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Abstract: Owing to the increasing utilization of renewable energy resources, distributed energy
resources (DERs) become inevitably uncertain, and microgrid operators have difficulty in operating
the power systems because of this uncertainty. In this study, we propose a two-stage optimization
approach with a hybrid demand response program (DRP) considering a risk index for microgrids
(MGs) under uncertainty. The risk-based hybrid DRP is presented to reduce both operational
costs and uncertainty effect using demand response elasticity. The problem is formulated as
a two-stage optimization that considers not only the expected operation costs but also risk expense
of uncertainty. To address the optimization problem, an improved multi-layer artificial bee colony
(IML-ABC) is incorporated into the MG operation. The effectiveness of the proposed approach
is demonstrated through a numerical analysis based on a typical low-voltage grid-connected MG.
As a result, the proposed approach can reduce the operation costs which are taken into account
uncertainty in MG. Therefore, the two-stage optimal operation considering uncertainty has been
sufficiently helpful for microgrid operators (MGOs) to make risk-based decisions.

Keywords: two-stage optimization; risk-based hybrid demand response; uncertainties; conditional
value at risk; improved multi-layer artificial bee colony algorithm

1. Introduction

In a smart-grid environment, distributed energy resources (DERs), such as renewable energy,
have gained more attention than traditional power generation units owing to the increasing trend
to address environmental concerns [1,2]. Some of the most widely used renewable energy resources
are wind turbine (WT) and photovoltaic (PV) systems because of the feasibility of existing related
technologies. However, these forms of DERs are dependent on fluctuations and the unpredictive
nature of wind and solar resources. Since the difficulty in managing distributed uncertainties by
conventional power systems, microgrids (MGs) that can usefully control DERs have been introduced
as a new concept [3]. MGs manage a cluster of loads and DERs, operating as a control to offer power
locally. MGOs should be able to confirm the reliability of systems considering uncertain risk indices.
In this regard, the accurate evaluation of MGs is a challenging task due to the uncertainties inherent
in renewable energy. Moreover, methods are needed to mitigate the effects of uncertainty when
scheduling optimal operations [4]. In this situation, using flexible energy, such as demand response
(DR), can provide the required demand control for the system and can be used reliably in a relatively
short time under the same conditions [5]. Thus, the DR program (DRP) for power systems is expected
to advance steadily [6]. This is because power system infrastructure is focused on both stability and
economics, and the DRP is a flexible and inexpensive resource for operating a system. MGOs can use
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the DRP to reduce the peak load, save on the power reserve, and ensure power reliability. The operators
can also encourage customers to use less power during periods when demand reduction is required
owing to uncertainties. Thus, customers engage in contracts with MGOs to reduce demand when
requested, and MGOs offer incentive costs to customers that reflect the amount of demand reduced,
enabling contracts to be maintained.

Various approaches have been used recently to address uncertain problems inherent in MG
operation. To minimize operational costs under a deterministic and probabilistic environment,
a stochastic approach for MG operation using energy storage system (ESS) was proposed in Reference [7].
In Reference [8], optimal planning for interconnected MGs under uncertainty in large-scale distribution
systems was presented to improve reliability and economics. Further, to improve system operation and
management efficiency, a stochastic resource planning strategy for MGs was introduced in Reference [9]
to optimally manage resources required for both the generation and demand sides. In Reference [10],
both the power generation of each unit and the exchange with upstream networks were assessed
through the optimal operation of MGs. Artificial intelligence algorithms were used to forecast wind
speeds and optimal set volumes for DERs, and ESS capacity was determined based on forecasted data
to optimize the total operating costs by Motevasel et al. [11]. Moreover, a probabilistic methodology
of uncertainties caused by wind and solar generation and load consumption for estimating spinning
reserve requirement was presented in Reference [12]. The DRP was considered to control the frequency
of a smart MG with renewable generation, and mixed-integer linear programming was used to
solve the proposed model for wind-power generation under uncertainty [13]. A stochastic planning
approach was suggested to model the probabilistic behavior of wind and DRs in an energy market [14].
The authors in Reference [15] studied the effects of demand-side management of appliances on
the reliability, loss, and voltage profiles of power systems, and customer comfort was also considered.
Using a risk-based stochastic optimization framework, the minimum required ESS to secure the desired
voltage stability margin for distribution systems was computed by Jalali et al. [16]. The authors in
Reference [17] presented a flexible risk control strategy with an ESS to help remedy the removal of
line overload in post-contingency situations. To minimize operating costs of MGs using the genetic
algorithm, the optimal energy and power capacity of energy storage systems were determined [18].
The operational costs of MGOs were reduced by selling remaining energy at a high load level by
Samadi et al. [19]. This study addressed a daily power prediction module to provide MGs with
solar power output data for DER scheduling. However, the reserve for compensating wind and PV
power fluctuations was not considered within the daily DER schedule. The authors in Reference [20]
solved the optimal power flow through particle swarm optimization on a system of MGs with WT.
To date, several important studies on realizing optimal operation for MG systems accompanied with
uncertainties have been conducted [6–20]. However, the risk strategy of uncertainty was mostly not
considered when computing the optimization problem. Although uncertainty is inevitable in MG
operation, few studies have considered risk scenarios. The DRP can be used in various approaches
to improve system reliability and reduce operational costs, but it has generally been used as a single
solution. Therefore, it is necessary not only to operate MGs considering risk strategy but also to utilize
the hybrid DRP according to the risk-averse tendency of MGOs.

