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Abstract: This work deals with the use of the Clarke transformation for the theoretical derivation
of circuit models for the analysis of asymmetrical transients in three-phase circuits. Asymmetrical
transients occur when only one or two phases of a three-phase power system are involved in a switch
operation. Such a condition is critical from a theoretical viewpoint since the Clarke transformation is
based on the assumption of circuit symmetry between the three phases. If the symmetry assumption
is not met, the equivalent circuits in the transformed variables α, β, and 0 are not uncoupled.
The literature concerning numerical approaches for asymmetrical transient analysis is very rich, but
a comprehensive and rigorous analytical investigation of circuit models within the framework of
the Clarke transformation is still lacking. Contrary to numerical approaches, analytical solutions
provide deeper insight into the phenomenon and allow for theoretical interpretation and better
understanding of the transient behavior. The proposed circuit models show that the β variables
are always uncoupled with α and 0 variables, whereas coupling between α and 0 variables can be
properly represented by an ideal transformer. Moreover, in the case of single-line switching, the β
variables have no transient, i.e., they keep the steady-state behavior. Transient properties can be
readily and effectively observed by representing the trajectory of the space vector on the complex
plane. All the analytical results have been checked numerically through the Simulink (Matlab R2020a,
The MathWorks, Inc., Natick, MA, USA) implementation of a specific three-phase circuit introduced
to illustrate the main theoretical issues.

Keywords: analytical methods; asymmetrical three-phase transients; Clarke transformation; space
vector representation; time-domain analysis

1. Introduction

Transformation methods for circuit analysis of three-phase power systems have a long and
important history in electrical engineering. Symmetrical components and Clarke transformations
are well-known examples of such mathematical tools [1,2]. From a modern perspective, three-phase
transformation methods can be considered as special cases of a more general approach consisting of
the decoupling of system equations through matrix diagonalization [3,4]. Decoupled equations can be
easily solved provided that the transformed variables (i.e., the modal variables) are used instead of
the natural variables. Finally, inverse transformation allows the evaluation of the solution in terms of
natural variables. Identification of the transformation matrix which is able to diagonalize the system
matrix is the crucial point of the methodology. In the most general case, such identification can be
obtained numerically for each specific system to be solved [5]. When three-phase power systems
come into play, however, system matrices (i.e., resistance, inductance, and capacitance matrices)
show a specific symmetrical structure originating from the common assumption of circuit symmetry
between the three phases. Such an assumption allows the analytical and a priori determination of the
transformation matrices. The symmetrical components’ transformation operates on phasors, and the
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corresponding transformation matrix is complex. The Clarke transformation operates on time-domain
variables, and the corresponding transformation matrix is real.

Transient analysis of three-phase circuits is a topic of paramount importance in modern power
systems where a huge number of electronic and electromechanical components are scattered along the
networks and are continuously connected and disconnected. The dynamic circuit elements included in
such components produce overcurrents/voltages when the topology of the network is sharply changed
by the operation of switches. Prediction and evaluation of overcurrents/voltages is important in order
to prevent malfunctioning and damage of other components and subsystems [6–9]. As far as transient
analysis of three-phase circuits is concerned, the Clarke transformation is the natural candidate since it
operates in the time domain [10–13]. In fact, a general methodology for the analysis of three-phase
symmetrical transients based on the Clarke transformation and the related concept of space vector has
been recently published [14].

If asymmetrical transients are considered, however, the general methodology outlined above is
invalidated [15–17]. In fact, asymmetrical transients originate from a switch operation of one or two
phases in a specific section of a three-phase circuit. Such asymmetrical operation introduces circuit
asymmetry between the three phases, and therefore the straightforward use of the Clarke transformation
is prevented. The analysis of asymmetrical transients in terms of the Clarke transformation and the
space vector concept, however, would be of great interest because of the widespread use of such
mathematical tools.

The main objective of this work is the definition of a general methodology for the analytical
solution of asymmetrical transients based on the Clarke transformation. Asymmetry between the
three phases requires specific theoretical work since the straightforward application of the Clarke
transformation does not produce diagonalization of system matrices. Analytical solutions in closed
form are derived based on meaningful interpretation and representation of interaction between Clarke
modal circuits (i.e., α, β, and 0 circuits) due to phase asymmetry.

The proposed analytical approach provides theoretical insight into the comprehension of
asymmetrical transients by explaining the role of each Clarke modal circuit in the determination of the
time-domain phase variables. A comparable analytical contribution is not available in the relevant
literature, whereas the literature concerning the numerical simulation of transients in three-phase
systems is vast (e.g., see [7,18–22]). In particular, time-domain and frequency-domain analysis of
asymmetrical transients has proved to be effective in the characterization of faults in electrical machines,
power lines, and power electronics systems [23–32]. Therefore, the analytical results derived in this
paper can provide theoretical support to both existing and new methodologies for fault characterization.

