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Abstract: In this paper, a simplified efficient method for sensorless finite set current predictive
control (FSCPC) for synchronous reluctance motor (SynRM) based on extended Kalman filter (EKF)
is proposed. The proposed FSCPC is based on reducing the computation burden of the conventional
FSCPC by using the commanded reference currents to directly calculate the reference voltage vector
(RVV). Therefore, the cost function is calculated for only three times and the necessity to test all
possible voltage vectors will be avoided. For sensorless control, EKF is composed to estimate
the position and speed of the rotor. Whereas the performance of the proposed FSCPC essentially
necessitates the full knowledge of SynRM parameters and provides an insufficient response under the
parameter mismatch between the controller and the motor, online parameter estimation based on EKF
is combined in the proposed control strategy to estimate all parameters of the machine. Furthermore,
for simplicity, the parameters of PI speed controller and initial values of EKF covariance matrices
are tuned offline using Particle Swarm Optimization (PSO). To demonstrate the feasibility of the
proposed control, it is implemented in MATLAB/Simulink and tested under different operating
conditions. Simulation results show high robustness and reliability of the proposed drive.

Keywords: synchronous reluctance motor; predictive current control; extended kalman filter; particle
swarm optimization

1. Introduction

Recently, simple designed and rugged synchronous reluctance motors (SynRMs) have received
more attention because they have low cost, high density, and Less complex control, in contrast to
the induction motor [1,2]. Also, SynRM is considered a good substitution for permanent magnets
synchronous motors and induction motors in commercial items and industrial applications like fans,
electric vehicles, and washing machines [3]. Furthermore, the absence of the rotor windings and
magnetic material results in higher energy efficiency and simple field weakening capability [4].
Traditionally, two widespread methods are preferred for SynRM drives: field-oriented control (FOC)
and direct torque control [5]. FOC gives good steady-state response and is robust to variations of the
machine parameters. However, its slow dynamic response is the main drawback [6]. DTC gives a
fast dynamic response without using a modulator. However, high ripples in the current/torque are
observed [6]. In [7], DTC with a space vector modulation (SVM) is proposed to reduce the high ripples
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in the torque and flux. To overcome the downsides of those controllers, researchers have engaged
and presented a lot of adaptive control approaches to satisfy the demanded fast response and high
performance in industrial applications. In the last years, model predictive control (MPC) is perceived
as a favorable alternative to those both control methods. MPC technique has been applied to numerous
types of motors, comprehensive induction machines [8], permanent magnet synchronous machines
(PMSMs) [9], interior PMSMs [10], brush-less DC motors [11], and synchronous reluctance motor [12].

MPC has categorized into two groups, Finite set model predictive control (FSMPC), which
considered a finite set of switching actions , and continuous set model predictive control (CS-MPC),
which needs a modulation phase to produce the switching actions [13]. In specific, FSMPC techniques
are very popular and attractive in the power electronics and drive applications due to their easiness
of execution and the exceptionally dynamic performance given to the system under control [14–16].
FSMPC principles proceed into account the switching states of the inverter instead of using modulator.
A discrete-time model of the system is required to predict the future behavior of the system (one
sampling time or more) for all the possible switching vectors [17]. The control objectives of the
FSMPC techniques are indicated in the formula of a cost function, which gives the conditions for
selecting the best switching action to apply in the next sampling interval. Furthermore, current and
voltage constraints can be realized as apart of the cost function. The FSMPC approaches are commonly
categorized into current predictive control (CPC), torque predictive control (TPC), and speed predictive
control (SPC) [18]. In CPC schemes, the stator currents are considered the controlled variables, whereas
the torque and flux are used as the controlled variables in TPC schemes [19]. The SPC strategy removes
the outer PI speed controller in CPC and TPC schemes, however tuning of numerous weighting factors
is essential [19]. Due to the curbs of SPC strategies, applications of both CPC and TPC schemes are more
prevalent for electric drives. In [20], the model predictive control illustrated sufficient performance
than a traditional PI controller. Also, the predictive control is used to control the speed and currents
of SynRM, which overcomes the limitations of cascaded loops, as in [21]. FSMPC of synchronous
reluctance motor based on the active flux concept is illustrate in [20]. Nevertheless, The authors use the
nominal values of the machine parameters in the prediction model. One of the crucial challenges of the
conventional finite set current predictive control (FSCPC) is its extreme computational potential [22].
Such as, for two-level inverters, seven iterations for both the current prediction and cost function
are essential. For that reason, a powerful digital signal processor (DSP) is needed to implement the
conventional FSCPC [14]. So as to diminish the computational load, some MPC approaches have been
suggested to solve this problem as in [23,24]. However, all the presented methods are sensitive to
system parameters variation. Also, the measured currents are used directly at the prediction step which
generates unsought switching states. Consequently, the controller produces a high total harmonic
distortion (THD).