In this study, we present a two-stage optimization model for optimal operation in grid-connected
MG considering the DRP with a risk strategy. Load, PV, and WT are considered as uncertainty variables,
and each unit is modeled through a certain probability distribution function (PDF). Monte Carlo
simulation and k-means clustering are used implement the scenarios. The risk-based hybrid demand
response program (RH-DRP) is proposed to reduce risk-based operational costs by determining optimal
DR volume configuration in accordance with risk aversion parameter. In the two-stage optimization
problem, the expected operational costs are calculated in first-stage and then, the risk-based operational
costs are determined via the conditional value at risk (CVaR) index in second-stage. This is successfully
addressed using the improved multi-layer artificial bee colony (IML-ABC), a modified conventional
ABC algorithm that improves convergence speed.
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The main contributions of this paper can be summarized as follows:

• The proposed two-stage optimization is developed to calculate the risk-based operation costs
while considering uncertainty based on scenarios. It assists MGOs make decisions from more
additional degree of freedom.

• The effectiveness of applying the RH-DRP is evaluated in terms of the total risk-based operation
costs reduction, and the superiority of the RH-DRP is demonstrated via comparison analysis with
different DR strategies.

• The IML-ABC shows better performance in searching for optimal solutions in comparison with
the different optimal algorithms. Furthermore, it achieves simulation time reduction with the rapid
convergence speed and can be applied for a variety of optimization problems.

The remainder of this paper is organized as follows. Section 2 introduces uncertainty modeling for
WT, PV, and load. Section 3 shows the proposed RH-DRP strategy, and Section 4 provides formulations
for the risk-based two-stage optimization problem. Section 5 presents the solution method used
by the IML-ABC algorithm and summarizes the overall process of the optimal operation approach.
Section 6 presents the numerical analysis results, and, finally, Section 7 concludes the paper.

2. Uncertainty Modeling for Microgrid Operation

2.1. Uncertainty Modeling

In this study, a probabilistic model is used to minimize operating costs in a microgrid considering
uncertainty. Accurate prediction is not possible due to the stochastic behavior of wind and solar
irradiance and it is always related to the uncertainty error of the plan for the next day. Thus, to consider
more realistic compliance, we use probability density function (PDF) to model the behavior of wind,
solar, and load to achieve optimal results considering uncertainties.

2.1.1. Wind Generation Modeling

The Weibull PDF has been regularly used to model wind speed at a forecasted time [21] and can
be expressed as

PDFw(v) =
(

d
C

)( v
C

)d−1
exp

[
−

( v
C

)d
]
, (1)

where d and C are the factors that characterize the Weibull PDF and determine the shape and scale,
respectively, and v is the wind speed.

Pw(v) =


0

Pr ×
(vwind−vci)
(vr−vci)

Pr

0

vwind < vci
vci ≤ vwind < vr

vr ≤ vwind < vco

vco ≤ vwind

. (2)

The output power of WT can be calculated using the WT power curve parameters: where Pr, vci,
vr, and vco are the rated power, cut-in speed, rated speed, and cut-off speed of the WT, respectively.

2.1.2. Solar Generation Modeling

Solar generation output depends on the amount of sun irradiance. Forecasted solar power
generation is commonly calculated using the beta PDF expressed as follows [22]:

PDFB(si) =

 Γ(a +b)
Γ(a)Γ(b) × si(a −1)

× (1 − si)(b −1)

0

0 ≤ si ≤ 1 , a ≥ 0 , b ≥ 0
otherwise

, (3)
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a =
µs × b
1− µs

, (4)

b = (1 − µs) ×

(
µs × (1 + µs)

σs2 − 1
)
. (5)

Here, si is the amount of solar irradiance (kWh/m2), and a and b are the beta PDF parameters that can
estimate the mean (µs) and standard deviation (σs) according to the solar irradiance data, respectively.

Depending on the characteristics of the PV panels, solar irradiance can be converted to solar
power by

PPV(si) = ηpv × Apv × si, (6)

where Ppv(si) represents the amount of PV output power for irradiance, ηpv is the efficiency of the PV
panels, and Apv is the total surface area of the PV panels.

2.1.3. Load Modeling

Uncertainty in load consumption caused by the stochastic behavior of power consumers can be
modeled as a typical probability function with a normal PDF [23].

PDFn(load) =
1

√
2π× σl

exp

 (Pload − µl)
2

2σl
2

, (7)

where Pload is load demand, and µl and σl are the mean value and standard deviation of
the load, respectively.