This paper is organized as follows. In Section 2, the background concerning Clarke transformation
and the space vector properties is recalled. In Section 3, the proposed methodology for Clarke
circuit modeling of asymmetrical transients is derived in the Laplace domain. In particular, the
two cases corresponding to single-line and two-line switching are treated separately and in detail.
Frequency-domain analysis provides very simple results from a formal viewpoint, but inverse Laplace
transform is needed to obtain explicit time-domain solutions. In Section 4, the proposed methodology
is developed directly in the time domain. Explicit time-domain solutions are obtained through the
conventional state-Equation approach applied to α, β, and 0 circuits instead of the whole three-phase
circuit. Analytical results are validated in Section 5 through the Simulink implementation of a specific
three-phase circuit used to illustrate the main theoretical properties derived in Sections 3 and 4. Finally,
conclusions are drawn in Section 6.

2. Background: The Clarke Transformation

Since the objective of this work is the transient (i.e., time domain) analysis of three-phase circuits
due to line switching, the most suitable mathematical tool is a transformation operating in the
time domain, such as the Clarke transformation. In fact, the well-known symmetrical components
transformation is not suited to the present objective since it is operating on phasor quantities (i.e., in the
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frequency domain). It will be shown that a proper (non-conventional) use of the Clarke transformation
allows the derivation of closed-form analytical solutions for time-domain voltages and currents in
three-phase circuits after instantaneous switching of one or two lines. Such a kind of circuit operation
introduces asymmetry in a three-phase circuit (because only one or two lines are involved in the
switching). For this reason, a non-conventional use of the Clarke transformation is required, since its
conventional use assumes circuit symmetry of the three phases.

The Clarke transformation applies to each triplet of phase time-domain variables a, b, c (voltages
or currents) in a given three-phase circuit. For example, by considering a triplet of phase currents
(similar results hold for phase voltages):

iα
iβ
i0

 = T


ia
ib
ic

 =
√

2
3


1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2




ia
ib
ic

 (1)

Notice that in Equation (1), the rational form of the Clarke transformation was used (i.e., the
factor

√
2/3 was introduced). This choice corresponds to orthogonality of the transformation matrix T

(i.e., T−1 = Tt), leading to the conservation of power through the transformation.
Under the assumption of circuit symmetry of the three phases, a phase inductance matrix L

(and capacitance/resistance matrices, if needed) is diagonalized by the Clarke matrix T:

LT = TLT−1 = T


Lp Lm Lm

Lm Lp Lm

Lm Lm Lp

T−1 =


Lα 0 0
0 Lβ 0
0 0 L0

 (2)

where Lα = Lβ = Lp − Lm and L0 = Lp + 2Lm.
Thus, under the assumption of circuit symmetry, the use of the Clarke transformation for all

the phase variables and all the three-phase components leads to three uncoupled modal circuits α, β,
and 0. Moreover, since the α and β modal circuits have the same topology and the same parameters
(e.g., Lα = Lβ, as shown above), each couple of α and β electrical variables can be combined in a space
vector, i.e., a complex valued function of time where the real part is given by the α component, and the
imaginary part is given by the β component. For the currents in Equation (1), the corresponding space
vector is defined as:

i(t) = iα(t) + jiβ(t) (3)

It can be readily shown that the phase variables a, b, c can be recovered from the space vector as:

ia(t) =

√
2
3

Re
(
i(t)

)
+

1
√

3
i0(t) (4)

ib(t) =

√
2
3

Re
(
α2i(t)

)
+

1
√

3
i0(t) (5)

ic(t) =

√
2
3

Re
(
αi(t)

)
+

1
√

3
i0(t) (6)

where α = e j2π/3. Therefore, apart from the zero component contribution i0(t), the phase variables a, b,
c can be recovered as the instantaneous components of the space vector on the three axes denoted as a,
b, and c on the complex plane, each with an angular displacement of 2π/3 (see Figure 1).
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Figure 1. The phase variables a, b, c can be recovered as the instantaneous components of the space
vector on the three axes a, b, and c whose angular displacement on the complex plane is 2π/3.

In previous papers, it was shown that the use of Clarke transformation (similarly to the symmetrical
components transformation) also results in topological properties of the modal circuits [33]. In particular,
it was shown that: (1) in the α and β modal circuits, the star centers in a three-phase circuit correspond
to shorted terminals with respect to the system reference point; (2) a single-phase circuit, possibly
connected to the three-phase star centers, results in ideal transformers (with ratio

√
3) connecting such

a single-phase circuit to the 0 modal circuit.
If the assumption of circuit symmetry of the three phases is not met, the use of the Clarke

transformation does not provide matrix diagonalization. Therefore, the modal circuits α, β, and
0 are not uncoupled. Thus, in the conventional analysis, in case of phase asymmetry, the Clarke
transformation is not used since its application does not lead to circuit simplification.

In this paper, however, it will be shown that a proper methodology can be defined in order to
study single-line and double-line switching (i.e., circuit asymmetry) by using the Clarke transformation.
The mutual coupling between modal circuits will be described in rigorous terms and a consistent
circuit representation of circuit coupling will be derived.

