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Abstract: Modern multiphase electric machines take advantage of additional degrees of freedom
for various purposes, including harmonic current injection to increase torque per ampere. This new
approach introduces a non-sinusoidal air gap flux density distribution causing additional technical
problems and so the conventional assumptions need to be revised. The paper presents a methodology
for synthesis of air gap magnetic field generated by a symmetrically distributed multiphase windings
including the rotor field reaction due to the machine’s load. The proposed method is suitable either
for single-layer or double layer windings and can be adopted either for full-pitched or chorded
winding including slots effects. The article analyses the air gap flux density harmonic content and
formulates conclusions important to multiphase induction motors. It also discusses effects of time
harmonic currents and illustrates the principle of changing number of pole-pairs typical for harmonic
currents being injected to increase torque.
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1. Introduction

Over the past few years the modern industry has recorded a huge and intensive development
in power electronics and drives and has brought many technical upgrades not only in public
transportation. This rapid technological progress results in less industrial energy consumption
and improves environmental issues. One of the most frequently discussed topics relating to the traffic
environment [1–3] is replacing conventional combustion engine vehicles with fully electric (battery)
vehicles (EVs). The initial concept of EV [4,5] comes from the previous experience with hybrid electric
vehicles (HEVs), which later evolved into the popular plug-in hybrids (PHEVs). No matter what type
of EV is considered, they are mostly powered by standard ac three-phase electric motors [6].

More than 80% of electric vehicles currently use rare earth permanent magnet synchronous
motors (PMSM) allowing vehicle manufacturers to increase the efficiency [7,8] compared to traditional
induction motors, especially at lower motor speeds. The improved efficiency brings either an increase
in transport range or a reduction in battery size (and also the cost) for a given motor weight and vehicle
specification. Compared to typical city-driving vehicles, powerful highway vehicles are designed to
operate at higher speeds, which somewhat reduces the relative performance increase gained by rare
earth magnets and reduces their advantage over induction machines [9]. Moreover, the rising cost
and complicated political situation on the market with rare-earth magnets is another very important
reason [10] why manufactures start choosing induction motors [11] as main drive units for their
electrical vehicles. This tendency can be observed especially when talking about higher performance
and luxury vehicles, such as e-buses, locomotives, or vehicles from Audi or Tesla.
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The modern e-mobility trends increasingly focus on multiphase variable-speed motor drives [12]
since they could provide the transportation with numerous traction and economic advantages [13].
Probably the first mention of a multiphase electric drive dates back to 1969, where the author of [14]
proposed the concept of a five-phase inverter-fed induction motor lately extended to a six-phase
double-star induction motor, referred in [15,16].

This early interest in multiphase machines was mainly initiated by the possibility of torque ripple
reduction, higher reliability and higher fault tolerance. Another strong argument is that for a given
motor power, the input power per phase is reduced, resulting in lower demands on the inverter power
electronics components. Moreover, the winding I2R losses are inversely proportional to the square of
winding distribution factor, hence the higher number of phases may significantly increase the overall
motor efficiency.

Maximum theoretical value of winding loss reduction is determined in [17] as 8.8%. Moreover, as
shown in [18–22], the multiphase motors may be powered with additional time harmonics injected
into the winding to decrease the input current (rms value) while keeping the same torque, which is
particularly relevant to the traction battery applications.

The main disadvantage lies in limited slots number available for given stator diameter, the greater
number of phases, the lower the number of slots per pole per phase and consequently higher
magnitudes of space harmonics. This may be even more problematic in case of outer-rotor machines
with narrow-shaped slots.

No matter what number of phases is considered, electric motors are always accompanied by
non-linearities and parasitic effects, usually connected with harmonics [23–26], that cause ripple of the
input current and the torque, produce noise and increase losses.

These harmonics are often produced by dead times in pulse width modulation (PWM),
supply voltage unbalance, magnetic circuit saturation, non-sinusoidal winding distribution, lamination
slotting and some other non-linearities and asymmetries.

According to the nature of their origin, we can classify these harmonics as time
harmonics and space harmonics [27], while their mutual interaction cannot be neglected [28].
This study describes/recapitulates occurrence and behavior of time/space harmonics in multiphase
induction machines.