Furthermore, to implement the proposed control method, the position and speed of the rotor
and the measured currents should be fed back to the predictive model. Usually, this is achieved by a
mechanical encoder and sensor currents. Furthermore, these measurement instruments increase the
cost/noise and reduce the reliability of the entire system. Besides, in low-cost applications, the position
accuracy usually is an insignificant concern. These previous reasons have been encouraged the
researchers to propose sensorless control of electrical drives.

In recent decades, several sensorless control strategies have been executed for the synchronous
reluctance motor [25,26]. These strategies can be classified into two groups. The first group based on
the fundamental models of the machine such as model reference adaptive system (MRAS), sliding
mode observer (SMO), disturbance observer, and extended Kalman filter (EKF) [27]. The second
group is based on an Anisotropic method, which is preferred for low and zero speed regions such
as high-frequency signal injection methods [27]. The extended Kalman filter is a popular technique
for sensorless control and is considered the optimal recursive observer in the least square sense for
nonlinear dynamic systems. EKF is considered very proper for the systems with parameters variation
and noisy measurements. EKF has been extensively employed for sensorless control of PMSMs/IMs
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and SynRM as in [28–31]. The EKF based on parameter identification method for synchronous motor
and IPMSM has been described in [32,33]. Nonetheless, the main downsides of the EKF are the tuning
and design of the covariance matrices. In [30], some guidelines are used to obtain these matrices.
However, this method still based on a trial and error method.

On the other hand, there are only a limited number of researches combine the sensorless control
with predictive control. The main reason is the complication results in merging these two controllers,
which motivate us to do this work. In [34], the sensorless predictive control of synchronous reluctance
motor based on high-frequency injection is presented. The sensorless control is joined with predictive
current control for the IPMSM in [35]. However, these methods do not consider the effect of parameter
uncertainties.

In this paper, sensorless and computationally-efficient current predictive control of synchronous
reluctance motor based on extended Kalman filter is proposed. The main idea of the proposed FSCPC
strategy is that the commanded reference currents are directly used to calculate the reference voltage
vector (RVV). Then, the RVV location is determined by its angle. Last, the cost function is calculated
only three times to get the best switching vector. Accordingly, the seven predictions of the current
and seven evaluations of the cost function using the traditional FSCPC are avoided. To enhance the
reliability of the drive system and improve the robustness of the proposed FSCPC, an online estimation
using the Extended Kalman filter is combined with the proposed FSCPC to estimate the SynRM
parameters. The proposed strategy estimates the position and speed of the rotor, d− q stator currents,
d− q stator inductances, and stator resistance. The load torque is also observed using EKF to improve
the load variation problem. In addition, to avoid the trial and error method in the tuning of the EKF
parameters, Particle Swarm Optimization (PSO) is used to tune these parameters. The proposed FSCPC
is validated by simulation results and its performance is compared with the traditional FSCPC under
various operation conditions.

The rest of the paper is structured as follows. Section 2 indicates mathematical modeling of
synchronous reluctance motor and discrete-time mode. Section 3 proposes the EKF and Section 4
clarifies the conventional FSCPC and the proposed FSCPC and Section 5 illustrates the simulation
results. The conclusion of the paper is presented in Section 6.