Finally, it is worth noting that the Clarke transformation, as a linear transformation, can be used
to operate in the Laplace domain. This property will be exploited in the transient analysis derived in
the next section. The explicit time-domain solution of the proposed circuit models can be obtained
through an inverse Laplace transformation.

3. Circuit Modeling of Line Switching for Transient Analysis: Laplace-Domain Approach

Single-line or double-line switching (i.e., opening or closing operation on one or two phases)
in a three-phase circuit results in the loss of the main assumption for the effective use of the Clarke
transformation, i.e., the circuit symmetry of the three phases. Therefore, the cases of single-line or
double-line switching cannot be treated in a straightforward way through the Clarke transformation.

The proposed methodology foresees two steps [16], conceptually similar to the standard
methodology used to analyze steady-state asymmetrical faults through symmetrical components in
the phasor domain [3]. First, the three-phase section where the line switching is located is removed.
Since the remaining three-phase circuit has phase symmetry, the Clarke transformation can be used
and the three Thevenin equivalents α, β, and 0 in the Laplace domain can be derived. Second, the
voltage/current constraints describing line switching are transformed into the Clarke domain, and
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the resulting constraints on the α, β, and 0 variables are implemented in the α, β, and 0 Thevenin
equivalents previously obtained.

Let us consider the general three-phase circuit represented in Figure 2. A single-phase circuit
connected across the star centers is also included. In the simplest case, such a single-phase circuit
consists in an impedance (open and short circuits as special cases). The three-phase port (i.e., three-port
component) S is the circuit representation of the three-phase section where line switching is located.
As a three-port component, S will be defined by three relationships describing line switching (one or
two lines involved). The methodology outlined above foresees first the removal of S in order to obtain
the three-phase system with phase symmetry represented in Figure 3. Such a system can be studied
with the conventional analysis based on the Clarke transformation. In particular, the α, β, and 0
Thevenin equivalents in the Laplace domain can be readily derived (Figure 4). The second step foresees
the Clarke transformation and circuit implementation of the relationships describing the three-phase
port S. To this aim, two cases can be considered, i.e., single-line switching (phase a), and double- line
switching (phases b and c). For more general results, each line switch is modelled as an impedance Z
(s) in parallel with an ideal switch opening at t = 0 (Figure 5). Of course, the special case of ideal line
interruption (i.e., open-circuit fault) can be modeled by assuming Z→∞ .

Figure 2. A generic three-phase circuit including a single-phase circuit connected to the star centers.
The three-phase port S is where asymmetrical line switching is operated.

Figure 3. No-load three-phase circuit in the Laplace domain once the asymmetrical three-phase port S
is removed.

Figure 4. Laplace-domain Thevenin equivalents of the three modal circuits α, β, 0, according to the
Clarke transformation.
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Figure 5. Circuit models for the single-line (a) and the double-line (b) switching. When t = 0, the ideal
switches open, and the impedances Z are series connected to the corresponding lines.

It is worth noticing that the selection of phase a for single-line switching, and phases b and c
for double-line switching have no impact on the generality of the following derivations. In fact, the
analysis of a three-phase circuit can be always performed by renaming (if needed) the phases according
to the choice operated in this paper.

3.1. Single-Line Switching

In case of line switching of phase a, the three-phase port S is described by the three Laplace-domain
relationships:

Ia(s) = Va(s)/Z(s), Vb(s) = 0, Vc(s) = 0 (7)

The Clarke transformation of Equation (7) provides:
Vα(s)
Vβ(s)
V0(s)

 = T


Va(s)

0
0

 =
√

2
3


Va(s)

0
Va(s)/

√
2

 (8)


Iα(s)
Iβ(s)
I0(s)

 = T


Va(s)/Z(s)

Ib(s)
Ic(s)

 =
√

2
3


Va(s)/Z(s) − 1/2(Ib(s) + Ic(s))

√
3/2(Ib(s) − Ic(s))

1/
√

2(Va(s)/Z(s) + Ib(s) + Ic(s))

 (9)

From (8) we obtain
Vα(s) =

√

2V0(s) (10)

whereas from Equation (9) by eliminating (Ib(s) + Ic(s)), and by taking into account that from
Equation (8) we have Va(s) =

√
3/2Vα(s), we obtain

Iα(s) = −
1
√

2
I0(s) +

Vα(s)
2
3 Z(s)

(11)

Therefore, from Equations (10) and (11), we obtain that the line switching of phase a results
in circuit coupling between α and 0 Thevenin equivalents through an ideal transformer with ratio
k1 =

√
2, and a parallel impedance 2Z(s)/3 on the primary side (see Figure 6a). It is worth noticing

that in the case of open 0 circuit (i.e., in case of missing fourth wire in the three-phase circuit), the α
Thevenin circuit has an uncoupled transient with load 2Z(s)/3.
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Figure 6. Connection of Thevenin modal circuits in the Laplace domain. Line switching of phase
a result in (a) coupled α and 0 circuits through an ideal transformer with ratio k1 =

√
2 and (b) an

uncoupled and shorted steady-state circuit β.