2. Space Harmonics in the Air Gap Magnetic Field

Any symmetric m-phase (m ∈ Z) induction machine has a space displacement between any two
successive stator phases equal to 2π/m. The stator winding is designed as sinusoidally distributed as
possible and is fed with balanced m-phase sinusoidal currents. The combined effect is equivalent to
having the same winding excited with a constant current and rotating at the stator frequency (rotating
field established). Ideally, when the number of stator slots Q1 approaches infinity (Q1 →∞), and no
iron core saturation will appear, the winding forms a sinusoidal magnetic field (or magneto-motive
force, mmf) in the air gap δ. However, the practical windings are placed into the finite number of slots
and the machines’ core always experiences saturation; therefore, the resulting magneto-motive force
has rather stepped than sinusoidal curve. This complex curve can be described with Fourier series of
mmf waves called space harmonics. The orders of these harmonics are usually marked with symbol ν.

Synthesis of Air Gap Magnetic Field Formed by Symmetrically Distributed Windings

As shown in [29], a hypothetical single-coil winding, fed by a time-varying sinusoidal current,
produces mmf having rectangular waveform according to (1). The equation considers constant air
gap permeance independent of angular position (even air gap) and the iron core made of steel having
infinite relative permeability.

Hx(α) =
2i
πδ

∑
∞

ν=1

1
ν

sin
(
ν
αy

2

)
cos(ν[α− (ξ+(x− 1))α1]), αy = βπ (1)
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In (1), β ∈ < 0; 1 > represents the shortening of the winding coil pitch (chorded winding), i is the
current content in the slot, α is mechanical angle measured in the air gap periphery, ξ is position of the
coil group origin given in slots number and α1 = 2π/Q1.

For symmetric m-phase winding distributed in Q1 stator slots, creating 2p magnetic poles, we can
introduce q = Q1/2pm as the number of slots per phase per pole. Hence, the field produced by
respective coils in group of q coils can be described using (2). For further analysis, it is reasonable to
consider only the basic two-pole winding, therefore we always assume that 2p = 2.

H1(α) =
2i
πδ

∑
∞

ν=1
1
ν sin

(
ν
αy
2

)
cos(να− ξα1)

H2(α) =
2i
πδ

∑
∞

ν=1
1
ν sin

(
ν
αy
2

)
cos(ν[α− (ξ+1)α1])

H3(α) =
2i
πδ

∑
∞

ν=1
1
ν sin

(
ν
αy
2

)
cos(ν[α− (ξ+2)α1])

...
Hq(α) = 2i

πδ

∑
∞

ν=1
1
ν sin

(
ν
αy
2

)
cos(ν[α− (ξ+(q− 1))α1])

(2)

The summation of particular fields (2) gives resulting mmf (3) generated by a group of q coils
corresponding to the coil group of one stator phase.

Hgroup(α) =
2i
πδ

∑
∞

ν=1

[1
ν

sin
(
ν
αy

2

)∑q

k=1
[cos(ν[α− (ξ+(k− 1))α1])]

]
(3)

Simplifying (3) we obtain more useful Equation (4).

Hgroup(α) =
2qi
πδ

∑
∞

ν=1

1
ν

sin
(
ν
αy

2

) sin
(
qα1

2 ν
)

q sin
(
α1
2 ν

) cos
(
αν− ν(q− 1 + 2ξ)

α1

2

) (4)

From (4), it is easy to find the resulting mmf waveform generated by any symmetric m-phase
distributed winding designed with integer q. We consider twice the number of mathematical
phases m′ = 2m, therefore ξ = (k− 1)2q is substituted for the “plus” phases (A, B, C, D, E, . . . ),
and ξ = mq + (k− 1)2q is substituted for the “minus” phases (A’, B’, C’, D’, E’, . . . ). The input current
with angular frequency ω1 flowing through the k-th stator phase is defined as (5):

ik(t) = Ikmsin
(
ω1t−

k− 1
m

2π
)

(5)

Hence by combination (4) with (5) we obtain (6):

Hm−phase(α) =
4q
πδ

Ikm

∞∑
ν=1


1
ν sin

(
ν
αy
2

)
sin

(
ν

mqα1
2

) sin(q
α1
2 ν)

q sin(
α1
2 ν)∑m

k=1

[
sin

(
ν

2α+(1−k 4q)α1
2

)
sin

(
ω1t− k−1

m 2π
)]

 (6)

Equation (6) can be further modified into (7) to calculate with given coil turns number per slot N
carrying the input current I

√
2. For single-layer winding, N/2 must be used instead of N.