2. Synchronous Reluctance Motor Modeling

In this study, the linear SynRM modeling without saturation is considered. However,
the compensation of Parameter variations will be done by online parameter estimation using EKF.
The SynRM coordinates are shown in Figure 1a, where αβ are the stationary coordinates and dq are the
rotating rotor coordinates. The stator voltages , flux linkage, the electromechanical torque, and speed
dynamic equations of synchronous reluctance motor in the continuous time model can be written as
follows [36],

vd
s (t) = Rsid

s (t) +
d
dt ψd

s (t)−ωrψ
q
s (t),

vq
s (t) = Rsiq

s (t) + d
dt ψ

q
s (t) + ωrψd

s (t),
ψd

s (t) = Ldid
s (t),

ψ
q
s (t) = Lqiq

s (t),
Te(t) = 3

2 P[Ld − Lq]id
s (t)i

q
s (t),

= 3
2 P[Ld − Lq]I2

s sin γ cos γ,
d
dt ωm(t) = 1

J [Te(t)− TL − Bωm(t)],


(1)

where, (vd
s , vq

s ), (id
s , iq

s ), and (ψd
s , ψ

q
s ) are the stator voltages, stator currents, and stator fluxes in the

rotating reference frame, respectively. Ld and Lq is direct axis and quadrature axis inductance
respectively, Rs is the stator resistance. ωr and ωm are the motor electrical and mechanical speed,
respectively, note, ωr = Pωm. Te is the electromechanical torque and TL is the mechanical load torque
applied. γ and Is are the current angle and absolute value of stator current. J and B are the overall
inertia of the rotor and the coefficient of viscous friction respectively and P is number of pair poles.
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To design the EKF for estimation of the position and speed of the rotor, stator currents, load
torque, and SynRM parameters , the state-space model representation of the SynRM is presented in dq
frame. In contrast, the inputs currents and voltages fed into EKF are in αβ frame and rotating frame
transformation is applied in the measurement matrix [37]. The load torque, stator resistance, and stator
inductances are also taken as state variable, which are presumed to be constant over a small interval of
sampling time Ts. The state-space model of SynRM can be expressed as

ẋ = g(x, u),
y = h(x),

}
(2)

where x, y, and u are the state, output, and input vectors, respectively, and are described as

x =
[
id
s iq

s ωr θr TL Rs Lq Ld

]T
,

y =
[
iα
s iβ

s

]T
,

u =
[
uα

s uβ
s

]T
.

 (3)

The function of g(x, u), h(x) can be deduced from (1) as follows

g(x, u) =



− Rs
Ld

id
s +

Lq
Ld

ωriq
s +

cos θr
Ld

uα
s +

sin θr
Ld

uβ
s

− Rs
Lq

iq
s − Ld

Lq
ωrid

s − sin θr
Lq

uα
s +

cos θr
Lq

uβ
s

3P2

2J [Ld − Lq]id
s iq

s − PTL
J

ωr

0
0
0
0


,

h(x) =

[
cos θr − sin θr 0 0 0 0 0 0
sin θr cos θr 0 0 0 0 0 0

]
x.



(4)
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Figure 1. (a) Coordinates of SynRM. (b) Flow chart of EKF.
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3. The Proposed Extended Kalman Filter Estimator

Extended Kalman filter is a nonlinear extension of kalman filter for linear system and is
implemented on discrete nonlinear state model. For discretization, the forward Euler method is
applied on (2) with sampling time Ts[s] as in [28].

x(k + 1) = x(k) + Tsg(x(k), u(k)) + w(k),
y(k) = h(x(k)) + v(k),

}
(5)

where, w(k) is represented the system uncertainties with covariance matrix Q = E[w(k)w(k)T ],
and v(k) is measurement noise with covariance matrix R = E[v(k)v(k)T ] which are represented
as follows,

Q = diag{q11, q22, q33, q44, q55, q66, q77, q88},
R = diag{r11, r22}.

}
(6)

The parameters of covariance matrices have an excessive influence on the response and EKF
convergence. Therefore, they are obtained using the particle swarm optimization technique, which is
presented in the next section.

The EKF estimation algorithm can be concluded in the following steps as illustrated in
Figure 1b [28,38].

• State vector and covariance matrices initialization, x0 = x(t0) , Q, and R are set with initial values
that obtained using offline PSO.

• State vector Prediction x̂∗ at sampling time (k + 1) as follows,

x̂∗(k + 1) = x(k) + Tsg(x(k), u(k)) = f (x̂(k), u(k)). (7)

• Covariance matrix Prediction.

