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Abstract: This paper presents a novel approach that aims to predict better reservoir quality regions
from seismic inversion and spatial distribution of key reservoir properties from well logs. The reliable
estimation of lithology and reservoir parameters at sparsely located wells in the Sawan gas field is
still a considerable challenge. This is due to three main reasons: (a) the extreme heterogeneity in the
depositional environments, (b) sand-shale intercalations, and (c) repetition of textural changes from
fine to coarse sandstone and very coarse sandstone in the reservoir units. In this particular study,
machine learning (ML) inversion algorithm was selected to predict the spatial variations of acoustic
impedance (AI), porosity, and saturation. While trained in a supervised mode, the support vector
machine (SVM) inversion algorithm performed effectively in identifying and mapping individual
reservoir properties to delineate and quantify fluid-rich zones. Meanwhile, the Sequential Gaussian
Simulation (SGS) and Gaussian Indicator Simulation (GIS) algorithms were employed to determine
the spatial variability of lithofacies and porosity from well logs and core analyses data. The calibration
of the detailed spatial variations from post-stack seismic inversion using SVM and wireline logs data
indicated an appropriate agreement, i.e., variations in AI is related to the variations in reservoir facies
and parameters. From the current study, it was concluded that in a highly heterogeneous reservoir,
the integration of SVM and GIS algorithms is a reliable approach to achieve the best estimation of the
spatial distribution of detailed reservoir characteristics. The results obtained in this study would also
be helpful to minimize the uncertainty in drilling, production, and injection in the Sawan gas field of
Pakistan as well as other reservoirs worldwide with similar geological settings.

Keywords: Sawan gas field; 3D seismic; well logs; support vector machine

1. Introduction

The high-quality region in the reservoir is defined as “the zone of maximum commercial
productivity under the currently employed technology”. This definition, itself, combines the disciplines

Energies 2020, 13, 486; doi:10.3390/en13020486 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-0155-4502
https://orcid.org/0000-0002-5212-8677
https://orcid.org/0000-0003-3913-763X
http://dx.doi.org/10.3390/en13020486
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/2/486?type=check_update&version=2


Energies 2020, 13, 486 2 of 19

of geophysics, geology, and petroleum engineering for the optimum production and operative
description of the reservoirs [1]. Correct identification of high-quality regions requires a thorough
understanding of porosity, permeability, fluid saturation, the volume of shale, areal extent, thickness,
and mechanical properties (last but not least) through the integration of seismic data, wireline log,
and core data analyses [2]. To quantify the high-quality regions, reservoir modeling, from drilling
to reservoir management activities, plays a vital role in understanding the reservoir behavior in
three-dimensional analysis. The pre-drill design primarily depends on the geosciences techniques
of sub-surface evaluation to determine the locations of better reservoir-quality rocks [3]. In general,
there are two approaches used to delineate and quantify the high-grade regions: (i) sub-surface
evaluation using pre/post-stack seismic, well logs, and core data analysis, (ii) interpretation of well
testing and production data. The latter aims to identify the best area for optimization of hydrocarbon
recovery. These distinct approaches though, can be categorized as PRE-DRILL and POST-DRILL
methods, respectively.

In the past few years, the inversion of seismic data to AI (acoustic impedance) has become
a common practice in industry and academia for the prediction of reservoir spatial properties.
An inversion is a numerical process that utilized seismic data to extract rocks’ physical properties and
fluids [4]. Over the recent years, several types of algorithms have been developed for mapping AI from
post-stack seismic amplitude data and further linking it to reservoir properties distribution in space [5].
Nowadays, an increase in computing power and modern technologies of acquisition, processing, and
interpretation of seismic data has empowered the reservoir geophysicists to focus on machine learning,
i.e., extracting AI using neural network algorithms [6–9]. The advantages of artificial neural network
algorithms over traditional statistical inversions are briefly discussed in the literature [6–11].

Since inversion can perform quantitative predictions of reservoir properties, it is usually associated
with such sort of limitations as tuning and interference, noise, bandwidth, and non-uniqueness is also
associated with inversion [12]. Thus, the accuracy of the outcome from seismic inversion depends on the
selection of the inversion method, resolution of both logging and the seismic data, and signal-to-noise
ratio of the target interval [10].

In this modern era, computer-based reservoir modeling has enabled us to overcome the problem
of complex spatial configurations. This is possible through dividing the reservoir volume into a 3D
grid of discrete volume cells which can be used as a database to integrate all available information [13].
The information for the spatial behavior of petrophysical parameters beyond the wells can only
be accessed using reservoir modeling techniques. However, if the available information is not
sufficient, Gaussian algorithms are a better approach to extrapolate the reservoir interval laterally and
vertically [14].