Hm−phase(α) = 4
√

2
NIq
πδ

∞∑
ν=1


1
ν sin

(
ν
αy
2

)
sin

(
ν

mqα1
2

) sin(q
α1
2 ν)

q sin(
α1
2 ν)∑m

k=1

[
sin

(
ν

2α+(1−k 4q)α1
2

)
sin

(
ω1t− k−1

m 2π
)]

 (7)
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As an example, for the three-phase winding, (7) results in (8),

H3−phase(α) = 4
√

2 NIq
πδ

∑
∞

ν=1

[
1
ν sin

(
ν
αy
2

)
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(
ν

mqα1
2
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α1
2 ν)

q sin(
α1
2 ν)
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2
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2
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(
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3π)
]
]

(8)

For the five-phase winding we have (9),

H5−phase(α) = 4
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2 NIq
πδ
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∞
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2
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(9)

And the seven-phase winding will generate field according to (10):

H7−phase(α) = 4
√

2 NIq
πδ
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)
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(10)

The air gap flux density distribution is then obtained by applying (11).

Bm−phase(α) = µ0Hm−phase(α) (11)

Previous approach assumes a uniform air gap δ, which makes the analyzed air gap field
corresponding to the mmf waveform generated by the winding. The stator and the rotor surfaces are
slotted in a practical machine, and therefore, the air gap permeance varies along with the machine
periphery and generates additional flux waves. Hence, the air gap appears to be slightly wider than its
real mechanical size. The widening of the air gap is traditionally considered via Carter’s factor kc [30].
As proposed in [29], this can be considered by introducing a fictive air gap (12),

δ(α) =
1

f1(α)
+

1
f2(α)

− δ0 (12)

where δ0 represents the initially assumed (even) air gap, and the functions f1(α) and f2(α) introduce
the stator and the rotor slotting, respectively (13).

f1(α) = a0 −
∞∑
ν=1

av cos(νQ1α), a0 = 1
kc1δ0

f2(α) = b0 −
∞∑
ν=1

bv cos(νQ2α), b0 = 1
kc2δ0

(13)

The Carter factors kc1 and kc2, important to (13), are determined from given stator/rotor slot pitches
td1 and td2 using (14),

kc1 =
td1

td1 − γ1δ0
, kc2 =

td2

td2 − γ2δ0
(14)
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where γ1,2 comes from (15).

γ1,2 =
4
π

b01,02

2δ0
atan

(
b01,02

2δ0

)
− ln

√
1 +

(
b01,02

2δ0

)2
 (15)

Parameters b01 and b02 represent the slots opening of the stator and the rotor, respectively.
To complete substitution into (13), we only need to calculate the values of av and bv according to (16),

av =
4β1
πδ0ν

 1
2 +

(
b01
td1
ν
)2

0.78−2
(

b01
td1
ν
)2

sin
(
1.6π b01

td1
ν
)

bv =
4β2
πδ0ν

 1
2 +

(
b02
td2
ν
)2

0.78−2
(

b02
td2
ν
)2

sin
(
1.6π b02

td2
ν
) (16)

where β1 and β2 come from (17).

β1 =
1
2
−

1
2b01

[
b01

(
1

kc1
− 1

)]
, β2 =

1
2
−

1
2b02

[
b02

( 1
kc2
− 1

)]
(17)

However, by substitution (12) into (7), we find that for some chosen q the “tooth-to-tooth”
synchronization of both waves is not fully observed, and therefore, it is necessary to introduce a
correction factor (angular displacement) for one of the coordinate systems. Hence, Equation (7) should
be rewritten into (18).