P∗(k + 1) = A(k + 1)P̂(k)AT(k + 1) + Q. (8)

where, A is the Jacobian matrix as:

A(k + 1) =
∂

∂(x)
[ f (x, u)]x=x̂(k). (9)

Therefore, the Jacobian matrix is calculated from (9) as follows,

A =



1− Ts
Rs
Ld

Ts
Lq
Ld

ωr Ts
Lq
Ld

iq
s J14 0 Ts

ids
Ld

Ts
iqs
Ld

ωr J18

Ts
Ld
Lq

ωr 1− Ts
Rs
Lq

Ts
Ld
Lq

id
s J24 0 −Ts

iqs
Lq

J27 −Ts
ids
Lq

ωr

Ts
3P2

2J [Ld − Lq]i
q
s Ts

3P2

2J [Ld − Lq]id
s 1 0 −Ts

P
J 0 J37 J38

0 0 Ts 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

where; J14 = Ts
−uα

s sin θr+uβ
s cos θr

Ld
, J14 = Ts

−uα
s cos θr+uβ

s sin θr
Lq

,

J18 = Ts
Rsids
L2

d
− Ts

Lqiqs
L2

d
ωr − Ts

uα
s cos θr

L2
d
− Ts

uβ
s sin θr

L2
d

,

J27 = Ts
Rsiqs
L2

q
− Ts

Ldids
L2

q
ωr + Ts

uα
s sin θr

L2
q
− Ts

uβ
s cos θr

L2
q

, J37 = −Ts
3P2

2J Ldid
s iq

s , , and J38 = Ts
3P2

2J Lqid
s iq

s ,
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• Kalman filter gain computation:

K(k + 1) = P∗(k + 1)hT(k + 1)[h(k + 1)P∗hT(k + 1) + R]−1, (10)

where,

h(k + 1) =
∂

∂(x)
[h(x)]x=x∗(k+1). (11)

Using (4) and (11), h(k + 1) can be deduced as

h(k + 1) =

[
cos θr − sin θr 0 −id

s sin θr − iq
s cos θr 0 0 0 0

sin θr cos θr 0 id
s cos θr − iq

s sin θr 0 0 0 0

]
.

• Updating of state-vector:

x̂(k + 1) = x̂∗(k + 1) + K(k + 1)[y(k + 1)− ŷ(k + 1)], (12)

ŷ(k + 1) = {h(x)}x̂∗(k+1). (13)

• Error covariance matrix estimation:

P̂(k + 1) = P∗(k + 1)− K(k + 1)h(k + 1)P∗(k + 1). (14)

• Put k = k + 1, x(k) = x(k + 1), P(k) = P(k + 1) and go back to step 2.

From the last steps of EKF, it can be revealed that the choice of covariance matrices parameters Q
and R play an important role to get a sufficient estimation for EKF state variables. Furthermore,
the parameters of Kp, Ki of the speed controller play a significant part in the performance and
robustness of the drive. Furthermore, tuning of these parameters (Q, R, Kp, and Ki) efficiently
consume a lot of time. Consequently, the particle swarm optimization (PSO) algorithm is used to
tune these parameters.

PSO is considered the most active procedure in solving different types of optimization problems
with a little number of parameters to adjust [39]. This provides better efficiency than other trial
and error methods. Firstly, PSO selects some set of random values of the unknown parameters
and each set is represented as a particle. The objective function corresponding to each particle is
calculated using the current position of each particle. Then, the particle corresponds to optimum
objective value is selected and recorded after each iteration of the algorithm, and finally produces
the global optimum solution [40,41]. In this model drive, the cost (objective) functions which
used to select the best parameters is represented as follows.

min(ωcost) = ∑(ωre f − ω̂r)

min(Idq
cost) = ∑(Idq

s,re f − Îdq
s )

min(ω̂cost) = ∑(ωr − ω̂r)

 (15)

Apply the PSO in the whole drive system. Then, the following parameters have been selected.