2.2. Scenario Generation and Reduction

In stochastic cases, the high occurrence probability has the most effect on decision makers.
However, high probability situations do not always arise, whereas low probability situations may
occur at any time [24]. If the low probability scenario has a critical effect, it should be considered in
the decision making. The MGO would then be confronted with a problem with uncertainty, such as
renewable power and load consumption in MG operation. Our study conducted scenario modeling
using Monte Carlo simulations to analyze various scenarios, including the risk situation for all low
probabilities with a critical effect. The generated scenarios for the load demand (φLn) and power
generation of WT (φWTn) and PV (φPVn) are expressed as follows:

φLn = (Ln,ψLn),
N∑
1

ψLn = 1, (8)

φWTn = (WTn,ψWTn),
N∑
1

ψWTn = 1, (9)

φPVn = (PVn,ψPVn),
N∑
1

ψPVn = 1 , (10)

Sn = (φLn,φWTn,φPVn),
N∑
1

ψn
L ×ψ

n
WT ×ψ

n
PV = 1, (11)

where Ln, WTn, and PVn are the nth scenario states of the load, wind power, and solar power, respectively;
ΨLn, ΨWTn, and ΨPVn are the probability in the nth scenario of the load, wind power, and solar power,
respectively; and Sn is the possible states and probability of the nth scenario.

The scenarios for load, wind, and PV are generated based on Equations (8)–(10). Subsequently,
the integrated scenarios are modeled through Equation (11).
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To minimize the calculation time, in our work, k-means clustering method is utilized to divide
the scenarios into groups so that the sum of the squared distances from the data objects in the group is
minimal [25].

arg min
S

K∑
i=1

∑
x∈Si

‖x− µi‖
2, Sk−means = {S1, S2, . . . , SK}, (12)

where Sk-means denotes the groups divided using k-means clustering, and µi is the mean of the points
in Si.

3. Demand Response Strategy

Load management by adjusting consumer behavior has been implemented as DRP, which is
aimed at peak shaving over high demand periods in the MGs operation [26]. The DRP includes
modifying the electricity consumption patterns and incentives to promote change, and these incentives
are primarily used when market prices are high or when system reliability is decreased. Hence, a new
hybrid type of DRP, which considers the economics and risks of uncertainty, is proposed in this study.
The RH-DRP can improve economics through load shifting in a day-ahead market and then, risk effects
be reduced in response to power shortages because of uncertainties in MGs.

3.1. Demand Response Elasticity

Elasticity is an economic measure that assesses the percentage of change in demand due to
price fluctuations [27]. In terms of electricity consumption, this percentage value changes as power
demand varies with the changes in electricity market prices. This expected value is negative as higher
electricity prices possibly results in load reductions. The elasticity of demand for electricity is calculated
as follows:

E(t) =
∆D(t)/D(t)

∆MP(t)/MP(t)
, (13)

where E(t) is DR elasticity, and D(t) and MP(t) are the power demand capacity and electricity market
price in time t, respectively.

The two types of elasticity of demand are self-price elasticity and substitution elasticity. Self-price
elasticity disregards period variation, but it considers the variation of consumption according to
electricity price changes. Meanwhile, substitution elasticity is related to shifts in the power consumption
of electricity within a day. Thus, it has a constraint that power capacity after demand response is equal
to the initial power consumption.

3.2. Pattern of Each Power Consumer

The value of elasticity depends on the power consumption patterns of the consumer. Therefore,
the electricity value can be categorized as follows: industrial, commercial, and residential. Industrial
consumers generally have the largest power demand among the three categories. Industrial loads are
closely related to running factories; thus, the possible capacities of industrial consumers to participate
in the DR should be considered prior to contract signing with MGOs. Then, they would receive
incentives that match their capacity to participate in the DRP, and this incentive should be worth more
than the industrial consumers can gain from running a factory over a period. If the consumer cannot
commit to the responsibility specified in the contract, they could be charged a penalty fee. The changed
power demand capacity after the industrial DRP can be calculated using the following formula:

Dnew,i(t) = Ei ×Dold,i(t) ×
(MP(t) −MP0 + πi(t) − pen(t))

MP(t)
+ Dold,i(t), (14)

where Dnew,i(t) and Dold,i(t) are the power demand capacity after and before implementation of
industrial DR, respectively; Ei, MP0, πi(t), and pen(t) are the elasticity default value, reference electricity
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market price, incentive price per kilowatt-hour, and penalty fee for the industrial consumer at time
t, respectively.

Commercial and residential loads are smaller and more distributed than industrial loads.
Their capacities are difficult to precontract prior to participation in a DRP; thus, the elasticity
value is generally smaller than the elasticity value of industrial consumers. However, adjusting
commercial and residential loads is easy as they do not suffer from economic damages (e.g., industrial
consumers not being able to run their factories by participating in the DRP). Therefore, commercial
and residential consumers are not obligated to pay a penalty fee and can appropriately participate in
real-time transactions. The changed power demand capacity after commercial or residential DRP can
be calculated using the formula as follows:

Dnew,cr(t) = Ecr ×Dold,cr(t) ×
(MP(t) −MP0 + πcr(t))

MP(t)
+ Dold,cr(t), (15)

where Dnew,cr(t) and Dold,cr(t) are the power demand capacity after and before implementation of
commercial and residential DR, respectively; πi(t) is incentive price per kilowatt-hour for commercial
and residential consumers.