Hm−phase(α) = 4
√

2
NIq
πδ(α)

∞∑
ν=1


1
ν sin

(
ν
αy
2

)
sin

(
ν

mqα1
2

) sin(q
α1
2 ν)

q sin(
α1
2 ν)∑m

k=1

[
sin

(
ν

2α+(1−k 4q)α1−αshi f t
2

)
sin

(
ω1t− k−1

m 2π
)]

 (18)

For any full-pitch winding with odd q, we select αshi f t = 2π/Q1 in (17), and analogously,
for winding with even q, we apply αshi f t = 0. In case of chorded winding, we use either αshi f t = 2π/Q1

for q = 1, 2, 5, 6, 9, 10, . . . or αshi f t = 0 for q = 3, 4, 7, 8, 11, 12, . . . . To obtain the flux density distribution,
formula Bm−phase(α) = µ0Hm−phase(α). must be applied to all equations relating to the air gap magnetic
field strength distribution.

For the better understanding, we will analyze the air gap magnetic field for three various “fictive”
single-layer (or double-layer) windings, considering slotless (7) and slotted (18) motor geometry. This
situation is close to no-load motor operation (zero torque and zero rotor field). First, the flux density
generated by a three-phase, full-pitched, winding having Q1 = 30, Q2 = 22, 2p = 2 and q = 5 is shown
in Figure 1. The left-side figure presents the flux density distribution as it depends on the air gap
angular position, and the right-side figure shows the resulting frequency spectrum. While the red
curve depicts the field considering smooth air gap with no slots present on the stator or the rotor,
the blue curve shows the situation for slotted lamination.

Second, the flux density formed by a five-phase, full-pitched, winding having Q1 = 30, Q2 = 22,
2p = 2 and q = 3 is shown in Figure 2.

Finally, the flux density formed by a seven-phase, full-pitched, winding having Q1 = 28, Q2 = 22,
2p = 2 and q = 2 is shown in Figure 3.

The comparison between discussed windings shows that the motor having more phases can form
a smoother magnetic field (lower content of harmonics) than the less phases motor even if it has similar
slots number. Hence, this motor can generate less torque ripple, distinguishes lower THDi and can
reduce noise. For air gap flux density spectrum, we can formulate several conclusions generally valid
for any distributed multiphase winding having integer q.
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First, the spectrum includes all harmonics orders calculated from (19). When the operator “+”
is used, the relevant harmonic generates mmf travelling the air gap together with the fundamental
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harmonic but ν-times slower, and to the contrary, the operator “−” gives harmonics producing waves
traveling the air gap in opposite direction (also ν-times slower).

ν = 2mc± 1, c ∈ Z (19)

Second, the spectrum also includes frequency orders called “step” harmonics obtained from (20).
They are present in the spectrum mainly due to the fact that the winding is placed in a finite number of
stator slots. The stator “slot” harmonics have therefore the same orders as have the “step” harmonics,
and hence, they both overlap in the frequency spectrum. The “step” harmonics have the winding
factor of the same size as the fundamental harmonic.

ν1step = ν1slot = c
Q1

p
± 1, c ∈ Z. (20)

Besides the “step” harmonic orders, the air gap flux density includes also the rotor “slot” harmonics (21).

ν2slot = c
Q2

p
± 1, c ∈ Z (21)

Third, as shown in (18) the winding factor considering straight rotor bars is still given by (22),

kwν = sin
(
νπ
β

2

) sin
(
ν πm′

)
q sin

(
ν π

m′q

) (22)

Hence the magnitude of ν-th harmonics can be calculated from fundamental harmonic using (23).

Bν =
B1

ν
kwν (23)

According to previous results, the harmonic orders of the “step” and the stator “slot” harmonics
interact and modify the original order (20) magnitudes. Considering only the interaction between
the very first “step” and “slot” harmonic orders calculated from (20) when c = 1, then the resulting
magnitude of (24),

ν =
Q1

p
− 1 (24)

Becomes, according to (25),

Bν = B1step

[
a1

2a0

Q1 − p
p

+ 1
]

(25)

Moreover, analogously, for (26),

ν =
Q1

p
+ 1 (26)

We obtain (27):

Bν = B1step

[
a1

2a0

Q1 + p
p

− 1
]

(27)

Into (25) and (27), we substitute from (13) for a0 and from (16) for a1 with applying ν = 1. This
gives us a rough estimate of analyzed harmonic amplitudes.