The Sawan gas field, located at the middle Indus basin in Pakistan, is one of the largest fields
in the world, with proven geological reserves of 3 trillion cubic feet (TCF) and expected recovery of
more than 1 TCF (Figure 1a). While discovered in 1998, its commercial production was started in
2003. On production tests, individual wells discharged more than 100 million standard ft3 (2.8 million
standard m3) of gas per day. Nevertheless, most surprising factor in the Sawan gas field is the high
geothermal gradient, resulting in reservoir temperatures of more than 175 ◦C. In the Sawan gas field,
the Cretaceous sandstone of the Lower Goru Formation serves as the main reservoir unit deposited
in heterogeneous shallow-marine environment from proximal delta-front settings. The Lower Goru
Formation is further divided into A, B, C, and D sandstone intervals (Figure 1b). As a preliminary
study, the complex and highly productive part of reservoir unit, i.e., C-sand interval, was evaluated
and interpreted in this study. This selection was based on the fact that the production from C-sand
interval has decreased rapidly during the past few years and has reached a state of high water cut.

In the past few years, multiple studies have been carried out to evaluate the remaining potential of
the C-sand interval using modern techniques [15–17]. Recent studies performed by Ali et al. [18] and
Asad and Rahim [19] indicated that model-based post-stack inversion presented good results for the
spatial distribution of reservoir properties and mapping potential gas-saturated zones in the C-sand
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interval. Even though the model-based inversion algorithm achieved good results, the quantification
of the highly productive area was scaled relative to the whole body of the reservoir. Moreover, they
were unable to tie the results with laboratory-measured reservoir parameters and production data
from the Sawan gas field.
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In the present study, the ML-based inversion algorithm is successfully applied in a supervised
mode (with wells) to correlate the seismic attribute with porosity and saturation values. Herein, the
time slices were generated at 20 ms intervals to get a better insight of the reservoir heterogeneity.
The inversion slices were further correlated with lithofacies, laboratory-measured porosity data, and
cross-sectional analysis of 3D effective porosity model using well logs simulation in order to map the
high-quality regions in the Sawan area.

2. Materials and Methods

In this study, the well logs data from six key wells, namely A, B, C, D, E, and X were used to
estimate porosity and saturation in the C-sand interval of Lower Goru Formation. The gamma-ray
(GR), spontaneous potential (SP), caliper (CAL), deep resistivity (LLD), P- and S- wave sonic (DTP
and DTS), density (RHOB), and neutron porosity (NPHI) logs were analyzed in order to highlight the
hydrocarbon-bearing zones and reservoir modeling.

Also, 237 core samples were available from reservoir interval for comparing the reliability of
porosity estimation. In this work, 3D seismic data of about 200 km2 area was utilized to mark the
respective stratigraphic horizons (e.g., C-sand interval of Goru Formation), as shown in Figure 2.
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2.1. Reservoir Parameters Estimation

In the context of the current work, the initial phase was to estimate the petrophysical
parameters. This estimation was to identify the unexplored hydrocarbon-bearing zones in the
reservoir interval. The following equations were employed for the estimation of effective porosity and
hydrocarbon saturation.

The volume of shale (Vsh) was estimated from the GR log using the Equation (1):

Vsh =
GRlog −GRmin

GRmax −GRmin
(1)

where GRlog, GRmin, and GRmax are gamma-ray log readings in the zone of interest, 100% clean sand,
and 100% shale respectively (API units).

The total porosity was estimated using a density log by following Equation (2):

ϕ =
ρma − ρb

ρma − ρ f
(2)

where ρma is the matrix density and ρf denotes fluid density.
The effective porosity (φeff) was estimated using the volume of shale (Vsh) and total porosity (φ)

from the Equations (1) and (2):
φe f f = φD(1−Vsh) (3)

Using Equations (1)–(3), the water saturation (Sw) was calculated using Poupone Leveaux
Indonesian model:

Sw = {[(
Vsh

2−Vsh

Rsh
)

1
2

+ (
ϕe

2

Rw
)

1
2

]

2

Rt}

−1/2

(4)

Sat.HC = 1 Sw (5)

where ‘Rt’ is the true resistivity of formation taken from deep resistivity (LLD) log response, ‘Rsh’
is the resistivity of shale (4 Ωm), ‘Rw‘ is the resistivity of formation water (0.5 Ωm), and Sat. HC is
hydrocarbon saturation.

2.2. Support Vector Machine

Among the different kinds of inversion algorithms, SVM is particularly distinguished by its
versatility to perform linear mapping and pattern recognition using supervised and unsupervised
learning process. In the literature, the SVM has emerged as an effective inversion algorithm for
complex reservoir characterization and also has been successfully adopted in a wide variety of reservoir
evaluation applications from seismic to well-log data [20,21]. The main characteristic that makes the
SVM a powerful ML tool is that the nonlinearly separable classes in the original feature space can be
separated linearly in the higher dimensional space.

The SVM is a simple and nonlinear classifier algorithm. This algorithm essentially defines a
hyper-plane that separates binary classes in a high or infinite-dimensional space. The hyper-plane is
used to maximize the margins between the two classes and is determined in accordance to the subset
of sample points close to the boundary called support vectors (SV) as shown in Figure 3.