3.3. Risk-Based Hybrid Demand Response Program

In this study, we propose an RH-DRP, which not only reduces MG operational costs through
economic DR in a day-ahead market but also decreases risk costs due to uncertainty by applying
a risk-based DR in real-time operations. The two necessary conditions of the RH-DRP are the following:

• The RH-DRP consists of economic and risk-based DR. Economic DR affects the economic
improvement of MG operational scheduling and is applied via a contract with MGOs by
considering the substitution elasticity in a day-ahead market. Meanwhile, risk-based DR reduces
the risk costs of uncertainty and can be considered the self-price elasticity in real time without
a precontract.

• It determines the load capacity that each consumer can offer to participate in the DR. Thus,
MGOs can reasonably request DR from consumers considering by the stability and economics of
the power system, and the consumers should respond immediately.

As the economic DR considers substitution elasticity, it has constraint. The amount after load
shifting is the same as the initial load. In a real-time market, risk-based DR participants increase system
stability and reduce the risk costs of MG operations. If MGOs fail to control power shortages caused
by uncertainty, a critical problem occurs, such as blackouts. Therefore, the reliable operation of MGs
should be ensured when using flexible resources, such as DR. In particular, MGOs should provide
additional compensation to consumers participating in risk-based DR. The incentive prices depend on
the consumer type and DR participation. The formula for each incentive price is expressed as follows:

Ince,c(t) =

 πe,c(t) ×
[
Dold,c(t) −Dnew,c(t)

]
0

Dold,c ≥ Dnew,c

Dold,c < Dnew,c
, (16)

Incr,c(t) = [πr,c(t) + ac(t)] ×Dr,c(t) Dr,c(t) ≥ 0 , (17)

where Ince,c(t) and Incr,c(t) are the incentive prices for the type of consumer c to participate in economic
DR and risk-based DR at time t, respectively; πe,c(t) is the incentive price per kilowatt-hour for each
consumer participating in economic DR at time t; πr,c(t), ac(t), and Dr,c(t) are risk-based DR incentive
prices per kilowatt-hour for each consumer, the additional compensation for participating in risk-based
DR, and the capacity to participate in risk-based DR, which is required owing to the uncertainties for
each consumer, respectively.
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4. Two-Stage Optimal Formulation

Figure 1 illustrates the proposed two-stage optimal operation process. In the first-stage, operational
costs are calculated by considering the expected scenario in a day-ahead market. This stage does not
consider a probabilistic scheme and is associated with the first optimal scheduling using economic DR
by the MGO. The second-stage computes power shortage volume caused by uncertainty, and then,
risk-based DR is utilized to minimize risk index determined through CVaR.
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4.1. Objective Function

In the two-stage optimization model, the objective function for minimizing risk-based operational
costs is as expressed follows:

obj. f un = Min
(

f f irst(X) + fsecond(X)
)
, (18)

where ffirst(X) and fsecond(X) are the first- and second-stage objective functions, respectively, and X is
the decision variable vector.

4.1.1. First-Stage Objective Function

The first-stage of the objective function minimizes the operation costs of the expected scenario
using the following formula:

Min f f irst(X) = Min
T∑

t=1

Cost(t), (19)

where Cost(t) is the operational costs for MGs in the day-ahead market at time t.
Operation costs are the sum of fuel costs for each generator, including start-up/shut-down

costs, interactions between the utility and MG, and incentive prices of participating in economic DR.
The detailed expression is as follows:
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Cost(t) =
NG∑
i=1

[
ui(t)PGi(t)BGi(t) + SGi

∣∣∣ui(t) − ui(t − 1)
∣∣∣]

+

Ns∑
j=1

[
u j(t)Psj(t)Bsj(t) + Ssj

∣∣∣u j(t) − u j(t − 1)
∣∣∣]

+

Npv∑
k=1

PPVk(t)BPVk(t) +
Nw∑
l=1

PWl(t)BWl(t)

+PGrid(t)BGrid(t) +
Nc∑

c=1

Ince,c(t),

(20)

where PGi(t), Psj(t), PPVk(t), and PWl(t) are the active power outputs of the ith diesel-generator (DG),
jth storage device, kth PV panel, and lth wind generator at time t, respectively; BGi(t), Bsj(t), BPVk(t),
and BWl(t) are the bids of the generator, energy storage, solar energy, and wind energy at time t,
respectively; SGi and Ssj are the start-up or shut-down costs for the ith generator and jth storage,
respectively; PGrid(t) and BGrid(t) are the active power and bid price, which are bought and sold with
the utility at time t, respectively; NG, Ns, Npv, Nw, and Nc are the total number of generators, storage
devices, PV, wind generator units, and economic DR consumers, respectively.

When calculating operational costs, X is considered for each unit of output power, amount of load
reduction of DR, and on/off mode in a day-ahead market, which can be calculated as follows:

X = [Pg, Ug]1×2nT, (21)

Pg = [PG1, . . . , PGNG , Ps1, . . . , PsNs , PGrid, PDR], (22)

Ug = [UG1, . . . , UGNG , Us1, . . . , UsNs , UGrid, UDR], (23)

n = NG + Ns + 2, (24)

where Pg and Ug are the active power and state vector of all units during time t, respectively, and n
and T are the numbers of decision variables and periods, respectively.