Moreover, from Equation (8), we obtain Vβ(s) = 0, i.e., the β Thevenin equivalent is shorted and
uncoupled with the other two Thevenin equivalents (Figure 6b). It is worth noting that the shorted β
Thevenin circuit has no transient, i.e., it holds the previous steady state.

The modal variables α, β, 0 can be readily obtained by direct solution of the circuits in Figure 6:

Vα(s) =

VTα(s)
ZTα(s)

+
k1VT0(s)
k2

1ZT0(s)

1
ZTα(s)

+ 1
2
3 Z(s)

+ 1
k2

1ZT0(s)

(12)

V0(s) =
1
k1

Vα(s) (13)

Vβ(s) = 0 (14)

Iα(s) =
VTα(s) −Vα(s)

ZTα(s)
(15)

I0(s) = −k1

Iα(s) −
Vα(s)
2
3 Z(s)

 (16)

Iβ(s) =
VTβ(s)

ZTβ(s)
(17)

where Iβ is not affected by the line switching.
As far as the phase voltage Va(s) is concerned, from the inverse Clarke transformation we obtain:

Va(s) =

√
2
3

Vα(s) +
1
√

3
V0(s) =

√
3
2

Vα(s) (18)

Finally, from the inverse Clarke transformation, the phase currents can be obtained:
Ia(s)
Ib(s)
Ic(s)

 = T−1


Iα(s)
Iβ(s)
I0(s)

 (19)

In particular, after simple algebra we obtain:

Ia(s) =

√
3
2

Vα(s)
Z(s)

(20)

Ib(s) =

√
3
2

(
−Iα(s) +

1
√

3
Iβ(s) +

1
Z(s)

Vα(s)
)

(21)
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Ic(s) =

√
3
2

(
−Iα(s) −

1
√

3
Iβ(s) +

1
Z(s)

Vα(s)
)

(22)

Note that in case of ideal line interruption (i.e., Z→∞ ), from Equation (20), we obtain consistently
that the current in phase a is zero (open-circuit fault).

The time-domain solutions can be obtained through conventional inverse Laplace transform of
Equations (12)–(18), and (20)–(22). Thus, explicit time-domain solutions depend on the parameters of
the Thevenin equivalents of the specific circuit under analysis.

3.2. Double-Line Switching

In the case of simultaneous line switching of phases b and c, and by assuming equal impedances
Z, the three-phase port S is described by these three relationships:

Va(s) = 0, Ib(s) = Vb(s)/Z(s), Ic(s) = Vc(s)/Z(s) (23)

The Clarke transformation of Equations (23) provides:
Vα(s)
Vβ(s)
V0(s)

 = T


0

Vb(s)
Vc(s)

 =
√

2
3


−1/2(Vb(s) + Vc(s))
√

3/2(Vb(s) −Vc(s))
1/
√

2(Vb(s) + Vc(s))

 (24)


Iα(s)
Iβ(s)
I0(s)

 = T


Ia(s)

Vb(s)/Z(s)
Vc(s)/Z(s)

 =
√

2
3


Ia(s) − 1

2Z(s) (Vb(s) + Vc(s))
√

3
2Z(s) (Vb(s) −Vc(s))

1
√

2

(
Ia(s) +

Vb(s)+Vc(s)
Z(s)

)
 (25)

From Equation (24), we obtain:

Vα(s) = −
1
√

2
V0(s) (26)

whereas by eliminating Ia in Equation (25) and by taking into account that from Equation (24), we have

Vα(s) = −
Vb(s)+Vc(s)

√
6

, we obtain:

Iα(s) =
√

2I0(s) +
Vα(s)

Z(s)/3
(27)

From Equations (26) and (27) we readily obtain that the two modal circuits α and 0 are coupled
through an ideal transformer with ratio k2 = − 1

√
2
, and a parallel impedance Z(s)/3 on the primary

side (Figure 7a). In the special case of a missing fourth wire (i.e., no single-phase circuit across the
star centers), the 0 circuit is open and the α circuit shows an uncoupled transient behavior with load
Z(s)/3.

Figure 7. Connection of Thevenin modal circuits in the Laplace domain. Line switching of phases b
and c results in (a) coupled α and 0 circuits through an ideal transformer with ratio k2 = −1/

√
2, and

(b) an uncoupled circuit β.
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Moreover, from Equations (24) and (25), we obtain Vβ(s) = Z(s)Iβ(s), i.e., the β Thevenin
equivalent has the load impedance Z, and it is uncoupled with the other two modal circuits (Figure 7b).
Notice that, contrary to the single-line case where the β circuit had no transient, in this case also the β
circuit shows a transient behavior.