For a given training vectors xi (i = 1, 2,. . . . , n) and two output classes = −1 or 1, SVM solves the
following primal problem [22]:

min
ω,b,ζ

(
1
2
ωTω+ X

n∑
i=1

ζi) (6)

yi(ω
Tϕ(xi) + b) ≥ 1− ζi (7)

And ζi = max(0, 1− yi(ω
Tϕ(xi) + b)) ≥ 0, i = 1, 2, . . . , n (8)
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where ϕ is a transformation function and ω, and b is are the parameters of the linear function. The
parameter X deals with the true classification of training examples versus maximization of the decision
function margin. For larger values of X, a smaller margin is accepted if the decision function is better
after classifying all training points correctly. In contrast, the lower values of X will satisfy a larger
margin leading to a simpler decision function, at the cost of training accuracy.Energies 2020, 13, x FOR PEER REVIEW 5 of 19 
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Further, a kernel trick is applied for non-linear classification problems, which maps the lower
dimension feature points to higher dimension spaces as the result of which a linear separation is
possible [23]. The radial basis function (RBF) is the most commonly used kernel which was also applied
in the current study:

K(y, y′) = exp (−γ
∣∣∣∣∣∣y− y′

∣∣∣∣∣∣2) (9)

The kernel is managed by the kernel scale γ, which defines the influence of a single training
example. The larger γ is, the closer other examples must be affected. For multi-class classification
problems, one-versus-one classification is implemented to generate better classification results.

In this particular study, a computer-aided strategy using Rock Star computational software
was operated for the inversion of seismic data using SVM. In Rock Star computational software,
information from wells and 3D seismic cube were loaded and parameters were adjusted according to
the requirements of data input.

The analyses and working procedures adopted in this study are as follows:

(a) Select a set of the appropriate seismic attribute after examineing the seismic and well log data at
well locations.

(b) Considering a logical relationship between suitable seismic attributes and the reservoir characters
by linear or non-linear algorithms.

(c) Train the data until maximizing the correlation coefficient between original and synthetic AI.
If the correlation is high, then apply the selected parameters information to a seismic cube and
generate a cube or volume of a specific reservoir property.

(d) The AI model was developed to extract the petrophysical properties from seismic amplitude
reflection. The results obtained from inversion was interpreted and cross-examined with other
geological features to assess a prospect.

3. Results and Discussion

3.1. Reservoir Characterization from Logs and Core

The first step in reservoir characterization is to transform the raw well-bore data to reliable
petrophysical properties for identifying hydrocarbon-bearing zones. Figure 4 shows log curves and
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interpreted profiles of C-sand interval in Sawan gas field including porosity, water saturation, and gas
content for the key wells. In the study wells, the routine core analysis data (237 core) was available
to access the level of correlation between estimated and measured porosity. A good matching can
be observed between measured and estimated porosity in wells C, B, and E throughout the C-sand
interval (Figure 4). Note that the trend of porosity and saturation is inconsistent throughout the
reservoir interval, indicating significant heterogeneities in the subject wells. Since the petrophysical
interpretations show heterogeneities and complexities in the region, an extensive characterization is
significant for reducing the uncertainty in drilling and improving the ultimate recovery of oil and gas.
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3.1.1. Petrographic and SEM Image Analysis

To distinguish bulk mineralogy from reactive mineralogy as a function of pore size, the study of
the thin sections and SEM images was conducted in the laboratory. It was found that quartz arenite is
dominant in lower Goru Formation that shows advanced diagenetic alteration throughout the type
section (Figure 5a–d). The sandstones texturally change from medium to coarse-grained and fair to
well-sorted with different frameworks of compaction and cementation. The grain-size varies from less
than 0.06 to greater than 2 mm.

A thin section from Well-C shows diagenetic features such as compaction and cementation by
high amounts of Fe-chlorite, Fe-dolomite, and calcite cementation (Figure 5a). The prevalent cemented
framework is quartz (Q), carbonate, and chlorite (Chlr), commonly having a patchy distribution. The
dissolution of feldspar grains (Fsp) and volcanic rock fragments (VRF) results in secondary porosity.
In the thin sections, good to excellent porosity can be observed which is in accordance with the log
porosity. Note that at certain locations, the components of cementation are fully dissolved except for
the chlorite rims covering the remaining grains. The chlorite is present in the form of pore-liming
cement covering all detrital grains (Figure 5c).

The diagenetic features in Well-D are characterized by quartz (Q) cementation as pore filling with
idiomorphic quartz outgrowths (Figure 5b). The overgrowths of quartz (Qo) appear along chlorite rims
coated with detrital quartz grains. It was developed where chlorite rims covered detrital quartz grains
as shown in Figure 5d. The thin section shows good porosity with interconnected pores that help to
enhance the reservoir characteristics. Also, secondary porosity can be observed due to dissolution
and fracturing. The diagenetic features show that the Goru formation is distinguished by a potential
reservoir with good porosity ranges.
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Figure 5. Thin sections (a,b) and SEM images (c,d) of the C-sand interval demonstrate the depositional
and diagenetic characteristics, where Chl = chlorite, Chlr = chlorite rim, Q = quartz, Fsp = dissolving
of feldspar grains, VRF = alteration of volcanic rock fragments, Qo = Idiomorphic quartz outgrowths
filling partially the pores after Chlr, Gc = Grain contact. P = porosity is 15.3 to 22% in wells C and
D [24].