Q = diag{0.0050, 0.0843, 259.3880, 3.2316e− 4, 3.9388, 4.8648, 5.9060e− 4, 3.2048e− 4}
R = diag{0.0789, 0.0741}

P0 = diag{1, 1, 1, 1, 1, 1, 1, 1}
X0 = (0, 0, 0, 0, 0.01, 0, 0.01, 0.01)T

KP = 0.1305, KI = 0.08947


(16)
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4. Finite-Set Current Predictive Control of SynRM

In this work, the well-known three-phase two-level voltage-source inverter is coupled to the
SynRM as displayed in Figure 2, with dc-link voltage equal Vdc, and Sa − S̄c are the six switches
of the inverter. The different eight switching states of the inverter designated as u0 − u7, and the
corresponding voltage vectors in stationary reference frame αβ are listed in Figure 2 and Table 1.
Then, Park transformation is provided to convert the stator voltages into rotating frame dq as in [15].
The conventional and proposed Current predictive control of synchronous reluctance motor are
presented in the following sections.

 

 

 

  

SynRM

(a) (b)

Figure 2. (a) Two-level voltage source inverter. (b) Voltage vectors.

Table 1. Conducting modes and the corresponding VVs of the inverter.

Conducting Modes Switching States Output Voltages

Sa Sb Sc Vα Vβ

u0 0 0 0 0 0
u1 1 0 0 2Vdc

3 0

u2 1 1 0 Vdc
3

√
3Vdc
3

u3 0 1 0 −Vdc
3

√
3Vdc
3

u4 0 1 1 Vdc
3 0

u5 0 0 1 −Vdc
3

−
√

3Vdc
3

u6 1 0 1 Vdc
3

−
√

3Vdc
3

u7 1 1 1 0 0

4.1. Conventional FSCPC of SynRM

The block diagram of the conventional FSCPC of SynRM is shown in Figure 3. To design the
conventional FSCPC strategy, (1) is used to get d

dt idq(t) as

d
dt id

s (t) = − Rs
Ld

id
s (t) +

Lq
Ld

ωr(t)i
q
s (t) +

ud
s (t)
Ld

d
dt iq

s (t) = − Rs
Ld

iq
s (t)− Ld

Lq
ωr(t)id

s (t) +
uq

s (t)
Lq

 (17)

A discrete-time model is required to predict the currents for the next sampling time. Consequently,
the forward Euler method is applied to the continuous-time model in (17) for small sampling time
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Ts. Therefore, the discrete-time model of the SynRM in the rotating reference frame dq can be written
as [1,14]

id
s [k + 1] = (1− Ts

Rs
Ld
)id

s [k] + Ts
Lq
Ld

ωr[k]i
q
s [k] + Ts

ud
s [k]
Ld

iq
s [k + 1] = (1− Ts

Rs
Lq
)iq

s [k] + Ts
Ld
Lq

ωr[k]id
s [k] + Ts

uq
s [k]
Lq

 (18)

The stator voltages udq
s can be represented as a function of the switching vectors Sabc of the

two-level inverter as in [1,13]:

udq
s [k] = TP(θ̂r)

−1 · TC ·Vdc · S
S ∼= 2

3 (Sa + aSb + a2Sc)

}
(19)

Cost Function

Prediction Model

PI

Looking table 
   (Table.1)

Eq. (21)

Figure 3. Conventional finite set current predictive control (FSCPC) of SynRM.

Where, TC and TP(θr)
−1 are the Clarke and inverse Park transformation, respectively, as in [14].

a = e
j2π
3 and (Sa, Sb, Sc) represent the switching states of each leg of the inverter as shown in Table 1.

These different seven vectors can be applied to predict seven future values of the current according to
(18). Then, the seven predicted future values are applied in the cost function with soft constraints to
select the optimal switching vector that achieve the minimum absolute error between the reference
and predictive currents [13]. The cost function formula can be written as

g =

∣∣∣∣id
s,re f (k + 1)− id

s (k + 1)|u0,..,7

∣∣∣∣+ ∣∣∣∣iq
s,re f (k + 1)− iq

s (k + 1)|u0,..,7

∣∣∣∣
+

0 if
√

id
s (k + 1)2 + iq

s (k + 1)2 ≤ is,max

∞ if
√

id
s (k + 1)2 + iq

s (k + 1)2 > is,max,

 (20)

where is,max the maximum allowable stator currents of SynRM, and idq
s,re f (k + 1) are the reference stator

currents in dq frame. It can be computed from the previous reference currents idq
s,re f (k) as in [13].

idq
s,re f (k + 1) = 3idq

s,re f (k)− 3idq
s,re f (k− 1) + idq

s,re f (k− 2) (21)