The modal variables can be readily evaluated from the equivalent circuits in Figure 7a,b.
The analysis provides results similar to Equations (12)–(17):

Vα(s) =

VTα(s)
ZTα(s)

+
k2VT0(s)
k2

2ZT0(s)

1
ZTα(s)

+ 1
1
3 Z(s)

+ 1
k2

2ZT0(s)

(28)

V0(s) =
1
k2

Vα(s) (29)

Vβ(s) = VTβ(s)
Z(s)

ZTβ(s) + Z(s)
(30)

Iα(s) =
VTα(s) −Vα(s)

ZTα(s)
(31)

I0(s) = −k2

Iα(s) −
Vα(s)
1
3 Z(s)

 (32)

Iβ(s) =
VTβ(s)

ZTβ(s) + Z(s)
(33)

From the inverse Clarke transformation, we obtain the phase voltages:
Va(s)
Vb(s)
Vc(s)

 = T−1


Vα(s)
Vβ(s)
V0(s)

 (34)

In particular, from Equations (28)–(30), we have the obvious result Va(s) = 0, and:

Vb(s) =

√
3
2

(
−Vα(s) +

1
√

3
Vβ(s)

)
(35)

Vc(s) =

√
3
2

(
−Vα(s) −

1
√

3
Vβ(s)

)
(36)

Finally, also the phase currents can be readily obtained by the inverse Clarke transformation (19).
After simple algebra, we obtain:

Ia(s) =

√
3
2

(
Iα(s) −

1
Z(s)

Vα(s)
)

(37)

Ib(s) =

√
3
2

(
1
√

3
Iβ(s) −

1
Z(s)

Vα(s)
)

(38)

Ic(s) =

√
3
2

(
−

1
√

3
Iβ(s) −

1
Z(s)

Vα(s)
)

(39)

Notice that in the case of ideal line interruptions (i.e., Z→∞ on phases b and c) both Ib(s) and
Ic(s) approach zero, since also Iβ(s)→ 0 (see Equation (33)).
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The time-domain solutions can be obtained through conventional inverse Laplace transform of
Equations (28)–(33) and (35)–(39).

4. Circuit Modeling of Line Switching for Transient Analysis: Time-Domain Approach

The Laplace-domain analysis derived in Section 3 can be readily reformulated in the time domain
to obtain transient solutions in explicit form. In the Laplace domain, each line switch was modeled as
an ideal switch in parallel with an impedance Z(s) (see Figure 5). In the time domain, we assume that
the element in parallel with each ideal switch has a voltage/current relationship of the form i = g(v),
where g, in general, is a linear integral/differential relationship. For example, in case of a parallel
connection of a resistor and a capacitor, i = g(v) = Gv + Cdv/dt. This assumption is needed since in
the following derivations the phase currents must be written in terms of voltages.

The two cases of single-line and double-line switching will be considered. In both cases, for t < 0,
the α, β, and 0 dynamic circuits are uncoupled since the three switches are still closed. For t ≥ 0 the
three-phase port S sets single or double-phase constraints on the phase variables. In the following
subsections, it is shown that such constraints correspond to coupling between α and 0 circuits through
an ideal transformer with different transformation ratio for single and double-line switching.

4.1. Single-Line Switching

In the case of line switching in t = 0 of phase a, the three-phase port S is described for t ≥ 0 by the
three time-domain relationships:

ia(t) = g(va(t)), vb(t) = 0, vc(t) = 0 (40)

The Clarke transformation of Equations (40) provides:
vα
vβ
v0

 = T


va

0
0

 =
√

2
3


va

0
va/
√

2

 (41)


iα
iβ
i0

 = T


g(va)

ib
ic

 =
√

2
3


g(va) − 1/2(ib + ic)
√

3/2(ib − ic)
1/
√

2(g(va) + ib + ic)

 (42)

From Equation (41) we obtain
vα =

√

2v0 (43)

whereas from Equation (42) by eliminating (ib + ic), and by taking into account that from Equation (41)
we have va =

√
3/2vα, we obtain

iα = −
1
√

2
i0 +

3
2

g(vα) (44)

Therefore, from Equations (43) and (44) we obtain that the line switching of phase a results in
circuit coupling between α and 0 circuits through an ideal transformer with ratio k1 =

√
2, and a

parallel element with current 3
2 g(vα) on the primary side (see Figure 8a). It is worth noticing that in

the case of an open 0 circuit (i.e., in the case of a missing fourth wire in the three-phase circuit), the
α circuit has an uncoupled transient with load 3

2 g(vα). This result is the time-domain version of the
Laplace-domain result where the parallel element on the primary side of the ideal transformer was the
impedance 2

3 Z(s).
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Figure 8. Connection of modal circuits in the time domain. Line switching of phases b and c results in
(a) coupled α and 0 circuits through an ideal transformer with ratio k1 =

√
2, and (b) an uncoupled and

shorted steady-state circuit β.

Moreover, from Equation (41) we obtain vβ = 0, i.e., the β circuit is shorted and uncoupled with
the other two circuits (Figure 8b). It is worth noticing that the shorted β circuit has no transient, i.e., it
holds the previous steady state.