3.1.2. NMR Investigation of the Cores and SEM Image Analysis

Nuclear magnetic resonance (NMR) is one of the most reliable tools for characterizing the porous
media in the oil and gas industry nowadays [25,26]. In the present study, to better understand the
pore size distribution within the C-sand interval, we measured NMR relaxation phenomenon of fully
water-saturated cores. The samples were saturated with fresh water for 48 h and the measurements of
relaxation phenomenon were conducted with an inter-echo spacing time (TE) of 0.2 ms and a waiting
time for polarization (TW) of 6000 ms. The number of relaxation peaks was set at 10,000 whereas the
number of scans was set to 64. Figure 6 shows four relaxation curves within the samples which are
selected as the representative of the major types of pore size distributions observed within all the
studied cores.

As generally known, three main peaks usually appear on an NMR T2 distribution curve. These
three peaks correspond to three different pore sizes respectively being micropores, macropores, and
fractures (both micro and macro) which respectively appear from shorter to longer T2 times on the
horizontal time axis. Therefore, samples S1 (Figure 6a), and S4 (Figure 6d) show the dominance of the
fractures in the reservoir area while samples S2 (Figure 6b) and sample S3 (Figure 6c) represents the
high number of macropores. These observations coupled with the non-dominance of micropores in the
samples verify the high porosity of the subject area as observed in the obtained modeling results of the
present study.



Energies 2020, 13, 486 8 of 19

Energies 2020, 13, x FOR PEER REVIEW 8 of 19 

 

in the samples verify the high porosity of the subject area as observed in the obtained modeling 
results of the present study. 

 
Figure 6. Typical T2 relaxation curves observed for the core sample from the study area show various 
distributions of micro to macropores which result in the complex nature of the reservoir interval of 
the Sawan gas field, (a) sample S1, (b) sample S2, (c) sample S3, and (d) sample S4. 

3.1.3. Facies Analysis and Modeling 

For reservoir modeling, the initial grid structure was performed with 71,760 cells and 92 × 78 × 
10 dimensions. However, throughout the upscaling of the well logs, it was impossible to pick the thin 
shale layers and channel sandstone in the reservoir. Also, the reservoir layering with high producible 
hydrocarbon was not taken into consideration by 3D modeling. Since the geological features that 
were smaller than the grid layering were ignored when upscaling well logs, the upscaled reservoir 
model was not able to estimate the low-resolution lithological features from well log analysis. To 
resolve this issue and improve the resolution and predictive capability, a high-resolution model with 
72,649,401 cells and 920 × 780 × 100 dimension was developed to identify the thin shale layering and 
channel sandstone within the reservoir interval. The structural grid models with low and high-
resolution grid cells are shown in Figure 7. It is shown that the high-resolution grid structure with 
sufficient layering and grid cells improved the capability of the model to recognize the facies and 
petrophysical properties from well logs. 

 
Figure 7. Structural grid of the studied reservoir; (a) Low-resolution grid cells (71,760 cells), (b) High-
resolution grid cells (72,649,401 cells). 

Figure 6. Typical T2 relaxation curves observed for the core sample from the study area show various
distributions of micro to macropores which result in the complex nature of the reservoir interval of the
Sawan gas field, (a) sample S1, (b) sample S2, (c) sample S3, and (d) sample S4.

3.1.3. Facies Analysis and Modeling

For reservoir modeling, the initial grid structure was performed with 71,760 cells and 92 × 78 × 10
dimensions. However, throughout the upscaling of the well logs, it was impossible to pick the thin
shale layers and channel sandstone in the reservoir. Also, the reservoir layering with high producible
hydrocarbon was not taken into consideration by 3D modeling. Since the geological features that were
smaller than the grid layering were ignored when upscaling well logs, the upscaled reservoir model
was not able to estimate the low-resolution lithological features from well log analysis. To resolve this
issue and improve the resolution and predictive capability, a high-resolution model with 72,649,401
cells and 920 × 780 × 100 dimension was developed to identify the thin shale layering and channel
sandstone within the reservoir interval. The structural grid models with low and high-resolution grid
cells are shown in Figure 7. It is shown that the high-resolution grid structure with sufficient layering
and grid cells improved the capability of the model to recognize the facies and petrophysical properties
from well logs.
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Figure 8 shows the well correlation for facies distribution with low and high-resolution grid
cells in C-sand interval using the GR log response. It is worth noting that the high-resolution grid
structure successfully captured the thin layers of shale and shaly sands. From the figure, we observe
that the lower part of the reservoir interval is more heterogeneous because the shale and shaly sand
are abundant. In the upper part of the reservoir interval, sandstone is dominant in Well-C, D, and E.
However, several thin shale and shaly sand layers can be observed in the reservoir. Note that the GR
curve in Well-B shows distinct behavior as compared to Well-A, C, D, and B and demonstrates shaly
sandstone and shale as dominant lithofacies in the entire zone.

