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Abstract: The present study explores the entropy generation, flow, and heat transfer characteristics of
a dissipative nanofluid in the presence of transpiration effects at the boundary. The non-isothermal
boundary conditions are taken into consideration to guarantee self-similar solutions. The electrically
conducting nanofluid flow is influenced by a magnetic field of constant strength. The ultrafine particles
(nanoparticles of Fe3O4/CuO) are dispersed in the technological fluid water (H2O). Both the base fluid
and the nanofluid have the same bulk velocity and are assumed to be in thermal equilibrium. Tiwari
and Dass’s idea is used for the mathematical modeling of the problem. Furthermore, the ultrafine
particles are supposed to be spherical, and Maxwell Garnett’s model is used for the effective thermal
conductivity of the nanofluid. Closed-form solutions are derived for boundary layer momentum
and energy equations. These solutions are then utilized to access the entropy generation and
the irreversibility parameter. The relative importance of different sources of entropy generation
in the boundary layer is discussed through various graphs. The effects of space free physical
parameters such as mass suction parameter (S), viscous dissipation parameter (Ec), magnetic heating
parameter (M), and solid volume fraction (φ) of the ultrafine particles on the velocity, Bejan number,
temperature, and entropy generation are elaborated through various graphs. It is found that the
parabolic wall temperature facilitates similarity transformations so that self-similar equations can
be achieved in the presence of viscous dissipation. It is observed that the entropy generation
number is an increasing function of the Eckert number and solid volume fraction. The entropy
production rate in the Fe3O4 −H2O nanofluid is higher than that in the CuO−H2O nanofluid under
the same circumstances.

Keywords: nanofluid; heat transfer; entropy generation; viscous dissipation; magnetic heating

1. Introduction

The Navier-Stokes equations, which are second-order nonlinear partial differential equations,
govern the viscous fluid–fluid flow. The exact solution of the complete Navier–Stokes equations has not
yet been computed. However, closed-form solutions can be established in certain physical circumstances
under reasonable suppositions [1–5]. Exact solutions are important since such solutions can be utilized
to validate asymptotic analytical and numerical solutions. Crane [6] found the closed-form solution of
the simplified Navier-Stokes equations under the boundary layer approximations to analyze the flow

Energies 2020, 13, 5506; doi:10.3390/en13205506 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-6896-172X
https://orcid.org/0000-0002-0920-6174
http://www.mdpi.com/1996-1073/13/20/5506?type=check_update&version=1
http://dx.doi.org/10.3390/en13205506
http://www.mdpi.com/journal/energies


Energies 2020, 13, 5506 2 of 16

over a stretched surface. Some researchers determined the closed-form solutions of boundary layer
flow after the pioneering work of Crane with various physical conditions [7–11].

It is essential to examine heat transfer issues in industrial engineering. Recently, heat transfer
analysis has been limited to the first law of thermodynamics, which only concerns energy conservation
during the interactions of the systems and surroundings. It deals solely with the amount of energy
regardless of its quality. Moreover, the first law does not distinguish between heat and work.
It assumes that work and heat are fully interchangeable, but work is high-quality energy and can
be fully converted into heat, while heat is low-quality energy and cannot be fully converted into
work. Heat is an unorganized form of energy. The law of entropy shows that the entropy increase
in the cold object is higher than the decrease of entropy in the hot object. This means that the final
state is more random in the thermodynamic system. This analysis suggests that the heat transfer
phenomenon decreases energy quality or increases the system entropy. To investigate this energy
quality reduction, Bejan [12,13] proposed a method called entropy minimization that is based on
the law of entropy. The law of entropy (second law of thermodynamics) is used to maintain energy
quality [14–20]. In addition to heat transfer, frictional heating and magnetic dissipation also generate
entropy in fluid flow problems [21–25].