The main weaknesses of the conventional FSCPC are as follows. (1) High calculation burden
(seven predictions of the currents and seven evaluations of the cost function), (2) sensitivity to variations
of the SynRM parameters due to the use of constant parameters in (18), and (3) an encoder is essential
to measure the speed and position of the rotor (i.e., high cost and low reliability of the drive system).
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4.2. Proposed FSCPC of SynRM

Figure 4 reveals the proposed FSCPC of SynRM, its based on computing the reference voltage
vector (RVV) directly from the reference currents. Furthermore, online parameters estimation of
SynRM based on EKF is combined with the proposed method. The estimated currents (filtered) and
estimated SynRM parameters are used in the prediction model to improve the robustness for the
proposed method. Using (18), the RVV can be computed by replacing idq

s [k + 1] with idq
s,re f [k + 1] as

ud
s,re f (k) = R̂s(k)îd

s (k) + L̂d(k)
ids,re f (k+1)−îds (k)

Ts
− ω̂r(k)L̂q(k)î

q
s (k)

uq
s,re f (k) = R̂s(k)î

q
s (k) + L̂q(k)

iqs,re f (k+1)−îqs (k)
Ts

− ω̂r(k)L̂d(k)îd
s (k)

 (22)

where, ∧ indicates the estimated values for EKF observer. Then, using Park transformation,
The reference voltages are transformed into the stationary reference frame αβ. Consequently, its
location can be determined by its angle as cleared in Figure 2:

α(k) = atan2[uβ
s,re f (k), uα

s,re f (k)] (23)

Extended Kalman Filetr

Sector

 

 

PI
     Cost
 Function

VV Calculation, Eq. (22)

   Sector
  selection  

Eq. (21)

Figure 4. Proposed FSCPC of SynRM.

Now, the corresponding cost function can be written as

g =

∣∣∣∣uα
s,re f (k)− uα

s (k)
∣∣∣∣+ ∣∣∣∣uβ

s,re f (k)− uβ
s (k)

∣∣∣∣ (24)

where the six sectors are defined as in Figure 2; the sector of the RVV is selected based on its location
from (23). For interpretation, when α(k) ∈ [0, π

3 ]; then, the uαβ
s (k) are situated in sector 1 and the only

voltage vectors(u0, u1, and u2) as illustrated in Figure 2 are applied in the cost function (24).
In conclusion, the proposed FSCPC significantly reduces the calculation load of the traditional

FSCPC. Furthermore, in (22), the parameters of the SynRM (R̂s, L̂d, and L̂q) are online estimated by
the EKF, which improve the robustness of the proposed FSCPC against variations of the machine
parameters (i.e., if the parameters vary, the EKF will detect the new values of the parameters and
update them in (22)). Additionally, EKF estimates also the speed and position of the rotor, i.e., no
encoder is required. Finally, the filtering ability of the EKF is employed to filter the stator currents of
the SynRM, which reduces the ripples of the torque.
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Note that in SynRM, addition torque ripples is caused by the variation of magnetic resistance
between flux barriers and teeth, which can be solved by asymmetrically design of the flux barriers [42].
Another alternative is an optimization of the shape of the symmetrical rotor flux barriers considering
the number of stator teeth [43]. In this work, the ripples caused by the stator currents are only
considered.

5. Simulation Results

The simulation model of the proposed FSCPC of SynRM as shown in Figure 4, is simulated and
verified with the help of MATLAB/SIMULINK. The nominal parameters of SynRM are summarized in
Table 2. Firstly, PSO has applied to choose the optimum unknown parameters for a wide speed range
as in (16). The value of the sampling time has a great impact on the control system of the motor such
as torque and current ripples. Therefore, the sampling time is selected to be 40 µs , which provides
sufficient torque and current ripples. Second, as revealed in Figure 4, the measured three-phase
voltages and currents of SynRM are transformed into two-phase stationary frame αβ. These signals
are used as inputs to EKF to estimate all the state variables of SynRM, which are the position and
speed of the rotor, stator currents (Idq), armature stator resistance (Rs), and stator inductances (Ldq).
The estimated variables are fed-back into the prediction model. The estimated speed ω̂r is compared
to the reference speed ωr,re f to get the error which used as input to the PI controller to produce Iq,re f .
In this work, Id,re f is selected as the rated current of the motor (1 A). The simulation results are cleared
in Figures 5–11. The observation performances of presented EKF are compared with the nominal
values of the SynRM for a wide speed range including the low and reversal speed. Furthermore,
the effect of parameters uncertainties in the sator resistance Rs and inductances Ldq of the SynRM are
verified using EKF.