4.2. Double-Line Switching

In the case of simultaneous line switching of phases b and c, and by assuming an equal
voltage/current relationship i = g(v) for the elements in parallel to ideal switches, the three-phase port
S is described by the three relationships:

va = 0, ib = g(vb), ic = g(vc) (45)

The Clarke transformation of Equation (45) provides:
vα
vβ
v0

 = T


0
vb
vc

 =
√

2
3


−1/2(vb + vc)
√

3/2(vb − vc)

1/
√

2(vb + vc)

 (46)


iα
iβ
i0

 = T


ia

g(vb)

g(vc)

 =
√

2
3


ia − 1

2 (g(vb) + g(vc))
√

3
2 (g(vb) − g(vc))

1
√

2
(ia + g(vb) + g(vc))

 (47)

From Equation (46) we obtain:

vα = −
1
√

2
v0 (48)

whereas by eliminating ia in Equation (47), by taking into account that from Equation (46), we have
vα = −

vb+vc
√

6
, and by using the linearity assumption g(va) + g(vb) = g(va + vb), we obtain:

iα =
√

2i0 + 3g(vα) (49)

From Equations (48) and (49) we readily obtain that the two modal circuits α and 0 are coupled
through an ideal transformer with ratio k2 = − 1

√
2
, and a parallel element with current 3g(vα) on the

primary side (Figure 9a). In the special case of a missing fourth wire (i.e., no single-phase circuit across
the star centers), the 0 circuit is open and the α circuit shows an uncoupled transient behavior with
load 3g(vα). This result is the time-domain version of the Laplace-domain result where the parallel
element on the primary side of the ideal transformer was the impedance 1

3 Z(s).
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Figure 9. Connection of modal circuits in the time domain. Line switching of phases b and c results in
(a) coupled α and 0 circuits through an ideal transformer with ratio k2 = −1/

√
2 and (b) an uncoupled

circuit β.

Moreover, from Equations (46) and (47) we obtain iβ = g
(
vβ

)
, i.e., the β circuit is loaded with the

element g(v), and it is uncoupled with the other two modal circuits (Figure 9b). Notice that, contrary
to the single-line case where the β circuit had no transient, in this case also the β circuit shows a
transient behavior.

4.3. Time-Domain Analytical Solution

The dynamic circuits in Figures 8 and 9 can be readily solved in the time domain through the
conventional state-Equation approach. Given a three-phase circuit with dynamic order N, the total
dynamic order after Clarke transformation must still be N. Thanks to the decoupling of the β circuit,
however, each circuit in Figures 8 and 9 (i.e., the α-0 circuit and the β circuit) typically has a dynamic
order N/2. Thus, the proposed methodology allows the analytical evaluation of transients by solving
dynamic circuits with half dynamic order with respect to the original three-phase circuit. Moreover, in
the case of single-line switching, it was shown that the β circuit has no transient. Therefore, only the
α-0 circuit must be solved.

More specifically, each circuit in Figures 8 and 9, with dynamic order M, can be described in terms
of a state Equation of the form:

d
dt

x = Ax + Bu (50)

where x is the column vector of the M state variables, u is the column vector of the sources, A is the
M ×M state matrix, and B is the input matrix. For sinusoidal sources with angular frequency ω, the
steady-state solution is given by the phasor solution:

Xs = ( jω1−A)−1BU (51)

where 1 is the M ×M identity matrix, and Xs and U are phasor vectors.
The transient component xt of the solution can be readily calculated from the eigenvalues {λm}

M
m=1

of the state matrix A. Indeed, by assuming distinct eigenvalues, the transient of the generic k-th state
variable can be written as:

xt,k(t) =
M∑

m=1

Ck,meλmt (52)

where the constants Ck,m can be calculated by setting the initial conditions x0 = x(0) − xs(0) as [14]:

C =


C1,1 · · · C1,M

...
. . .

...
CM,1 · · · CM,M

 =
[

x0 Ax0 . . . AM−1x0
]

1 λ1 λ2
1 · · · λM−1

1
...

...
... · · ·

...
1 λM λ2

M · · · λM−1
M


−1

. (53)
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Therefore, the complete solution is given by:

x(t) = xt(t) + xs(t) (54)

5. Case Study

The simple three-phase circuit represented in Figure 10 was studied by means of the circuit
models and the analytical results obtained in Sections 3 and 4. The circuit was also implemented
in Simulink/Matlab (R2020a, The MathWorks, Inc., Natick, MA, USA) to check the correctness of
analytical results. The objective was the evaluation of the time-domain behavior of the phase currents
ia(t), ib(t), ic(t), and the corresponding space vector i(t), caused by the line-switching operated by the
three-phase port S.

Figure 10. The three-phase circuit used for simulation analysis of the circuit models derived in the
paper. The three-phase port S operates the line switching.

Analytical evaluations were performed by implementing in Matlab the time-domain approach
outlined in Section 4. The same results, however, can be obtained through the equivalent
frequency-domain approach outlined in Section 3 by means of inverse Laplace transform. Notice
that the dynamic order N of the three-phase circuit in Figure 10 is 8, increased by the dynamic order
of the switching network S. By means of the methodology outlined in Section 4, however, the α-0
circuits in Figures 8 and 9 have a dynamic order of 4, increased by the dynamic order of the switching
element g(v). The dynamic order of the β circuit is 4 in Figure 8, increased by the dynamic order of the
switching element g(v) in Figure 9. Thus, the original dynamic three-phase circuit has been split into
uncoupled circuits with lower dynamic order.

