measured power consumption and baseline time-series change when CRAC
return temperature is changed to 30 ◦C.

Past data may be used to verify the energy-saving effect. To confirm the features of using the model
using machine learning, the energy-saving effect was verified when power consumption in November
2019 was taken as the power consumption in the previous year (return-air temperature setting for
CRAC was 28 ◦C). Measured values of power consumption for CRAC for each year and time-series
changes of the values predicted by the baseline model using 2019 data are shown in Figure 16. As clear
from this result, with the return-air temperature of the CRAC set at the same value (28 ◦C), and even
if the periods (21 November to 30 November) are equivalent, it is difficult to treat the past record of
CRAC power consumption as a baseline. This difficulty can be attributed to the difficulty in using last
year’s data because internal load changes over time (as described above).Energies 2020, 13, x FOR PEER REVIEW 20 of 23 
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5.4. Additional Verification of Baseline When the Setting of CRAC Return Temperature Is Changed

For the purpose to add explaining the certainty of the baseline when the setting of CRAC return
temperature is changed as explained in the previous section, the verification when the setting of CRAC
return temperature is lowered was conducted. The verification was carried out during the following
period and the verification results are shown in Table 25. From this table, it is shown that when the
setting of CRAC return temperature lowered, the actual power consumption of CRAC is higher than
that of the baseline, and how much energy is increased when this change of CRAC return temperature
is implemented. I think it is possible to quantitatively grasp what has happened.

Table 25. When return temperature of the CRAC is set to 20–26 ◦C (10 December 2019 to 20 December
2019; sample number: 479).

Period Points Setting of CRAC
Return Temperature

(Measured Value-Based
Run) Sum of 706 Points

10 December 2019–
12 December 2019 97 26 ◦C −33.05kW

12 December 2019–
16 December 2019 193 24 ◦C −37.76kW

16 December 2019–
18 December 2019 97 22 ◦C −13.67kW

18 December 2019–
20 December 2019 92 20 ◦C −126.97kW

6. Concluding Remarks

In this study, we proposed the methods which are prediction of rack intake temperature and
calculation of baseline to support to promote energy-saving measures. The evaluation of indices was
defined for each problem, the suitable machine learning method was considered for each problem,
and the method was narrowed down by experiment and verification. Using the selected method,
we constructed a model that can predict and calculate the rack intake temperature and baseline with
high accuracy in a server room. Furthermore, we clarified the effects of model explanatory variables
and learning data that affect data accumulation on accuracy, and added consideration on data collection
and accumulation in the server room. By utilizing the proposed method and the data in the server
room, it is possible to support a highly reliable and highly efficient data center operation. However,
since this study is a result in one server room, research on the application of this technology in different
rooms is an issue in the future.

� Prediction of rack intake temperature

• We defined an evaluation indices that we considered to be important of data center
operation, and verified it with multiple machine learnng methods which has character of
self-learning. I built a model which predicted using a state space model as a method high
accuracy from the viewpoint of the evaluation indices.

• It was clarified that the return temperature of CRAC is an important among the explanatory
variables on this model.

� Calculation of the CRAC baseline

• We selected a machine learning method with XAI that we thought was important in
this problem.

• We verified the multiple methods and selected GBDT as a method high accuracy from the
viewpoint of evaluation indices. In addition, We quantified the influence of the explanatory
variables on the objective variables and showed that the model has explanatory power.
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