Figure 5 reveals the simulation results of the estimation capability of the EKF of the speed and
position of the rotor, stator resistance Rs, stator inductances Ldq, load torque, and stator currents
Idq at the middle and high speed. According to the figure, mechanical speed begins with 400 rpm,
then changes to 700 rpm at 0.3[s], then up to 1000 rpm, and 1300 rpm at times 0.6[s] and 0.8[s],
respectively, with applying a load torque of 1 N.m. From the figure, it is clear that EKF has a sufficient
estimation accuracy in the dynamic and steady-state operation. Also, the speed and position errors
converge to zero quickly. The estimation of The armature resistance (Rs) and stator inductances
(Ld, Lq) also converge to the nominal values of the SynRM with an estimation error at start-up. Finally,
the estimation of the load torque (TL) and stator currents (Idq) are shown in Figure 5. It can be seen
that the estimated values track the actual values with adequate performance.

Table 2. Parameters of SynRM.

Parameter Nomenclature/Unit Value

Rated power P [W] 175
Rated voltage V [V] 380
Rated speed (mechanical) ns [rpm] 1500
Rated current Is [A] 1.05
frequency F [Hz] 3∼50
Nominal d-axis inductance Ld [H] 1.0402
Nominal q-axis inductance Lq [H] 0.4711
Nominal Stator resistance Rs [Ω] 19.5
Number of Pole pairs P 2
Rotor inertia J [kg.m2] 0.000923

In Figure 6, the previous operating condition is repeated but at low, zero, and reversal speed. It can
be illustrated that the EKF observation capability has good tracking for all state variables with high
performance at dynamic and steady-state. Also, it can be established that there is a close agreement
with the actual parameters of the machine regardless of initial errors.
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Figure 5. Simulation results of the estimated and actual variables of SynRM baesd on EKF for step
changes in speed (from top): speed, speed error, position, position error, stator resistance, q-axis
inductance, d-axis inductance, load torque, stator d-axis current , and stator q-axis current.
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Figure 6. Simulation results of the estimated and actual variables of SynRM baesd on EKF for low
speeds and reversal speed (from top): speed, speed error, position, position error, stator resistance,
q-axis inductance, d-axis inductance, load torque, stator d-axis current , and stator q-axis current.
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Figure 7. Simulation results of the proposed EKF at 25% and 50% change in the SynRM stator resistance
Rs (from top to bottom): speed (ωr,re f , ωr, ω̂r), resistance (Rs, R̂s), stator inductances (Ldq, L̂dq), load
torque (TL, T̂L), and estimated stator currents.
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Figure 8. Simulation results of the proposed EKF at 25% and 50% change in the SynRM stator
inductances Ldq (from top): speed (ωr,re f , ωr, ω̂r), stator inductances (Ldq, L̂dq), resistance (Rs, R̂s), load
torque (TL, T̂L), and estimated stator currents.
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Figure 9. Simulation results of the proposed EKF at change in the load torque to 1.5 N.m (from top):
speed (ωr,re f , ωr, ω̂r), load torque (TL, T̂L), estimated quadrature current, resistance (Rs, R̂s), and stator
inductances (Ldq, L̂dq).

(a) (b)

Figure 10. Simulation results for step change in the SynRM parameters of the proposed FSCPC and
conventional FSCPC: (a) step change in the stator resistance Rs and (b) step change in the stator
inductances Ldq.