Energies 2020, 13, x FOR PEER REVIEW 9 of 19 

 

Figure 8 shows the well correlation for facies distribution with low and high-resolution grid cells 
in C-sand interval using the GR log response. It is worth noting that the high-resolution grid structure 
successfully captured the thin layers of shale and shaly sands. From the figure, we observe that the 
lower part of the reservoir interval is more heterogeneous because the shale and shaly sand are 
abundant. In the upper part of the reservoir interval, sandstone is dominant in Well-C, D, and E. 
However, several thin shale and shaly sand layers can be observed in the reservoir. Note that the GR 
curve in Well-B shows distinct behavior as compared to Well-A, C, D, and B and demonstrates shaly 
sandstone and shale as dominant lithofacies in the entire zone. 

In the reservoir interval, the good quality potential zones were marked on the basis of better 
petrophysical properties. The pay zone cutoff used in the reservoir interval was as follows; i.e., 
general_discrete (suggested perforation interval) = If (Facies = Sand, where SW < 30, PHI_D > 0.3, 
PHI_EFF > 0.2, and PERM > 5 mD, suggested perforation interval, undefined). The potential zones 
are shown in track E of Figure 8. 

 
Figure 8. Comparison of facies analysis; Track B: Gamma-ray log, Track C: Facies analysis from well 
logs, Track D: Facies analysis from low-resolution up-scaling, Track F: Facies analysis from high-
resolution up-scaling, and Track E: Potential reservoir zones. 

The spatial distribution of facies over the entire Sawan gas field was performed by the GIS 
algorithm to spread discrete data spatially. The result of the spatial distribution of facies is shown in 
Figure 9. Note that the upper part of the reservoir in Well-A, C, and D is composed of sandstone 
lithofacies but it changes into to shaly sandstone and finally shale lithofacies at the bottom part of the 
reservoir interval. The mid-section of the reservoir is mainly composed of sandstone but converted 
into shale heterogeneities laterally towards south. The 3D view of the spatial distribution of facies 
shows that entire type section is mainly composed of sandstone, shaly sandstone, and shale 
lithofacies (Figure 9a). Meanwhile, high shale content present at the bottom of the reservoir increasing 
towards SE (Figure 9b). The average value of each lithology is identified as; sandstone 34.2%, shaly 
sandstone 44.6% and shale 21.2%. The reliability of the GIS algorithm-based model was accessed by 
studying the level of matching between different facies trends in the well log analysis, up-scaled well 
logs, and modeled facies. It is to be noted that the spatial distribution of facies modeling shows good 
matching with AI map extracted from 3D seismic inversion techniques, i.e., AI varies enormously 
depending on the variations of lithology in each zone. 

Figure 8. Comparison of facies analysis; Track B: Gamma-ray log, Track C: Facies analysis from well logs,
Track D: Facies analysis from low-resolution up-scaling, Track F: Facies analysis from high-resolution
up-scaling, and Track E: Potential reservoir zones.

In the reservoir interval, the good quality potential zones were marked on the basis of better
petrophysical properties. The pay zone cutoff used in the reservoir interval was as follows; i.e.,
general_discrete (suggested perforation interval) = If (Facies = Sand, where SW < 30, PHI_D > 0.3,
PHI_EFF > 0.2, and PERM > 5 mD, suggested perforation interval, undefined). The potential zones are
shown in track E of Figure 8.

The spatial distribution of facies over the entire Sawan gas field was performed by the GIS
algorithm to spread discrete data spatially. The result of the spatial distribution of facies is shown
in Figure 9. Note that the upper part of the reservoir in Well-A, C, and D is composed of sandstone
lithofacies but it changes into to shaly sandstone and finally shale lithofacies at the bottom part of the
reservoir interval. The mid-section of the reservoir is mainly composed of sandstone but converted
into shale heterogeneities laterally towards south. The 3D view of the spatial distribution of facies
shows that entire type section is mainly composed of sandstone, shaly sandstone, and shale lithofacies
(Figure 9a). Meanwhile, high shale content present at the bottom of the reservoir increasing towards
SE (Figure 9b). The average value of each lithology is identified as; sandstone 34.2%, shaly sandstone
44.6% and shale 21.2%. The reliability of the GIS algorithm-based model was accessed by studying
the level of matching between different facies trends in the well log analysis, up-scaled well logs, and
modeled facies. It is to be noted that the spatial distribution of facies modeling shows good matching
with AI map extracted from 3D seismic inversion techniques, i.e., AI varies enormously depending on
the variations of lithology in each zone.
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3.2. Reservoir Characterization from Seismic Data