4.1.2. Second-Stage Objective Function

In stochastic optimal operation for MGs, operational costs vary according to each scenario,
and some scenarios are expected to be very low or even have a negative effect. To consider such
risk-based scenarios in MG operation, a risk management criterion is included in the mathematical
formulations, where risk management implies reducing the negative effect of uncertainty. Several
indices for risk management are standard deviation, shortfall probability, value-at-risk (VaR), CVaR,
and so on [28]. To evaluate the risk costs of power shortages caused by uncertainties in wind, PV,
and load, we used the α confidence level CVaR (α-CVaR). The α-CVaR is determined using the expected
costs of (1 − α) × 100% for all worst-case scenarios. The mathematical formula is expressed as follows:

CVaRα(Cs) = VaRα +
1

1− α

Ns∑
s=1

ρs ×ϕs, (25)

VaRα = min
{
η : P(Cs > η ) > (1 − α)

}
, ∀α ∈ (0, 1), (26)

ϕs ≥ (Cs −VaRα(Cs)) ϕs ≥ 0 , ∀s, (27)

where CVaRα and Cs are the risk costs calculated using the α-CVaR and the stochastic operational costs
in scenario s, respectively; η is the smallest cost for a given confidence level α. VaRα is the α confidence
level VaR [29], as shown in Equation (26).
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In risk-based MG operation, stochastic operational costs are considered power shortages due to
uncertainties; they include the costs of purchasing real-time market and risk-based DR incentives,
which are expressed by

Cs =
T∑

t=1

Cost(t) + PrGrid(t)BrGrid(t) +
Nc∑

c=1

Incr,c(t)

, (28)

where PrGrid(t) and BrGrid(t) are the power and bid price purchased in the real-time market at time t,
respectively.

Figure 2 depicts the procedure to calculate α-CVaR according to power shortages. The power
shortage for each scenario can be computed based on the difference from the expected scenario in
the day-ahead model; then, the α% worst scenarios are determined to calculate the α-CVaR.

Energies 2020, 13, x FOR PEER REVIEW 9 of 27 

 

where CVaRα and Cs are the risk costs calculated using the α-CVaR and the stochastic operational 
costs in scenario s, respectively; η is the smallest cost for a given confidence level α. VaRα is the α 
confidence level VaR [29], as shown in Equation (26). 

In risk-based MG operation, stochastic operational costs are considered power shortages due 
to uncertainties; they include the costs of purchasing real-time market and risk-based DR incentives, 
which are expressed by 

,
1 1

( ) ( ) ( ) ( )
T Nc

s rGrid rGrid r c
t c

C Cost t P t B t Inc t
= =

 
= + + 

 
  , (28) 

where PrGrid(t) and BrGrid(t) are the power and bid price purchased in the real-time market at time t, 
respectively. 

Figure 2 depicts the procedure to calculate α-CVaR according to power shortages. The power 
shortage for each scenario can be computed based on the difference from the expected scenario in 
the day-ahead model; then, the α% worst scenarios are determined to calculate the α-CVaR. 

The second stage of the objective function is to minimize the α-CVaR in real time. The MGO 
can set parameter according to risk aversion tendency, and then the amount of power generation 
and risk-based DR capacity can be adjusted through this stage. 

1
( ) ( )

Ns
s

second rt
s

Min f X Min CVaR Cαβ
=

= ⋅ , (29) 

where β is the risk aversion parameter, which can generally be adjusted from 0 to 1. 

 

Figure 2. Determination of α confidence level conditional value at risk (α-CVaR) as a function of 
power shortages. 

4.2. Constraints 

4.2.1. Power Balance Constraints 

The total power generation by each unit should satisfy and be equal to the power demand. 

1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

pvG s w m
NN N N N

Gi sj PVk Wl Grid DR Lm
i j k l m

P t P t P t P t P t P t P t
= = = = =

+ + + + + =     , (30) 

,exp( ) ( ) ( )PVk PVk PVkP t P t tε= + , (31) 

,exp( ) ( ) ( )Wl Wl WlP t P t tε= + , (32) 

,exp( ) ( ) ( )Lm Lm LmP t P t tε= + . (33) 
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power shortages.

The second stage of the objective function is to minimize the α-CVaR in real time. The MGO can
set parameter according to risk aversion tendency, and then the amount of power generation and
risk-based DR capacity can be adjusted through this stage.

Min fsecond(X) = Min
Ns∑

s=1

β×CVaRα(Cs
rt), (29)

where β is the risk aversion parameter, which can generally be adjusted from 0 to 1.

4.2. Constraints

4.2.1. Power Balance Constraints

The total power generation by each unit should satisfy and be equal to the power demand.

NG∑
i=1

PGi(t)+
Ns∑
j=1

Psj(t)+
Npv∑
k=1

PPVk(t) +
Nw∑
l=1

PWl(t) + PGrid(t) + PDR(t) =
Nm∑

m=1

PLm(t), (30)

PPVk(t) = PPVk,exp(t) + εPVk(t), (31)

PWl(t) = PWl,exp(t) + εWl(t), (32)

PLm(t) = PLm,exp(t) + εLm(t). (33)
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Here, PDR, PLm, and Nm are the total power capacity of the participating RH-DRP, amount of power
in the mth demand level, and total number of demands, respectively. Equations (31)–(33) represent
the actual values of PV, WT, and load, which consist of the expected value and error.

4.2.2. Power Generation Constraints

The power output of each generator unit is limited by the lower and upper bounds.