Conventional working fluids such as kerosene, gasoline, water, engine oil, and fluid mixtures have
exceptionally poor thermal conductivity, as demonstrated by the vast number of industries dealing with
these conventional working fluids. However, due to their inefficiency in thermal conductivity, they face
several problems. The use of nanoscale elements in base fluids is one of the most important techniques
used to resolve this deficiency. Such a mixture of nanometer-sized particles and a working fluid is
called a nanofluid. In comparison to base liquids, nanofluids possess high thermal conductivity [26–32].
Many researchers firmly agree on the remarkable characteristics of nanofluids. Over the past two
decades, this new type of fluid has attracted the attention of many researchers. Nanofluid studies
have a variety of important applications, such as product provision for cancer, cooling systems,
nuclear power plant cooling, and computer equipment cooling. Hsiao [33] conducted stagnation
nanofluid energy conversion analysis for the conjugate problem of conduction–convection and heat
source/sink. Ma et al. [34] explored the gravitational convection term of heat management in a
shell and tube heat exchanger filled with a Fe3O4 −H2O nanoliquid by utilizing a lattice Boltzmann
scheme. Wakif et al. [35] reported the impacts of thermal radiation and surface roughness on
the complex dynamics of water transporting alumina and copper oxide nanoparticles. Hsiao [36]
reported nanofluid flow for conjugating mixed convection and radiation with interactive physical
characteristics. In a channel with active heaters and coolers, a numerical simulation was introduced by
Ma et al. [37] to examine the impacts of magnetic field on heat transfer in a MgO−Ag−H2O nanoliquid.
Prasad et al. [38] examined the upper-convected Maxwell three-dimensional rotational flow with a
convective boundary condition and zero mass flux for the concentration of nanoparticles. Frictional
heating is the conversion of fluid kinetic energy to heat due to the frictional forces between all the
neighboring fluid layers. Frictional heating is the main factor in the study of heat transfer in boundary
layer flows. Since large velocity gradients exist within the boundary layer, the viscous dissipation
effects cannot be neglected. When there is a viscous dissipation, a term for viscous dissipation is
incorporated into the energy equation [39–46].

In this research, the exact solutions of transformed nonlinear dimensionless momentum and
energy equations that occur in the magnetohydrodynamic (MHD) boundary layer flow of nanofluid are
obtained. The goal of the work, apart from providing a benchmark solution for numerical simulation,
is the parametric analysis of entropy generation. The work also describes how boundary conditions
facilitate similarity transformations to get self-similar equations. The literature review reveals that
nonsimilar problems are treated as self-similar problems. Furthermore, the entropy generation analysis
exists in literature, but the analysis is limited to the low temperature difference between the boundary
and bulk fluid. The present work is free from such a constraint and is valid for both low and high
temperature differences. In addition, the terms for frictional heating and magnetic dissipation are
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added to the energy equation and the expression for entropy generation. To the best of our knowledge,
no one has reported the exact solutions for nanofluid flow induced by a linearly stretching surface
with a parabolic temperature profile at the boundary. Obtained exact solutions are used for calculating
entropy generation and the Bejan number. Visual representations are used to investigate the effects of
physical parameters on the nanofluid flow, thermal field, entropy generation profile, and Bejan number.

2. Statement of the Problem and Governing Equations

Consider the electrically conducting and dissipative nanofluid flow over a stretching surface as
shown in Figure 1. The nanofluid is supposed to be a mixture of base fluid (water) and nanoparticles
Fe3O4/CuO. The Cartesian coordinate system (X, Y) is chosen in such a way that the X − axis is
taken along the solid boundary and the Y − axis is normal to it. Let Uw(X) = UoX be the velocity
of the stretching boundary and Tw(X) = Tb + CoX2 be the temperature variation at the surface of
the stretching boundary; here, Tb and the subscript w represent the bulk fluid temperature and the
condition at the solid boundary, while Uo and Co represent the dimensional constants. The imposed
magnetic field is constant and of strength Bo. The generalized Ohm’s law in the absence of an electrical

field is
→

j = σn f

(
→
q ×

→

Bo

)
, where σn f and

→
q
(
→

U,
→

V
)

show the electrical conductivity of nanofluid and

bulk velocity field of the nanofluid, respectively. The magnetic force j× Bo and magnetic dissipation
→

j .
→

j
σn f

are simplified to −σn f B2
oU and σn f B2

oU2, respectively.
The equations governing the incompressible nanofluid flow for the present problem are

∂U
∂X

+
∂V
∂Y

= 0, (1)

U
∂U
∂X

+ V
∂U
∂Y

= νn f
∂2U
∂Y2 −

σn f B2
oU

ρn f
, (2)

(
U
∂T
∂X

+ V
∂T
∂Y

)
=

(
1
ρCp

)
n f

kn f
∂2T
∂Y2 + µn f

(
∂U
∂Y

)2

+ σn f B2
oU2

 (3)