The first step of inverting seismic reflection data into petrophysical parameters is to calibrate the
well logs and seismic data for the construction of a synthetic seismogram. To compute a synthetic
seismogram, the sonic and bulk density logs along with check shot data (time-depth relation or TDR) of
Well-C, as well as 3D seismic data, were loaded into the software. The aligned sonic velocity (VP) and
RHOB log curves were refined and multiplied to obtain acoustic impedance (AI) as given in Equation
(10). From AI, the reflection coefficient (RC) for each reflecting interface was computed using Equation
(11). The software enabled the use of either a Ricker wavelet or a wavelet from the original seismic line
for the convolution of reflection time series, in order to generate a synthetic trace. Based on iterative
trials that ultimately yielded the best comparison between the seismic and synthetic seismogram,
a Ricker wavelet with fixed parameters (128 ms sample lengths, two-ms sample rate, and 25 Hz
frequency) was selected to generate the synthetic trace. The wavelet was extracted from the seismic
dataset within a prescribed time window, i.e., 2140 ms to 2280 ms, including the traces from inline
and cross-line. A minor amount of time-stretching and squeezing was applied to align the seismic
and synthetic seismogram reflectors. The final position of the reflectors closely matched the depths of
the respective horizons (e.g., C-sand top and C-sand bottom). Figure 10 shows a post-stack seismic
inversion analysis plot of well to seismic tie along with the computed extracted wavelet, reflectivity
series, and the synthetic seismogram for Xline 932.

AI = ρ×V (10)

RC =
(A.I)layer−1 − (A.I)layer−2

(A.I)layer−1 + (A.I)layer−2
(11)
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Figure 10. Synthetic seismogram for Well-C, showing (left to right): TVD (true vertical depth) in
meters, sonic transit time (µs/ft) and bulk density from logs (g/cm3), RC (reflection coefficient), synthetic
seismogram, traces from a portion of seismic Xline 932, and TWT (two-way time in ms).
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In this case, the wavelet properties and spectrum used for the computation of synthetic seismogram,
are shown in Figure 11.
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Figure 11. The plots of the extracted wavelet (Time-Amplitude, Frequency-Power, Frequency-Phase)
for correlation between seismic and well log in time and frequency at 2000–2300 ms.

3.2.1. Seismic Inversion

Figure 12 indicates the result of SVM inversion applied to the Xline 932 of the 3D seismic cube.
It is shown that the SVM inversion was successful in capturing the spatial variations of AI contrast.
The intended zone of interest (C-sand interval) lies from 2140 to 2280 ms, and the AI varies from 7000
to 13,000 (g/cc) × (m/s) in the reservoir interval. Note that the variation of AI correlates very closely
with major lithological changes between adjacent rock layers. The time interval of 2160 to 2185 ms has
low AI (7500–9500 (m/s) × (g/cc)), reflecting then probably the presence of a good quality reservoir
(hydrocarbon-bearing zone) at this particular level (shown with arrows). The overlying blue-pink
layers above the low impedance layer (2160 ms) show impedance values between 10,500 to14,000 (m/s)
× (g/cc)), which is assumed to be a seal unit above the reservoir interval. The pattern of low and high
impedance layers are due to the alternate sand-shale and channel sandstone present at this location
(shown with arrows). It is important to note that the thin shale and shaly sand layers existed below and
above the sandstone lithofacies (Figure 9) but SVM inversion observed the changes and successfully
captured the AI contrast (Figure 12, shown with arrow). Although complex and nonlinear relationship
exists between the thinly layered media and seismic waveforms, SVM established nonlinear projection
relationship to capture the thinly layered media from the seismic waveform. In contrast, the inverted
AI from model-based or other traditional algorithms applied previously in the same dataset have not
been good enough to capture the small lithological variations [18,19]. What is more, overall lateral and
vertical variations in the resolution of AI estimated from traditional inversion algorithms was poor
and resulted in discontinuity of seismic event.
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Well-A, C, and D. A favorable distribution of porosity can be observed along with low impedance 
values of the Well-A, C, and D at the intended zone of interest (2160 to 2180 ms). The porosity varied 
from a minimum of 10% (Well-A) to a maximum of 30% (Well-C and D), in SW to NE direction, with 
an average of around 18%. Noted that below 2200 ms, we could observe relatively high porosity with 
medium to a high impedance that corresponds to shaly sand with subordinate sand and shale layers 
(Figure 9). 

Figure 12. The inverted AI for Xline 932 using SVM seismic inversion. The impedance log of well-A, C,
and D are not in good match with the inverted impedance surface.

The comparison of the original AI logs with those computed from SVM inversion analysis for
Xline 932 is shown in Figure 13 which represents a reasonably good agreement. The overall correlation
coefficient between the original and the computed values were equal to 0.87, 0.71, and 0.93 in Well-A,
C, and D respectively. This high correlation coefficient indicates the reliability and accuracy of the
SVM inversion approach.
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Well-D by SVM inversion method.