In Figure 10, line switching is operated by the three-phase port S whose inner structure is
represented in Figure 5a for the single-line case, and in Figure 5b for the double-line case. The impedance
Z is assumed as consisting in the series connection of a capacitor C and a resistor R. The resistance
R0 of the single-phase circuit can be set to an extremely large value to implement the case of an open
single-phase circuit.

The following numerical values were assumed for the parameters in Figure 10. Notice that the
selected values have no specific relation with a practical system implementation, since the proposed
case study is for illustration purposes only. The sinusoidal 50 Hz three-phase voltage source was
selected such that the corresponding positive-sequence phasor is Ep = 100e j30◦ V, the negative-sequence
phasor is zero, and the zero-sequence phasor is E0 = 10 V. The resistance parameters were R1 = 0.1 Ω
and R2 = 10 Ω. The fourth-wire resistance R0 was set as equal to 1 Ω in simulations where the
impact of the single-phase circuit was studied, and arbitrarily large in the case of an open single-phase
circuit. The inductive/capacitive parameters were L1 = 1 mH, L2 = 20 mH, Lm = 5 mH, C2 = 122 µF.
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Finally, different values were considered for the R and C line-switching parameters within the
three-phase port S. In particular, R = 0 and R = 1 Ω to put into evidence the role of R in damping
oscillations, C = 100 µF and C = 500 µF to highlight the corresponding dynamical effects.

Figures 11–14 were obtained for single-line switching, whereas Figures 15–17 were obtained
for double-line switching. All the figures show the time-domain behavior of the space vector i(t)
on the complex plane (the figures denoted with letter (a)), and the corresponding phase currents
ia(t), ib(t), ic(t) as functions of time (the figures denoted with letter (b)). In each figure, the current
space vector is represented also for the steady state preceding the line switching occurring at t = 0.
Such steady-state trajectory is a circle because the voltage source has negative-sequence component
equal to zero. The point denoted with t = 0 on the complex plane is corresponding to the starting
point of the transient, where the space vector trajectory leaves the circular shape.

Figure 11. Single-line switching of phase a. Time-behavior of the current space vector (a) and the
related phase currents (b) for the three-phase circuit in Figure 10 where S operates single-line switching
of phase a with an impedance Z consisting in a capacitor C = 100 µF. The single-phase circuit is open
since R0 →∞ .

Figure 12. Single-line switching of phase a. Time-behavior of the current space vector (a) and the
related phase currents (b) for the three-phase circuit in Figure 10 where S operates single-line switching
of phase a with an impedance Z consisting of a capacitor C = 100 µF in series with a resistor R = 1 Ω.
The single-phase circuit is open since R0 →∞ .
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Figure 13. Single-line switching of phase a. Time-behavior of the current space vector (a) and the
related phase currents (b) for the three-phase circuit in Figure 10 where S operates single-line switching
of phase a with an impedance Z consisting of a capacitor C = 500 µF. The single-phase circuit is open
since R0 →∞ .

Figure 14. Single-line switching of phase a. Time-behavior of the current space vector (a) and the
related phase currents (b) for the three-phase circuit in Figure 10 where S operates single-line switching
of phase a with an impedance Z consisting of a capacitor C = 100 µF. The single-phase circuit consists
in R0 = 1 Ω.

Figure 11a,b shows the case of an open single-phase circuit, and single-line switching with R = 0
and C = 100 µF. Note the high-frequency oscillations captured by the analytical model. According to
the modal circuits derived in Sections 3 and 4, in this case the α circuit has an uncoupled transient
(open single-phase circuit), whereas the β circuit has no transient because it is shorted (steady state).
Thus, the high-frequency oscillations in Figure 11a (and the corresponding oscillations in Figure 11b)
are due to the α component only (i.e., the x-coordinate), whereas the β component (i.e., the y-coordinate)
is in steady state and is not affected by the line switching. That is why the high-frequency oscillations
in Figure 11a have dominant horizontal direction (axis a). This explains the large relative amplitude of
the high-frequency oscillations superimposed to ia(t) in Figure 11b. Moreover, notice that the angular
orientation of the space vector trajectory in Figure 11a explains the dominant magnitude of the phase
current b in Figure 11b since ib(t) is given by the space vector component on the axis b represented in
Figure 11a.
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Figure 15. Double-line switching. Time-behavior of the current space vector (a) and the related phase
currents (b) for the three-phase circuit in Figure 10 where S operates double-line switching of phases b
and c with an impedance Z consisting of a capacitor C = 100 µF. The single-phase circuit is open since
R0 →∞ .