To demonstrate validity of the method, we can analyze (using FEA) the air gap magnetic field of
real 3 kW five-phase induction motor corresponding to the case study shown in Figure 2. The motor
geometry with magnetic distribution is shown on the left side of Figure 4. The right side of the same
figure shows the resulting air gap flux density calculated using FEA and compared to given analytical
approach. In order to compare comparable, the FEA considers no-load state (zero torque) and magnetic
core composed of linear steel having very high relative permeability (µr = 104).
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Figure 4. (a) No-load flux density distribution inside the machine, (b) air gap flux density.

For the no-load operation, the proposed analytical method of air gap space harmonics prediction
works well, but it may fail when the machine operates under load condition. In this case, the induced
voltage generates a current flowing through the rotor, which generates its own magnetic field. This
rotor field interacts with the original stator field, which in turn produces torque. As the air gap flux
density combines both the stator and the rotor magnetic fields, the resulting curve is deformed as
compared to the no-load air gap magnetic field. An example of the situation is shown in Figure 5. The
motor (from Figure 4) operates under load (3 kW), and its magnetic field is calculated using nonlinear
(steel with µr = f (I)) transient analysis to reach as high accuracy as possible. Figure 5 on the left side
represents the instantaneous distribution of the magnetic field in the motor cross-section, and the right
frame shows the corresponding air gap flux density curve.
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Figure 5. (a) Flux density distribution inside the machine under load, (b) air gap flux density.

The no-load and the loaded operation states are compared graphically in Figure 6 by composing
the two curves (taken from Figures 4 and 5) in one graph. The red line (taken from Figure 4) shows the
flux density curve corresponding to the no-load operation, and the blue curve (taken from Figure 5)
shows the magnetic field corresponding to the operation under load.

As obvious from the right side of Figure 6, the frequency spectrum of the loaded flux density
includes harmonics that have not been predicted yet, and which are mainly caused by the rotor field
presence and by saturation of the motor magnetic core.
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The saturated motor flats the air gap magnetic field according to the BH curve of steel used for
the motor construction. As the field is a periodic odd function, the spectrum will contain group of
“saturation” harmonics (28), even if the stator and rotor are considered to be slot-less.

νsaturation = 2(c− 1) + 1, c ∈ Z (28)

Although we classify these harmonics as space harmonics, their speed and direction do not follow
the previous rules. Analyzing the air gap flux density, we find that the resulting (flattened) mmf travels
the air gap with a constant shape (slots are not considered), which means that the harmonics created
by the saturation must travel at the same speed and in the same direction as the fundamental wave. As
a result, these harmonics contribute to the machine’s useful torque.

Since these harmonics travel through the air gap synchronously with the fundamental harmonic,
their slip must be the same as slip of the fundamental harmonic. Currents induced into the rotor bars
will therefore include harmonics corresponding to (28).

Rotor time harmonics can be calculated either by analytical approach based on methodology
described in [31] or by using FEA. The authors of [31] represented a squirrel-cage rotor by a
star-connected winding with transformation of the end rings into stars. From pre-calculated saturation
harmonics [30,31], they derived the induced voltage per leg of the proposed equivalent diagram and
calculated the harmonic currents using transformed bar resistance and reactance.

An example relating to motor in Figure 5 is seen in Figure 7, where the left side represents the
time dependency of the current (calculated from FEA) flowing through the bar, and the right side
shows its frequency spectrum.

Analogously to (1), we can find the magnetic field (29) generated by the kth single rotor bar
carrying the current ik.

Bbar−k(α) = ik
µ0

πδ(α)

∞∑
ν=1

1
ν

sin(ν[α− (k− 1)α1]) (29)

A symmetrically manufactured rotor, having bars evenly distributed along the air gap, generates
magnetic field of opposite direction to the field formed by the stator. Considering sinusoidal rotor
current distribution, Equation (30) describes the resulting rotor field. Here, I2m represents the bar
current magnitude.