3.2.2. Reservoir Character (Porosity) Estimation

In this section, we discuss the reservoir character estimation from post-stack seismic data. The
AI-derived from SVM inversion is linked with seismic attributes used for reservoir modeling and
characterization. Hampson et al. [10] defined seismic attribute as an inversion of seismic trace into
an important petrophysical property. The significance of seismic attributes for reservoir character
estimation has been stated by various researchers [27–30].

In the present study, a logical correlation (petro-elastic) between seismic attributes and
petrophysical properties was established to transform the porosity and saturation variations from
3D post-stack seismic data. Figure 14 shows the cross-plot of porosity versus AI with hydrocarbon
saturation taken as a third parameter. From the figure, it is shown that while decreasing AI, the
porosity and hydrocarbon saturation increase. A linear relationship between porosity and hydrocarbon
saturation versus AI can be observed with a negative slope. Ali et al. [18] reported that the relationship
between AI and estimated porosity is always linear in nature. Therefore, linear regression analysis was
used for this study. The regression equations obtained from the cross-plot was used to transform the
AI inversion into reservoir parameters.
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The 3D visualization maps for both AI and effective porosity clearly indicated high-quality 
reservoir zones around the Well-A, B, C, and D, laterally and vertically in the entire region (Figure 
16a,b). It can be observed that the porosity varies from a maximum of 25% (red color) to minimum of 
5% (pink color) along with the range of AI varying from 6000 to 13,000 (g/cc) × (m/s). Herein, it is 
important to point out that low AI layers are consistent with high porosity values over the entire field 
as compared to previous studies in the region [18]. However, in the middle of the reservoir interval 
(vertically), high porosity layer is visible but the values of AI is also high at this particular location. It 
is due to the presence of shaly sand with subordinate sand and shale layers. 

Figure 14. A cross-plot of acoustic impedance (AI) and porosity with a color bar representing
hydrocarbon saturation values (Sat. HC).

In Figure 15, the inverted impedance surface in the reservoir interval is linked into a recursive
inversion solution for porosity. The seismic cube was scaled for porosity and then was calibrated by
Well-A, C, and D. A favorable distribution of porosity can be observed along with low impedance
values of the Well-A, C, and D at the intended zone of interest (2160 to 2180 ms). The porosity varied
from a minimum of 10% (Well-A) to a maximum of 30% (Well-C and D), in SW to NE direction, with
an average of around 18%. Noted that below 2200 ms, we could observe relatively high porosity with
medium to a high impedance that corresponds to shaly sand with subordinate sand and shale layers
(Figure 9).
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Figure 15. The seismic inversion map of effective porosity for C-sand interval (2140 ms to 2280 ms).

The 3D visualization maps for both AI and effective porosity clearly indicated high-quality reservoir
zones around the Well-A, B, C, and D, laterally and vertically in the entire region (Figure 16a,b). It
can be observed that the porosity varies from a maximum of 25% (red color) to minimum of 5% (pink
color) along with the range of AI varying from 6000 to 13,000 (g/cc) × (m/s). Herein, it is important to
point out that low AI layers are consistent with high porosity values over the entire field as compared
to previous studies in the region [18]. However, in the middle of the reservoir interval (vertically),
high porosity layer is visible but the values of AI is also high at this particular location. It is due to the
presence of shaly sand with subordinate sand and shale layers.
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3.2.3. Integrated Petrophysical Data Interpretation

The results of the effective porosity estimation from petrophysical modeling are shown in Figure 17.
From the figure, it is shown that the area around the Well-A shows very good effective porosity, i.e.,
more than 25% but gradually decrease towards SW at Well-B reaching to about 10%. It should be
noted that sandstone lithofacies are dominant in the upper part of the reservoir interval which results
in high effective porosity. In Figure 17 which illustrates the first, second, and third cross-sectional
analysis, the effective porosity is increasing along the SW to NE of the Well-A, C, and D. It is important
to note that high range of effective porosity is consistent with sandstone lithofacies in the vicinity of
the Well-A, C and D. However, the distribution of the shale and shaly sand in the reservoir are main
factors controlling the reservoir potential in the study area.
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To get a more reliable insight into the spatial variability of effective porosity in the reservoir
interval, the time slices at the interval of 20 ms are generated using SVM inversion method. In
Figure 18a–c, the Z-1, Z-2, and Z-3 show high porosity regions around the wells that significantly
improve our confidence to delineate a high-quality reservoir. Also, the laboratory-measured porosity
data in Well-C and Well-D and cross-sectional analysis by well log simulation are closely matched with
the inverted results, i.e., the upper zone (3270 to 3330 m) is highly porous, as displayed in Figure 4.
Alternatively, the Z-4 indicates relatively low to high porosity regions (Figure 18d) and is characterized
by medium to high impedance that corresponds to sandstone with subordinate shale (Figure 12).
The laboratory-measured porosity data in Well-C and Well-D (Figure 4) and cross-sectional analysis
(Figure 17) also show low to high porosity range at this particular level (3330 to 3360 m).
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4. Prediction of Reservoir Quality