PGi,min(t) ≤ PGi(t) ≤ PGi,max(t), (34)

PPVk,min(t) ≤ PPVk(t) ≤ PPVk,max(t), (35)

PWl,min(t) ≤ PWl(t) ≤ PWl,max(t), (36)

PWl,min(t) ≤ PWl(t) ≤ PWl,max(t). (37)

Here, PG,min(t), PPV,min(t), PWl,min(t), and PGrid,min(t) are the lower bounds of the active power
generated by DG, PV, WT, and the transaction with utility, respectively; PG,max(t), PPV,max(t), PWl,max(t),
and PGrid,max(t) are the upper bounds of the active power of each unit at time t, respectively.

4.2.3. RH-DRP Constraints

The RH-DRP determines the maximum participating capacity under a contract with MGO, and the
sum of each DR capacity is less than the maximum DR capacity.

Dold,c(t) −Dnew,c(t) + Dr,c(t) ≤ Dmax,c(t), (38)

where Dmax,c(t) is the maximum DR capacity of c at time t.

4.2.4. Energy Storage Constraints

Some limits on the charge and discharge capacities of ESS during each time interval exist, which can
be calculated as follows:

Wess,t = Wess,t−1 + ηchargePcharge∆t−
1

ηdischarge
Pdischarge∆t, (39)

Wess,min ≤Wess,t ≤Wess,max, (40)

Pcharge,t ≤ Pcharge,max , (41)

Pdischarge,t ≤ Pdischarge,max, (42)

where Wess,t is the amount of energy in the battery at time t, ηcharge (ηdischarge) is the efficiency of
the ESS (dis)charging, Pcharge (Pdischarge) is the permitted capacity of the ESS (dis)charging during a ∆t;
Wess,min and Wess,max are the minimum and maximum limits on the amount of energy storage in ESS,
respectively; Pcharge,max (Pdischarge,max) is the maximum capacity of ESS (dis)charging during interval ∆t.

5. Solution Method

5.1. Improved Multi-Level Artificial Bee Colony Algorithm

There are many optimization methods when solving an optimization problem. Among them,
the ABC algorithm is widely used in various fields recently [30]. Especially, the ABC algorithm has
been widely used to solve the MG operation problem and it has been modified to improve performance
in recent years [31–33]. Generally, the ABC algorithm is based on the food foraging behavior of bees.
A colony of bees is divided into three groups: employed bees, onlooker bees, and scout bees. Each type
performs its respective tasks to find the most abundant resources. In population-based optimization
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techniques, such as the ABC algorithm, finding the first global minimum value is critical. Depending
on the closeness of the first global minimum value to the final optimization value, the convergence
speed and optimization accuracy be improved. Accordingly, the population and scope of exploration
are crucial to the optimization algorithm. Here, the IML-ABC algorithm is proposed by adjusting
the number of bees and food sources based on the number of iterations for finding faster and more
accurate optimal solution. The IML-ABC algorithm consists of five levels (i.e., adjusting, initialization,
employed bees, onlooker bees, and scout bees):

(i) Adjusting level: In the IML-ABC algorithm, the number of bees increases in the initial iteration
and decreases according to the number of iterations to find the initial global minimum efficiently.

FNn =


(1 + σFN) × FN 0 < n ≤ λ

FN λ < n ≤ (itermax − λ)
(1 − σFN) × FN (itermax − λ) < n < itermax

, n = {1, 2, . . . , itermax}. (43)

Here, FNn and FN are the number of food sources in the nth iteration and mean number of food
sources, respectively. In addition, σFN, λ, and iter are the rate of food source adjustment, value of
dividing the phase of the iteration, and number of iterations, respectively.

(ii) Initialization level: The IML-ABC algorithm makes a random initial population of food source
positions. Each food source xi (i = 1, 2, . . . , SN) has a D-dimensional problem space and can be
expressed as

xi j = xmin
j + rand[0, 1] × (xmax

j − xmin
j ), (44)

where xij is the jth decision variable of the ith solution vector, and xj
min and xj

max represent the lower
and upper limit values of the j components for the Xi vector, respectively.

(iii) Employed bees level: Each bee constantly explores to find a food source. When it finds
the optimum solution, it selects a new and best position (vij) close to the reference position. In the
IML-ABC algorithm, to determine a better global minimum solution, employed bees explore
large ranges in initial iterations and search for the best solution in a narrow range as the number
of iterations increases. This can be computed as follows:

vi j = xi j + ϕi j(xi j − xkj) × (1−R× iter/itermax), (45)

where vij represents the new position of the food source i for the jth component, ϕij is a random
number in the range [−1, 1], and R is the value of the exploration range reduction based on
the number of iterations.

(iv) Onlooker bees’ level: An onlooker bee finds new positions that are closed to the old position and
searches for food sources according to the probability value associated with the corresponding
food source. Then, the greedy method is applied; the probability value of the selected food source
can be expressed as follows:

Pi =
f iti

SN∑
i=1

f iti

, (46)

f iti =

{
1/(1 + Fi), Fi ≥ 0

1 + |Fi|, Fi < 0
, i = {1, 2, . . . , SN}, (47)

where Pi and fiti are the probability value and fitness value of the ith food source evaluated by
the ith employed bee, respectively; and Fi is the value of the objective function for the Xi solution.