The imposed boundary conditions are as follows:

U(X, 0) = Uw(X) = UoX, V(X, 0) = Vw, T(X, 0) = Tw(X) = Tb + CoX2

U(X, Y→∞)→ 0, T(X, Y→∞)→ Tb

}
(4)

The governing self-similar equations are obtained from Equations (2) and (3) by using the following
dimensionless variables:

η = Y

√
Uo

νb f
, U = UoX f ′(η), V = −

√
Uoνb f f (η), θ(η) =

T − Tb

T(X, 0) − Tb
(5)

Equations (2) and (3) under the transformation in Equation (5) become

G1

Go
f ′′′ + f f ′′ − f ′2 −

G3

Go
M2 f ′ = 0, (6)

G5

G4
θ′′ +

G1

G4
EcPr f ′′ 2 + Pr fθ′ +

G3

G4
EcM2Pr f ′2 − 2Prθ f ′ = 0 (7)

The imposed boundary conditions are transformed to

f (0) = −
Vw√
Uoνb f

= S, f ′(0) = 1, f ′(η→∞) = 0 (8)
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θ(0) = 1, θ(η→∞) = 0 (9)

where Go = (1−φ) + φ
(
ρs
ρb f

)
, G1 = (1−φ)−2.5, G3 =

σn f
σb f

, G4 = 1 − φ + φ

(
(ρCp)s

(ρCp)b f

)
, G5 =

kn f
kb f

,

and Ec =
U2

w

(Cp)b f (T(X,0)−Tb)
(Eckert number), and the subscripts b f and s are used for base fluid and

nanoparticles, respectively. Pr =
νb f
αb f

(Prandtl number); αb f indicates base fluid thermal diffusivity;

M2 =
σb f B2

o
ρb f U0

; S = − Vw√
Uoνb f

and shows the dimensionless mass-transfer parameter; and νn f , σn f , ρn f , kn f ,

and
(
ρCp

)
n f

are defined in Table 1. The thermophysical properties of CuO, Fe3O4, and working fluid

(H2O) are shown in Table 2.
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Figure 1. Physical flow model and coordinate system.

Table 1. Effective thermophysical properties of nanofluid [47–52].

Thermophysical Property of Nanofluid Symbol Defined

Thermal conductivity kn f

kn f =
(ks+2kb f )−2φ(kb f−ks)
(ks+2kb f )+φ(kb f−ks)

kb f

here, φ represents sold volume fraction
of nanoparticles.

Viscosity µn f µn f =
µb f

(1−φ)2.5

Electric conductivity σn f σn f = 1 +
3
(
σs
σb f
−1

)
φ(

σs
σb f

+2
)
−

(
σs
σb f
−1

)
φ
σb f

Heat capacitance
(
ρCp

)
n f

(
ρCp

)
n f

= (1−φ)
(
ρCp

)
b f

+ φ
(
ρcp

)
s

Density ρn f ρn f = (1−φ)ρb f + φρs
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Table 2. Thermophysical properties of CuO, Fe3O4, and working fluid (H2O).

Physical Properties H2O CuO Fe3O4

Cp (J/kgK) 4179 531.8 670

k (W/mK) 0.613 76.5 6.0

ρ
(
kg/m3

)
997.1 6320 5200

σ
(
S×m−1

)
5180 2.7 × 10−8 25,000

Pr (-) 6.8 - -

3. Solution Methodology

3.1. Closed-Form Solution of Momentum Balance Equation

The closed-form exact solution of Equation (6) with associated boundary conditions of Equation (8)
is supposed as follows:

f (η) = C1 + C2e−βη, β > 0 (10)

Using the first two boundary conditions defined in Equation (8), the computed arbitrary constants
C1 and C2 are

C1 = S +
1
β

, C2 = −
1
β

(11)

Putting Equation (11) into Equation (10), we get

f (η) = S +
1
β

(
1− e−βη

)
(12)

The above closed-form solution trivially satisfies the far-field boundary condition as defined in
Equation (8) for β > 0. To find β, we insert Equation (12) into Equation (6) and get

G1

Go
β2
− Sβ− 1−

G3

Go
M2 = 0 (13)

By solving the above equation, we have

β = Go


S +

√
S2 + 4 G1

Go

(
1 + G3

Go
M2

)
2G1

 > 0. (14)