To check the facility strength of the proposed EKF under parameter deviations of the SynRM,
the value of the stator resistance Rs is increased by 25% at 0.2[s] and returned to its nominal value
for 0.3[s], and increased again by 50% under speed of 1000 rpm. The values of stator inductances
(Ld, Lq) are set to the actual values. The results are shown in Figure 7. From the figure, the tracking
performance of the resistance is very good with adequate accuracy. However, the change of the stator
resistance value causes a small dynamic estimation error in the other estimated variables as illustrated
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also in Figure 7. Additionally, to reveal the capability of the proposed method in tracking the variations
in the direct and quadrature axis inductances that changed with magnetic saturation. As seen in
Figure 8, the direct and quadrature axes inductances (Ld, Lq) increased by 25% and 50% at times 0.3[s]
and 0.6[s], respectively, under speed of 1000 rpm and load torque 1 N.m. The EKF exposes a good
tracking performance at dynamic/stead-state during inductances variation. Finally, the proposed EKF
is checked for load torque variation and its impacts on the parameters of the machine as shown in
Figure 9. Where the load torque in 1 N.m is applied on the machine and then changed to 1.5 N.m.
According to the figure, the EKF succeeded in following the variation of the load toque with quite
high performance.

Proposed FSCPC

Conventional FSCPC

Proposed FSCPC

Conventional FSCPC

Figure 11. Simulation results for the comparison between proposed FSCPC and conventional FSCPC
at rated speed 1500 rpm and rated torque 1 N.m.

In Figures 10 and 11, the robustness of the proposed FSCPC to parameters variation of the
machine is investigated and compared with the conventional FSCPC. In Figure 10a, the stator resistance
increased by 25% than the nominal value at t = 0.2[s], then increased to 50% of its actual value at
t = 0.4[s]. The rotor mechanical speed set to 1100 rpm with mechanical load torque 1 N.m, and nominal
values of stator inductances. It can be perceived from this figure that the proposed FSCPC gives good
performance compared to the conventional FSCPC. Furthermore, the mean value of the steady-state
error of the proposed method is close to zero, while, a non-zero of the steady-state error has appeared
in the conventional one. Also, the stator currents Idq of the conventional technique deviate due to
resistance changing. Additionally, the investigation of the robustness to inductances Ldq variations of
the SynRM is shown in Figure 10b. The inductances increased by 50% of its nominal value at t = 0.2[s]
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and the value of stator resistance set to the actual value. Also, the rotor mechanical speed is set to
1100 rpm with load torque 1 N.m. From Figure 10b, the performance of the proposed method is
better than the conventional one. The q-axis current of the conventional method oscillates due to the
inductance variations. Finally, the speed response, stator currents, and torque ripples of the SynRM
for the proposed and conventional FSCPC are explored and compared in Figure 11. The mechanical
rotor speed set to rated speed 1500 rpm with 1 N.m mechanical load. It can be revealed from the
figure that the dynamic performance of the proposed FSCPC is faster than the conventional one.
The total harmonic distortion (THD) of the proposed method is better than the conventional one. Also,
the torque ripples are remarkably smaller for the proposed FSCPC compared with the conventional
one. The dissimilarities between the proposed and conventional techniques are summarized Table 3
based on the simulation results given in Figures 10 and 11.

Table 3. Comparative points.

Proposed FSCPC Conventional FSCPC

Dynamic response Fast Fast
Steady state error Close to Zero low
Current THD Very low Low
Torque ripples Some Some
Rs sensitivity Low High
Ldq sensitivity Very low Very High

6. Conclusions

A simplified efficient sensorless finite set current predictive control (FSCPC) of synchronous
reluctance motor is proposed, discussed, and simulated in this paper. The proposed FSCPC reduces
the computation burden considerably in comparison to the conventional FSCPC by computing
the reference voltage vector (RVV) directly from the demanded currents, and the RVV location is
determined by its angle. Then, the cost function is evaluated for only three times and evades the
calculation for all the possible voltage vectors (seven times). Furthermore, to increase the robustness
of the proposed strategy, the EKF with online parameter estimation is combined with the proposed
method to estimate the position and speed of the rotor, stator resistance, stator inductances, stator
currents, and load torque. The presented prediction model exploits the estimated variables from
EKF to improve the performance of the proposed method under parameter uncertainties. The
simulation results have exposed that the EKF tracks rotor position, rotor speed, stator resistance,
stator inductances, and stator currents with high performance and adequate accuracy in dynamic and
steady-state operation at different speed regions. Besides, the proposed FSCPC performance is robust
for parameter variations of the SynRM, whereas the Conventional FSCPC performance is deteriorated.
Finally, the stator currents THD and torque ripples of the proposed controller are reduced compared
to conventional FSCPC.
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