(v) Scout bee level: If solution of Xi cannot be improved through the number of predetermined
trials (limit), this solution is abandoned, and the corresponding employed bee is converted to
a scout bee. This scout bee randomly attempts to find a new food source in the solution space
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to replace the abandoned solution using Equation (44). This procedure is repeated for several
maximum cycles.

5.2. Improved Multi-Level Artificial Bee Colony Algorithm

Figure 3 summarizes the two-stage solution process for the optimal scheduling of MGs with
uncertainties using RH-DRP. The procedure is performed sequentially as follows:Energies 2020, 13, x FOR PEER REVIEW 13 of 27 
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Calculate the MG input data based on fixed system information.
Step 1. Establish a stochastic model of uncertainties arising from renewable energies and load.
Step 2. Determine the RH-DRP participation power capacity for each consumer type.
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Step 3. Shift load considering the economic DR with demand elasticity.
Step 4. Calculate expected scenario operational costs through first-stage objective function.
Step 5. Generate the scenarios using Monte Carlo simulation and reduce the scenarios using

the k-means clustering technique.
Step 6. Determine (1 − α) × 100% worst scenarios for calculating CVaRα.
Step 7. Start the IML-ABC algorithm loop for the ith scenario.
Step 8. Find the best scheduling for each scenario with the goal to minimize operation costs.
Step 9. Array the scenarios in a probability distribution and calculate CVaRα.
Step 10. Output the risk-based optimal operation costs in the MG.

6. Numerical Analysis

6.1. Input Data

The proposed two-stage risk-based optimal operation was examined on a low-voltage
grid-connected MG (Figure 4). This MG system contained micro turbine (MT), fuel cell (FC), PV,
WT, and ESS technologies. Table 1 depicts the unit data, including the bid, start-up/shut-down costs,
and minimum/maximum power [21]. The total expected daily load was 1695 kWh, divided among
industrial, commercial, and residential consumers, accounting for 50%, 33.33%, and 16.67% of the total
initial demand, respectively [34]. Taking into account the increased load on uncertainty, we assumed
that 20% of each group of consumers can participate in the DRP. Table 2 lists the elasticity value,
incentive costs per power, and initial demand for each consumer [35].Energies 2020, 13, x FOR PEER REVIEW 14 of 27 
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Table 1. Limits and bids of installed distributed generator sources.

ID Type Min. Power
(kW)

Max. Power
(kW)

Bid
($/kWh)

Start-Up/Shut-Down
Costs ($)

1 MT 6 30 0.457 0.96
2 FC 3 30 0.294 1.65
3 PV 0 25 2.584 0
4 WT 0 15 1.073 0
5 ESS −30 30 0.38 0
6 Utility −30 30 - -

Table 2. Elasticity and incentive price for each consumer.

Type of Consumer Elasticity Incentive Costs per Power
($/kWh)

Initial Demand
(kWh/day)

Industrial −0.38 0.12 847.5
Commercial −0.20 0.20 565
Residential −0.14 0.18 252.5

Figure 5 shows the day-ahead market price for grid-connected MG operation. Here, the real-time
market price is assumed to be 10% more expensive than the day-ahead market price, which is the APX
hourly market price [36]. Table 3 presents the WT data and Weibull PDF factors. The solar panel was
a 25 kW SOLAREX MSX (US) composed of 10 × 2.5 kW panels with 18.6% efficiency and 10 m2 of total
surface area [37]. In the ESS consisting of a nickel-metal hydride battery, charging and discharging
efficiency was 95%, and the minimum and maximum amounts of storage were 5% and 100% of
the battery capacity, respectively. Power generation units participate in the MG depending on their
technical and economic features, and excess power is exchanged with the utility through the point of
common coupling (PCC). Our operation model was performed with the proposed IML-ABC algorithm
set to FN = 200 and itermax = 500. All cases were simulated in MATLAB (R2019a) on a laptop computer
with a 2.9 GHz Intel Core i5-9400 CPU and 16 GB RAM.
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Table 3. Wind turbine data and Weibull probability density function (PDF) factor.

Type Parameter Value

Wind turbine data

Pr (kW) 15
Vr (m/s) 12.5
Vci (m/s) 3
Vco (m/s) 25

Weibull PDF factor
d 2
C 6.77
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6.2. Proposed Optimization Results

In the first-stage, the MGO uses economic DR among the RH-DRP to optimize MG operation
in a day-ahead market with expected scenario. This stage was simulated by considering the hourly
average values of load, wind speed, and solar irradiance. Table 4 presents the expected power
production of PV and WT for each hour. Here, it is assumed that the MGO must buy all the power
produced by the PV/WT at each time of the day. In the second stage, risk costs arising from uncertainty
are minimized by the MGO. Figure 6 show the generation scenarios and reduction results using
the PDF for each unit. The 4000 scenarios were generated by considering the uncertainty in the MG via
Monte Carlo simulations. Subsequently, 20 scenarios were selected via k-means clustering considering
the cluster number estimation and simulation times. From the 20 generated scenarios, risk-based
operational costs were determined by considering α-CVaR using the RH-DRP.