The closed-form solution of the boundary value problem (Equations (6) and (7)) is given by

f (η) = S +
2G1

Go

(
S +

√
S2 + 4 G1

Go

(
1 + G3

Go
M2

))
1− e−Go(

S+

√
S2+4

G1
Go

(1+
G3
Go

M2)

2G1
)η

 (15)

3.2. Solution of Energy Balance Equation via Laplace Transform

Equation (7) is decoupled from Equation (6) by substituting Equation (12) into Equation (7)
as follows:

G5

G4
θ′′ +

G1

G4
EcPrβ2e−2βη + Pr

(
S +

1
β

(
1− e−βη

))
θ′ +

G3

G4
EcM2Pre−2βη

− 2Prθe−βη = 0 (16)
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To get rid of exponential coefficients, we define a new variable, ξ, as follows:

ξ =
Pr
β2 e−βη (17)

By utilizing the above transformation, Equation (7) and the related boundary conditions take the
following form:

ξ
d2θ

dξ2 +
dθ
dξ

(
K +

ξ
G

)
+ ξL− 2

θ
G

= 0, (18)

θ

(
Pr
β2

)
= 1, θ(0) = 0 (19)

with

K = 1−
Pr(1 + βS)

Gβ2 , L =
Ecβ2

GPr

(
G1

G4
β2 +

G3

G4
M2

)
and G =

G5

G4
. (20)

By employing Laplace transform on Equation (18) and then using Equation (19), we obtain

dΘ(ζ)
dζ

+Θ(ζ)

ζ(2−K) + 3
G

ζ
(
ζ+ 1

G

)  = L

ζ3
(
ζ+ 1

G

) (21)

where Θ(ζ) is the Laplace transform of the function θ(ξ). Equation (21) is a Leibnitz first-type linear
equation with integrating factor

e

∫ ζ(2−K)+ 3
G

ζ(ζ+ 1
G )

dζ
=

ζ3

(Gζ+ 1)1+K . (22)

Solving Equation (21) by utilizing Equation (22), we have

Θ(ζ) =
L

ζ3(−K − 1)
+ c

(Gζ+ 1)K+1

ζ3 (23)

By taking Laplace inverse of Equation (23), we get

θ(ξ) =
Lξ2

2(−K − 1)
+

c
2G−K−1Γ(−K − 1)

(
ξ2
∗ ξ−2−Ke(

−ξ
G )

)
(24)

Here, an asterisk (∗) indicates convolution and Γ shows a gamma function. The convolution of
two functions, F(ξ) and G(ξ), is defined as follows:

F(ξ) ∗H(ξ) =

ξ∫
0

F(ξ− ε)H(ε)dε (25)

By taking F(ξ) = ξ2 and H(ξ) = e
−ξ
G ξ−K−2, Equation (24) takes the following form:

θ(ξ) =
Lξ2

2(−K − 1)
+

c
2G−K−1Γ(−K − 1)

ξ∫
0

(ξ− ε)2e
−ε
G ε−K−2dε. (26)
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By employing the transformation ε = ξu, the above equation takes the following form:

θ(ξ) = −
Lξ2

2(K + 1)
+

cξ1−K

2G−K−1Γ(−K − 1)

1∫
0

(1− u)2e
−uξ

G u−K−2du. (27)

By utilizing the integral form of Kummer’s confluent hypergeometric function, i.e.,

M1,1
(
−K − 1;−K + 2; −ξG

)
=

Γ(2−K)
2Γ(−1−K)

1∫
0
(1− u)2e

−uξ
G u−K−2d, Equation (27) becomes

θ(ξ) = −
Lξ2

2(K + 1)
+

cGK+1ξ1−K

Γ(2−K)
M1,1

(
−K − 1;−K + 2;

−ξ
G

)
. (28)

The boundary condition at the surface of the stretching surface θ(0) = 0 is satisfied identically.
However, the constant of integration c is obtained by using the far-field boundary condition

θ
(
ξ = Pr

β2

)
= 1 and is given by

c =

Γ(2−m)

 2(K+1)+L
(

Pr
β2

)2

2(K+1)


GK+1

(
Pr
β2

)1−K
M1,1

(
−1−K ; 2−K ;− Pr

Gβ2

) . (29)