Bcage(α) =
µ0

πδ(α)
I2m

Q2∑
k=1

sin
(
ωt− p

k− 1
Q2

2π
) ∞∑
ν=1

1
ν

sin(ν[α− (k− 1)α1])

 (30)



Energies 2020, 13, 496 10 of 17

As shown in Figure 7, the bar current includes, besides the fundamental harmonic component,
also an amount of additional time harmonics deforming the previously assumed sinusoidal current
wave. Based on this, (30) should be rewritten in (31) to consider n rotor time harmonics.

Bcage(α) =
µ0

πδ(α)

Q2∑
k=1

 n∑
µ=1

[
Iµsin

(
µ

[
ωt− p

k− 1
Q2

2π−ϕiµ

]
−ϕshi f t

)] ∞∑
ν=1

1
ν

sin(ν[α− (k− 1)α1])

 (31)

New parameter ϕiµ represents the phase shift of µth time harmonic component, and ϕshi f t is the
angle measured between the stator and the rotor mmfs obtained analyzing the machines equivalent
circuit [32,33]. Final magnetic field curve (see Figure 8) is then given as the difference between the
stator and the rotor fields, i.e., Bm−phase(α) − Bcage(α).
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Figure 8. (a) Final air gap flux density for motor operating under load condition; flux density
distribution (left)—blue line inverted, (b) frequency spectrum (right).

The left side of Figure 8 compares the flux density waveform obtained using proposed analytical
approach (red line) to the one derived from FEA (blue line). To ensure better clarity, the blue line is
inverted. The right side of Figure 8 shows comparison between harmonic spectrum corresponding to
both waveforms.

The results show good agreement between the proposed method and FEA and is therefore an
effective way to air gap flux density prediction in any multiphase induction motor having distributed
winding with integer slots number per pole per phase.
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3. Time Harmonics in Multiphase Winding

For common three-phase industrial line-started induction machines, the significant source of
non-harmonic voltage is mainly the power supply imbalance. Multiphase motors are usually powered
from frequency converters used for easy and energy efficient speed control. The inverters (especially
the voltage-types) generate voltage having either rectangular or pulsed shape. Thus, its spectrum
contains the amount of harmonics µ dependent on the load and the pulse width modulation settings.
Non-harmonic power supply can cause parasitic torque ripples, vibrations, increased noise, increased
voltage stress of the insulation system and also can generate higher I2R winding losses due to
harmonic currents.

Sometimes, particularly when talking about multiphase motors, the time harmonics are injected
into the power supply in order to increase torque per ampere. The extra torque is obtained due to the
fact that the flux distribution in the air gap is flattened so that the saturation can be avoided for a wider
operational range.

3.1. Harmonics Creating 2p Number of Pole Pairs

Operational properties of significant time harmonics and their influence on the motor can be
analyzed composing a time-varying phasor diagram showing the magnetic field (32).

Fm−phase µ = Fm−µ

m∑
k=1

[
cos

(
α−

k− 1
m

2π
)
cos

(
µω1t− µ

k− 1
m

2π
)]

(32)

Sine wave current, represented by the second multiplier in the summation, flowing in each
of m stationary coils, represented by the first multiplier, produces m sine varying magnetic fields
perpendicular to the rotation axis. The m magnetic fields add as vectors to produce a single rotating
magnetic field Fm−phase µ.

For example, the fundamental harmonic component working in three-phase motor generates
positive sequence field with amplitude (33).

F3−phase 1 = Fm1
1
2 [cos(α−ω1t) + cos(α+ω1t)] + Fm1

1
2 [cos(α−ω1t)+

cos
(
α+ω1t− 4

3π
)]
+ Fm1

1
2

[
cos(α−ω1t) + cos

(
α+ω1t− 8

3π
)]
= · · · =

Fm1
3
2 cos(α−ω1t)

(33)

Similarly, we can derive (34) for the 5th and 7th harmonic components obtaining the negative and
the positive sequence waves, respectively.

F3−phase 5 = Fa5 + Fb5 + Fc5 = · · · = Fm5
3
2 cos(α+ 5ω1t)

F3−phase 7 = Fa7 + Fb7 + Fc7 = · · · = Fm7
3
2 cos(α− 7ω1t).