Figure 12a,b shows the effect of a resistor R = 1 Ω in series with the capacitor C in the line-switch
impedance Z. Comparison with Figure 11a,b shows the damping effect of the resistor. In fact, oscillations
are rapidly attenuated both in the space vector and in the phase currents. Notice that the ellipse in
Figure 12a, corresponding to the new steady state, is fundamentally the same as in Figure 11a. This is
because, according to Figure 6a, the load of the α circuit is 2Z/3, where Z is dominated by the capacitive
component at 50 Hz (i.e., R� 1/(ωC)).

Figure 13a,b should be compared with Figure 11a,b since only the value of the capacitance C was
changed to C = 500 µF. Two main effects can be highlighted. First, the amplitude of the oscillations is
smaller. Second, the ellipse in Figure 13a, corresponding to the new steady state, is wider than the
ellipse in Figure 11a. This is due to the smaller impedance Z (i.e., larger capacitance C) forming the
load of the α circuit. Thus, a wider excursion of the α component of the space vector results in a wider
elliptical shape. Notice that the maximum range of the β component remains unchanged, since the β
circuit is not affected by the line switch. As a result, the time-behavior of the phase currents represented
in Figure 13b is more regular and shows closer peak values with respect to Figures 11b and 12b.

Figure 14a,b shows the effect of the interaction between the 0 and the α circuits. In fact, in this
case the resistance of the single-phase circuit was set to R0 = 1 Ω. According to the circuit model in
Figure 6, in this case the transient of the α circuit is affected by the 0 circuit, whereas the β circuit is still
in steady state. Actually, by comparing Figure 14a with Figure 11a, we observe a different inclination
angle of the two ellipses, whereas the range of the β component is still unchanged. The small clockwise
rotation of the space vector ellipse in Figure 14a with respect to Figure 11a results in a change in phase
currents amplitude, i.e., a decreased amplitude for ia and closer amplitudes for ib and ic.
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Figure 16. Double-line switching. Time-behavior of the current space vector (a) and the related phase
currents (b) for the three-phase circuit in Figure 10 where S operates double-line switching of phases b
and c with an impedance Z consisting of the series connection of a capacitor C = 100 µF and a resistor
R = 1 Ω. The single-phase circuit is open since R0 →∞ .

Figure 17. Double-line switching. Time-behavior of the current space vector (a) and the related phase
currents (b) for the three-phase circuit in Figure 10 where S operates double-line switching of phases b
and c with an impedance Z consisting of a capacitor C = 100 µF. The single-phase circuit consists in
R0 = 1 Ω.

Figure 15a,b shows the results related to the double-line switching, with switch impedance Z
consisting only of a capacitor C = 100 µF, and an open single-phase circuit (i.e., R0 →∞ ). From the
circuit models in Figure 7, we observe that in this case, the β circuit has a transient since it is loaded by Z.
Therefore, the whole transient is split in two uncoupled transients: the α circuit transient (independent
from the 0 circuit because it is open in this case), and the β circuit transient. Notice that the two modal
circuits have a different load, i.e., Z/3 for the α circuit and Z for the β circuit. Thus, the two solutions
must be evaluated separately. The consequence of a transient in the β circuit is clearly apparent in
Figure 15a where the range of the β component (i.e., the y-coordinate) of the space vector is much
smaller than in the steady state (circle). On the contrary, in the single-line switching, the range of the β
component remained unchanged (see Figure 11a). Moreover, since the β component also experiences
a transient, the oscillations in the space vector have no preferential direction (unlike the horizontal
direction in Figure 11a). Thus, in Figure 15a, the oscillations assume a kind of twirled behavior around
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the elliptical steady state. Such uniform distribution of the high-frequency oscillations can be clearly
observed on the phase currents in Figure 15b.

Figure 16a,b shows the effect of a resistor R = 1 Ω in series with the capacitor C = 100 µF in the
line-switch impedance Z. The same damping effect already observed in the single-line case represented
in Figure 12a,b is evidenced. The small inclination angle of the ellipse in Figure 16a shows a steady
state where the phase current with maximum amplitude is ia (space vector component on the axis a)
and the phase current with minimum amplitude is ib (space vector component on the axis b). This is
confirmed by the time-behavior of the phase currents in Figure 16b.

Figure 17a,b shows the effect of the interaction between the 0 circuit and the α circuit (see Figure 7a)
due to the single-phase circuit R0 = 1 Ω. The transient of the α circuit is affected by this interaction,
whereas the β circuit has an independent transient. This is apparent from the comparison between
Figures 15a and 17a. In the two figures, the range of the β component is the same, whereas the
dynamics of the α component is different. This results in an ellipse with a smaller range in the α
direction. The high-frequency behavior and the steady state in the phase currents are represented in
Figure 17b where the relation with the corresponding space vector in Figure 17a can be observed as in
the previous cases.

6. Conclusions

The circuit models derived in the paper provide a novel theoretical contribution to the field
of asymmetrical three-phase transients which is commonly tackled through numerical approaches.
The space vector tool has proven to be very effective in representing in compact form the information
about the transient properties.

Future work will be devoted to extending the analysis to the study of a sequence of switching
events. This point would be useful to model non-simultaneous operation of the three poles of a breaker,
or to model switching events in different sections of a three-phase system.
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