Finally, by inserting Equation (29) into Equation (28) and using the transformation ξ = Pr
β2 e−βη,

we obtain the exact solution of the energy equation:

θ(η) = −
1
2

L
(K + 1)

(
Pre−βη

β2

)2

+

(
Pre−βη
β2

)1−K
M1,1

(
−1−K ; 2−K ;−Pre−βη

Gβ2

)(
1 + L

2(1+K)

(
Pr
β2

)2
)

(
Pr
β2

)1−K
M1,1

(
−K − 1 ; 2−K ;− Pr

Gβ2

) . (30)

4. Analysis of Entropy Generation

The rate of entropy generation in the presence of heat dissipation phenomenon with magnetic
heating is given by

.
E
′′′

Gen =
kn f

T2

(
∂T
∂Y

)2

+
µn f

T

(
∂U
∂Y

)2

+
σn f B2

oU2

T
, (31)

Using Equation (6), Equation (31) becomes

.
E
′′′

Gen( .
E
′′′

Gen

)
o

= Ns = G5
θ′2

(θ+Λ)2︸         ︷︷         ︸
NH

+
G1PrEc f ′′ 2

(θ+Λ)︸        ︷︷        ︸
NF

+ G3
PrM2Ec f ′2

(θ+Λ)︸        ︷︷        ︸
NM

. (32)

Here,
( .
E
′′′

Gen

)
o
=

kb f Uo
νb f

indicates characteristic entropy generation; Ns indicates entropy production

rate in dimensionless form; Λ =
Tb

Tw−Tb
shows the temperature parameter; and NH, NF, and NM

represent the dimensionless form of entropy generation due to heat transfer, viscous dissipation, and
magnetic heating, respectively.
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By utilizing the obtained exact solutions, the three sources of entropy generation stated above
take the following forms:

NH =
1

(Pr)e f f


− 1

2
L

(K+1)

(
Pr e−βη
β2

)2
+

(
Pr e−βη

β2

)1−K
M1,1

(
−1−K ;2−K ;− Pr e−βη

Gβ2

)(
1+ L

2(1+K)

(
Pr
β2

)2
)

(
Pr
β2

)1−K
M1,1

(
−K−1 ;2−K ;− Pr

Gβ2

)

′ 

2

Λ− 1
2

L
(K+1)

(
Pr e−βη
β2

)2
+

(
Pr e−βη

β2

)1−K
M1,1

(
−1−K ;2−K ;− Pr e−βη

Gβ2

)(
1+ L

2(1+K)

(
Pr
β2

)2
)

(
Pr
β2

)1−K
M1,1

(
−K−1 ;2−K ;− Pr

Gβ2

)


2 . (33)

NF =

Ec Pr


−S+

√
S2+4

G1
Go

(
1+

G3
Go

M2
)

2G1
e−η(

S+

√
S2+4

G1
Go

(1+
G3
Go

M2)Go

2G1
)


2

G3
o

Λ− 1
2

L
(K+1)

(
Pr e−βη
β2

)2
+

(
Pr e−βη

β2

)1−K
M1,1

(
−1−K ;2−K ;− Pr e−βη

Gβ2

)(
1+ L

2(1+K)

(
Pr
β2

)2
)

(
Pr
β2

)1−K
M1,1

(
−K−1 ;2−K ;− Pr

Gβ2

)


. (34)

and

NH =

M2Ec Pr

e−η(
S+

√
S2+4

G1
Go

(1+
G3
Go

M2)Go

2G1
)


2

Λ− 1
2

L
(K+1)

(
Pr e−βη
β2

)2
+

(
Pr e−βη

β2

)1−K
M1,1

(
−1−K ;2−K ;− Pr e−βη

Gβ2

)(
1+ L

2(1+K)

(
Pr
β2

)2
)

(
Pr
β2

)1−K
M1,1

(
−K−1 ;2−K ;− Pr

Gβ2

)


. (35)

4.1. Bejan Number

To compare the spatial distribution of entropy generation in a flow field due to various sources,
an irreversibility ratio parameter known as Bejan number (Be) is defined as given below

Be =

kn f

T2

(
∂T
∂Y

)2
⇒ (Entropy generation due to heat trans f er)(

kn f

T2

(
∂T
∂Y

)2
+

µn f
T

(
∂U
∂Y

)2
+

σn f B2
oU2

T

)
⇒ (Total entropy generation)