(34)

Performing analyses for randomly chosen motors and harmonics, e.g., the five-phase motor fed
by 5th harmonics and seven-phase motor fed by 7th harmonics, we get (35).

F5−phase 5 = Fm5
5
2 cos(α+ 5ω1t)

F7−phase 7 = Fm5
7
2 cos(α− 7ω1t)

(35)

Normally, the literature recognizes the harmonic content in the voltage curve of the inverter
following rule (36),

µ = 2mc± 1, c ∈ Z (36)

However, in case of harmonic injection drives, the converter can generate any harmonic we need;
therefore, (36) could be rewritten in more general (37).

µ = mc± 1, c ∈ Z (37)



Energies 2020, 13, 496 12 of 17

Based on the previous analyses, we may conclude that by applying the operator “+” on (37),
the resulting harmonics create waves traveling the air gap together with the fundamental one, but their
speed is µ-times higher. Moreover, to the contrary, the operator “−” gives harmonics producing
waves passing through the air gap again µ-times faster but now in opposite direction. Under perfectly
balanced conditions, all these harmonics produce rotating magnetic fields having constant amplitudes
(38) and angular speeds in time, so they form circular shaped fields.

Fm−phase µ = Fmµ
m
2

(38)

3.2. Harmonics Creating Higher Number of Pole Pairs than 2p

For any harmonic order originating from (39), the application of (32) gives always zero value.
In addition, all phase currents (related to the analyzed harmonic) are in phase with each other and
therefore generate zero sequence (non-rotating) field.

µ = mc, c ∈ Z (39)

When injecting subharmonic (µ < Z), the resulting magnetic field changes the amplitude and
angular speed in time, which deforms originally circular field into elliptical. In extreme cases (40),
the field takes the pulsating form having zero translation speed against the air gap and generates
losses, produces noise and causes homopolar magnetic saturation.

µ =
m
2
+ m(c− 1), c ∈ Z. (40)

The situation becomes more complicated when studying integer harmonic orders that are not
predicted, neither by (37) nor (39). Substituting into (32) we get zero values even though they are
harmonics generating fields with different phase shift relative to each other. Therefore, they produce
magnetic field passing through the air gap with nonzero speed. For five-phase motor, we find those
harmonics from (41),

µ = m(c− 1) ± 2, c ∈ Z (41)

However, the seven-phase motor includes, besides (41), also (42).

µ = m(c− 1) ± 3, c ∈ Z (42)

Hence, in case of nine-phase motor we must apply (41) to (43).

µ = m(c− 1) ± 4, c ∈ Z (43)

All these harmonics produce a magnetic field with higher number of pole pairs than generated
by the fundamental harmonic. This is due to the specific “time” re-assembling of the stator phases
(µ-multiplication of individual phase shifts) while keeping the same winding mechanical distribution.
This in turn forms a new winding with completely new Görges diagram [30] producing higher number
of pole-pairs. Figure 9 shows the example of the 3rd harmonic (magnitude equals to the fundamental)
injected into the five-phase motor discussed previously in Figure 5 (Q1 = 30, Q2 = 22, 2p = 2, q = 3).

As it forms 3 × 2p number of poles, the speed must be the same as that developed by the
fundamental harmonic. Similar behavior can be observed also for the 3rd and 5th current harmonic
in seven-phase motor and for the 3rd, 5th and 7th harmonic in nine-phase motor (see left side of
Figure 10).
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(b) harmonics inappropriate for injecting.

Amplitudes of individual harmonics could be derived from new Görges diagram. As these
amplitudes are defined by half ampere-turns corresponding to one magnetic pole, we may calculate
them from the ampere-turns that belong to one pole pitch. These specific “pole-creating” harmonics
generate in the air gap space harmonics having the same order (µ = ν), so we can consider the pole
pitch to be µ-times shorter as compared to the fundamental. Hence, only (44) coil turns contribute to
the final value of individual harmonic amplitude.

q
m
2µ

N (44)

With multiplication (44) by the mean value of the stator current Iµ we obtain the resulting mmf
from (45).