For reservoir characterization, the porosity, permeability, and hydrocarbon saturation are inherent
properties, but the quantitative estimation of these properties is as difficult as their importance. More
problems could arise in the evaluation of petrophysical parameters when intercalated shale (dispersed
shale) is trapped in the reservoir interval [31]. Traditionally, porosity and permeability are determined
by wireline log data, numerical models, and core-based laboratory procedures. The well data and
laboratory measurements provide the best and more accurate vertical resolution for the estimation of
porosity and permeability but this remains a local estimation, i.e., it is limited to only certain locations
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(near to wellbore). Thus, it is uncertain to estimate the spatial distribution of porosity and permeability
in a whole region just from well logs data. The integration of petrophysical modeling with seismic
inversion results presents a reliable and widely accepted approach to achieve the right estimation of
the spatial distribution of the most crucial reservoir properties.

To develop a reservoir quality prediction of C-sand interval, the inverted profiles of AI, porosity,
and hydrocarbon saturation (Sat. HC) using the SVM technique were integrated to define the
high-quality reservoir regions. In Figure 19a,b, the high-quality regions are drawn with a polygon
to track the reservoir extension in the Sawan gas field. It is shown that the region around NE of the
Well-A has high saturation, i.e., more than 80% (Figure 19b). Also the region lying between Well-A and
Well-C shows good properties for oil and gas production, i.e., Sat. HC is around 80% and porosity
is 14–24% (Figure 18c). Note that the production data of the Well-A and Well-C indicate maximum
production in these wells (Table 1). The regions around Well-D and injection well (NW) also reveal
good reservoir properties (porosity > 24% and Sat. HC > 80%. The time slice of AI shows lower values
along with high saturation regions (outlined with a polygon) (Figure 19a). In general, Sat. HC varies in
the region from 20% (pink color) to 80% (red color). The majority of the studied area (66%) proved to
be of good reservoir quality with significantly high porosity and Sat. HC coupled with lower AI. More
importantly, high-quality regions are mainly composed of sand and shaly sand lithofacies (Figures 8
and 9).
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Table 1. Production data from the study wells [2].

Well ID Production (MMscf)

Well-A 12.779
Well-C 24.428
Well-D 13.760
Well-X 04.703

To better explain and differentiate the Sat. HC in the reservoir interval, the 2D maps of two
attributes namely “amplitude above average” and “low-frequency attenuation gradient” at Z = 2200 ms
were extracted from 3D seismic data (Figure 20). The high amplitude and low-frequency values are the
indications of gas reservoir [32]. In Figure 20, the two attribute maps exhibit good correspondence
along with high Sat. HC regions and clearly demonstrate the gas saturation at this particular location.
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Figure 20. 3D Seismic attributes map, (a) low-frequency attenuation gradient, (b) amplitude above
average at Z = 2200 ms, demonstrating the high amplitude (maroon) is being consistent with
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5. Conclusions

This study presents a novel approach that aims to predict the quality of a petroleum reservoir
from the analysis of well logs, core data, and 3D seismic data. ML-based inversion algorithm was
selected to predict the spatial variations of AI, porosity, and saturation through training and validation
of suitable seismic attributes and measured properties in well logs. In supervised mode, the SVM
inversion algorithm performed efficiently in identifying and mapping individual reservoir properties
to delineate and quantify fluid-rich zones. The calibration of the detailed spatial variations from
post-stack seismic inversion using SVM and wireline logs simulation using SGS and GIS indicated
an appropriate agreement, i.e., variations in AI is related to the variations in reservoir facies and
parameters. Since complex and nonlinear relationship exists between the thinly layered media and
seismic waveforms, SVM established nonlinear projection relationship and captured the thin layers
and channel sandstone from the seismic reflection data. Thus, SVM is more reliable than the traditional
inversion algorithm to discriminate lateral and vertical facies heterogeneity. Therefore, this new
approach can be used as a proxy for inverting the seismic reflection data into volume or cube of the
reservoir property in complex reservoir.

The time slices of the inverted porosity and hydrocarbon saturation show that the area around
NE of the Well-A and Well-C have high porosity (~26%) with hydrocarbon saturation more than 80%.
Moreover, the production data of the Well-A and Well-C indicated gas production from 12.779 MMscf
to 24.428 MMscf respectively. Meanwhile, the attributes map of the “amplitude above average” and
“low-frequency attenuation gradient” differentiated the hydrocarbons into a gas saturated reservoir.
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Acronyms

AI Acoustic Impedance
CAL Caliper
DTP P-wave sonic
DTS S-wave sonic
GIS Gaussian Indicator Simulation
GR Gamma-Ray
LLD Deep Resistivity
ML Machine Learning
NPHI Neutron Porosity
NMR Nuclear Magnetic Resonance
RBF Radial Basis Function
RHOB Bulk Density
SVM Support Vector Machine
SV Support Vectors
SGS Sequential Gaussian Simulation
SP Spontaneous Potential
Sat. HC Hydrocarbon Saturation
TCF Trillion Cubic Feet
MMscf Millions Cubic Feet
Ms milli-second
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