(36)

After the utilization of similarity variables, Equation (36) takes the following form:

Be =
G5

θ′2

(θ+Λ)2 ⇒ NH(
G5

θ′2

(θ+Λ)2 +
G1PrEc f ′′ 2

(θ+Λ)
+ G3

PrM2Ec f ′2

(θ+Λ)

)
⇒ (NH + NF + NM)

(37)
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5. Results and Discussion

The nondimensional complicated differential equations (momentum and energy equations) are
solved by taking into consideration the exponential form solution and the Laplace transform. The exact
expressions are obtained for entropy generation via heat transfer, magnetic heating, and frictional
heating. The dimensionless entropy production (Ns), velocity f ′(η), and temperature θ(η) are plotted
against η by taking various values of relevant parameters. The Bejan number (Be) profile is also plotted
against the similarity variable η by considering different values of the relevant embedded parameters.
All the figures are plotted by taking water as a base fluid. Nanoparticles of Fe3O4/CuO are dispersed
in H2O.

Figure 2a demonstrates the impact of mass suction (S) on the velocity of Fe3O4 −H2O and
CuO −H2O nanoliquids. The decrement in motion is seen for both Fe3O4 −H2O and CuO −H2O
nanoliquids with increasing (S). For a fixed value of (S), the velocity of the CuO−H2O nanoliquid is
higher than the velocity of the Fe3O4 −H2O nanoliquid. Furthermore, the velocity of both nanoliquids
satisfies the boundary condition at η→∞ asymptotically. Figure 2b demonstrates the influence
of the magnetic parameter

(
M2

)
on f ′(η). It is seen that f ′(η) reduces as M2 increases. It is a

well-known fact that the Lorentz force acts as a decelerating force for fluid flow and varies directly
as M2 increases. Due to this fact, f ′(η) varies inversely with M2. Furthermore, the velocity of the
Fe3O4 −H2O nanoliquid is lower than the velocity of the CuO−H2O nanoliquid, and this is because of
the low density of Fe3O4 −H2O compared to CuO−H2O. Figure 3a shows the variation of temperature
θ(η) with S by taking M = 1, φ = 0.1, Ec = 0.5, and Pr = 6.8. The temperature drop is observed
with increasing values of S. The width of the thermal boundary layer (TBL) of the Fe3O4 −H2O
nanoliquid is greater than that of the CuO −H2O nanoliquid. Furthermore, the difference in TBL
thickness reduces as S increases. The effects of M2 on temperature θ(η) are presented in Figure 3b.
It is seen that θ(η) is augmented as M2 increases. The rising behavior of temperature is because of
magnetic heating. The effective thermal conductivity of nanoliquids is directly related to the solid
volume fraction of nanoparticles (φ), and this augments the temperature of nanoliquids, as shown in
Figure 3c. Furthermore, the width of TBL is smaller for base fluid H2O and larger for Fe3O4 −H2O.
This is due to the low thermal conductivity of water and the high effective thermal conductivity of
the Fe3O4 −H2O nanoliquid. Figure 3d reveals the influence of the Eckert number (Ec) on θ(η). It is
found that increasing Ec leads to a rising temperature. The dissipation function implies that frictional
heating varies directly with velocity gradients, and the velocity gradients are high in the vicinity of
stretching surface. Due to this fact, the temperature shoots up suddenly, resulting in a higher Eckert
number in the vicinity of the stretching plate, as shown in Figure 3d.
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Figure 4a portrays the effects of the Eckert number (Ec) on the entropy generation number (Ns).
As seen from the plot, Ns is directly related to the Eckert number. This happens since frictional heating
increases with the increasing Eckert number. The entropy generation in the Fe3O4 −H2O nanoliquid
than that in the CuO−H2O nanoliquid. Furthermore, the surface of the solid boundary is the region
where maximum entropy is generated. The features of mass suction (S) on Ns are revealed in Figure 4b.
As S increases, entropy generation rises at the solid wall and its vicinity, but the opposite trend is
observed to start at a certain distance away from the boundary. Furthermore, entropy generation
is higher in the Fe3O4 −H2O nanoliquid at the solid boundary and its neighborhood as compared
to the CuO −H2O nanoliquid, but the trend becomes the opposite at a certain distance from the
boundary. The nature of entropy generation (Ns) with disparate values of the solid volume fraction of
nanoparticles (φ) is shown in Figure 4c. From this plot, it can be seen that Ns increases as φ increases.
This increase in Ns is due to the boost of heat transfer with increasing φ. It is well known that the
magnetic force is nonconservative. The entropy generation is directly related to the nonconservative
forces, and this fact is depicted in Figure 4d. The variations of Ns with temperature difference function
(Λ) are presented in Figure 4e. The Ns decreases with increasing values of Λ. Figure 5a shows that
the Bejan number (Be) has a maximum value at the surface of the stretching boundary for a nonzero
suction parameter (S). In the case of an impermeable stretching boundary, the entropy generation
in the Fe3O4 −H2O nanoliquid is due to dissipative forces (viscous and magnetic) near and on the
boundary, which are high in comparison to those of the CuO−H2O nanoliquid. An opposite trend
is observed to start at a certain vertical distance from the stretching surface. In the case of S > 0,
the entropy generation on the stretching surface and inside the boundary layer due to magnetic and
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viscous heating is more dominant in the Fe3O4 −H2O nanoliquid as compared to the CuO −H2O
nanoliquid. It is noticed from Figure 5b that Be is directly related to the solid volume fraction (φ) in
the region away from the stretching boundary. In the vicinity of an elastic boundary, the opposite
trend is observed. From Figure 5c, it can be seen that the Bejan number diminishes as Λ increases.
Furthermore, the entropy generation by nonconservative forces (viscous and magnetic) is higher in the
Fe3O4 −H2O nanoliquid than in the CuO−H2O nanoliquid.
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6. Concluding Remarks