Hµ−mag =
q
δ0

m
µ

N
Iµ
π

√

2, µ = ν (45)

Considering the winding factor ofµ-th harmonic component (still we assumeµ = ν), the magnitude
of the air gap flux density is then (46).

Bµ−mag = µ0
q
δ0

m
π

N
kwν

µ
Iµ
√

2, µ = ν (46)

As demonstrated in the right side of the figure, other harmonics (excluding (37) and (39)) may
create either circular or the elliptical fields traveling in different directions and speeds.
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Table 1 shows the same overview but extended by nine-phase machines. Column “poles” gives
number of magnetic poles created by the particular harmonic component, column “sequence” shows
the traveling direction (or field character) and column “speed” specifies the velocity relative to the
fundamental wave. The field character shows whether the mmf travels against the air gap (“+” or “−”)
or pulsates (“puls.”) with zero speed.

Table 1. Time harmonics effect overview.

Five-Phase Winding Seven-Phase Winding Nine-Phase Winding

µ Poles Sequence Speed Poles Sequence Speed Poles Sequence Speed

1 2p + 1 2p + 1 2p + 1
2 3 × 2p − 2/3 5 × 2p − 2/5 7 × 2p − 2/7

2.5 3 × 2p puls. 0
3 3 × 2p + 1 3 × 2p + 1 3 × 2p + 1

3.5 3 × 2p puls. 0
4 2p − 4 3 × 2p − 4/3 5 × 2p − 4/5

4.5 5 × 2p puls. 0
5 5 × 2p zero 0 5 × 2p + 1 5 × 2p + 1
6 2p + 6 2p − 6 3 × 2p − 6/3
7 3 × 2p − 7/3 7 × 2p zero 0 7 × 2p + 1

7.5 3 × 2p puls. 0
8 3 × 2p + 8/3 2p + 8 2p − 8
9 2p − 9 5 × 2p − 9/5 9 × 2p zero 0
10 5 × 2p zero 0 3 × 2p + 10/3 2p + 10

Following this, we can construct Figures 11–13 to give graphical demonstration of the harmonics’
operational influence.
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As obvious, there is an amount of harmonics that can create magnetic field traveling the air gap
with the same speed and direction that travels the fundamental wave (color marked). These harmonics
are usually being injected in order to increase the torque.

4. Conclusions

From the research results, it is evident that a motor having a higher number of phases can produce
a more sinusoidal magnetic field than the motor having a smaller number of phases, even if it has a
similar number of slots. Hence, by increasing the number of phases, the torque harmonics decrease.
For distributed multiphase winding with integer q, we can conclude following rules.

First, the spectrum of the air gap flux density includes harmonic orders obtained from (19). These
harmonics generate fields traveling the air gap in a different direction (according to operator used) and
speed (ν-times lower than fundamental).

Second, as the windings are physically placed in slots, the spectrum includes significant orders
called “step” harmonics (20) having the same winding factor as calculated for fundamental harmonic.
The real “slot” harmonics are obtained also from (20), and therefore, their orders overlap (interact) with
“step” harmonics. As a consequence, this interaction modifies original magnitudes of (20), and resulting
air gap flux density is influenced.

Third, as shown in (18), the winding factor considering straight rotor bars is still given by (22),
hence the magnitude of ν-th harmonics can be calculated from fundamental harmonic using (23).

Fourth, the injection of time harmonics can produce magnetic field having even more than 2p
magnetic pole-pairs. For any harmonic order originating from (39), the application of (32) produces
zero value, therefore zero sequence (non-rotating) field.

Fifth, considering subharmonics (µ < Z), the resulting magnetic field deforms its originally circular
shape into an elliptical one. In extreme case (40), the field pulsates in only one axis forming a kind
of homopolar field. When studying integer harmonic orders that are not predicted, neither by (37)
nor (39), the substitution into (32) gives zero values even though they are harmonics establishing field
waves passing through the air gap win non-zero speed. All these harmonics produce magnetic field
having more magnetic pole-pairs than 2p. Some of them (e.g., 3rd, 5th and 7th harmonic in nine-phase
motor) can travel the air gap with the same speed as developed by the fundamental harmonic and may
be therefore injected in order to increase the torque.
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