In this study, we investigated flow, heat transfer, and entropy production in a dissipative nanofluid
flow under the influence of a magnetic field. The following findings can be drawn from the exact results:

• The decrement in motion is seen for both Fe3O4 −H2O and CuO−H2O nanofluids with increasing
S and M2.

• The velocity of the CuO−H2O nanofluid is higher than that of the Fe3O4 −H2O nanofluid.
• The temperature θ(η) is observed to decrease with increasing values of S.
• The temperature θ(η) increases as M2, φ, and Ec increase.
• The thermal boundary layer (TBL) width of the Fe3O4 −H2O nanoliquid is greater than that of

the CuO−H2O nanoliquid.
• The entropy generation number (Ns) is directly related to the Eckert number (Ec) and solid

volume fraction (φ).
• Entropy generation (Ns) by nonconservative forces is higher in the Fe3O4 −H2O nanoliquid than

in the CuO−H2O nanoliquid.
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Ns (Dimensionless) Entropy generation number
Pr (Dimensionless) Prandtl number
S (Dimensionless) Mass transfer parameter
.
E
′′′

Gen

(
ML−1K−1T−3

)
Rate of volumetric entropy generation( .

E
′′′

Gen

)
o

(
ML−1K−1T−3

)
Characteristic entropy generation

T (K) The temperature inside the boundary layer



Energies 2020, 13, 5506 14 of 16

Tw(x) (K) The temperature at the solid boundary
Tb (K) The temperature of fluid outside the thermal boundary layer
Uw(x)

(
LT−1

)
The velocity of a stretching sheet

U
(
LT−1

)
Velocity component along the surface of the solid body

Uo (T−1) Constant
V

(
LT−1

)
Velocity component normal to the surface of the solid body

Vw
(
LT−1

)
Normal velocity component at the boundary

X, Y (L) Cartesian coordinates

Greek Symbols

η (Dimensionless) Similarity variable
µb f

(
ML−1T−1

)
Dynamic viscosity of a base fluid

µn f
(
ML−1T−1

)
Dynamic viscosity of nanofluid

νn f (L2T−1) Kinematic viscosity of nanofluid
ρn f

(
ML−3

)
Nanofluid density

ρb f
(
ML−3

)
The density of a base fluid

ρs
(
ML−3

)
Density of nanoparticles

σn f
(
M−1L−3T3I2

)
Electric conductivity

σb f
(
M−1L−3T3I2

)
The electric conductivity of a base fluid

σs
(
M−1L−3T3I2

)
The electric conductivity of nanoparticle

θ(η) (Dimensionless) Temperature
φ (Dimensionless) The solid volume fraction of nanoparticles
Λ (Dimensionless) Temperature difference parameter
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