Table 4. Expected wind turbine (WT) and photovoltaic (PV) power.

Hour PV (kW) WT (kW) Hour PV (kW) WT (kW)

1 0 1.7850 13 23.9000 3.9150
2 0 1.7850 14 21.0500 2.3700
3 0 1.7850 15 7.8750 1.7850
4 0 1.7850 16 4.2250 1.3050
5 0 1.7850 17 0.5500 1.7850
6 0 0.9150 18 0 1.7850
7 0 1.7850 19 0 1.3020
8 0.2000 1.3050 20 0 1.7850
9 3.7500 1.7850 21 0 1.3005
10 7.5250 3.0900 22 0 1.3005
11 10.4500 8.7750 23 0 0.9150
12 11.9500 10.4100 24 0 0.6150
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Figure 7 illustrates the expected and risk-based scenario results of the daily load and power
generation capacity of PV and WT. Here, the risk-based scenario is the average value comprising
the 10% worst-case scenarios. The daily load increased by 162.69 kW, whereas the total power generated
by PV and WT decreased by 9.62 kW and 5.25 kW, compared with the expected scenario, respectively.
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ignore risk-based scenarios. MGO with β of 0.5 responds appropriately to risk-based scenarios, but 
do not attempt to avoid them entirely. MGO with β equal to 1 tries to completely avoid risk-based 
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Figure 7. Expected and risk-based volumes. (a) Load, (b) photovoltaic (PV) generated, and (c) wind
turbine (WT) generated.

Figure 8 shows the optimal results of expected operational costs and CVaR by changing the volume
ratio of RH-DRP depending on the degree of risk aversion of MGO. We simulate when the risk aversion
parameters are 0.1, 0.5, and 1 to consider various MGOs. MGO with β of 0.1 tends to ignore risk-based
scenarios. MGO with β of 0.5 responds appropriately to risk-based scenarios, but do not attempt to avoid
them entirely. MGO with β equal to 1 tries to completely avoid risk-based scenarios. When the volume
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of economic DR increases, the expected costs of MG operation decrease because the MGO can sell
surplus power to the utility through load shifting at peak load times. However, risk-based DR capacity
is not sufficient to address uncertainty problems; thus, the value of CVaR significantly increases as
shown in Figure 8. Meanwhile, the high proportion of risk-based DR increases the expected costs and
decreases the CVaR value. In addition, by increasing β, the MGO can decrease CVaR more effectively
because they are more risk averse in MG operation.
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Figure 9 shows risk-based operational costs depending on risk aversion parameter β (0.1, 0.5,
or 1). As shown in Figure 9, when β is 0.1, 0.5, and 1, the optimal solution is that the ratio of economic
and risk-based DR is consist of 17.5:2.5, 10:10, and 5:15, respectively. As observed in these results,
it should be noted that the MGO who can highly avoid risk should operate within the higher portion
of the risk-based DR in RH-DRP. Table 5 summarizes the results of the risk-based optimal operation
in MG. The lowest expected costs are determined when β is 0.1, but CVaR is very high, owing to
insufficient management of risk problems. Meanwhile, the expected costs are slightly high when β
is equal to 1, but the CVaR is significantly lower than in other cases. In other words, in a 10% worst
scenario, in a low-voltage grid-connected MG operation, an MGO would incur operational costs of
$622.8660 (β = 0.1), $338.3607 (β = 0.5), or $293.6971 (β = 1). As can be seen from these results, RH-DRP
is properly utilized according to the degree of risk aversion of MGO, and it is particularly effective in
reducing risk costs for MGO that tend to avoid risk situation caused by uncertainty.
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Table 5. Risk-based optimal operation according to β.

Type β = 0.1 β = 0.5 β = 1

Expected costs ($) 239.7650 251.9952 255.6907
CVaR ($) 383.1010 86.3655 38.0064

Operational costs ($)
(10% worst scenario) 622.8660 338.3607 293.6971

Tables 6–8 present the optimal power scheduling in risk-based MG operation when β is equal to
0.1, 0.5, and 1, respectively. In early periods, the ESS charged and MT output are reduced due to cheap
market prices. However, at peak load hours, the battery is fully discharged, and the MGO maximizes
local generation to decrease operational costs to sell a considerable amount of energy to the main
grid. Owing to low cost of power generation by the FC, the MGO then decides to use its maximum
capacity for power supply. Based on the high operational cost of the MT, it is scheduled flexibly
while considering the market price. Figure 10 shows RH-DRP participation in MG operation over
time. The economic DR is primarily used from 9:00 to 17:00 to reduce the load in common. Through
load reduction, the MGO can reduce operational costs by selling remaining power to the main grid
when market prices are high. The risk-based DR responds to a power shortage caused by uncertainty
and supports MG operation in terms of stability. In MG optimal operation, a larger β value confers
a greater risk-based DR portion in RH-DRP. Therefore, it can be confirmed that RH-DRP is efficient for
risk-based MG operations considering the risk aversion tendency.

Table 6. Optimal power scheduling (β = 0.1).

Hour
Units (kWh)

MT FC PV WT ESS Utility

1 6.0715 30.0000 0.0000 1.7900 −6.8677 30.0000
2 6.0024 30.0000 0.0000 1.7800 −8.8357 30.0000
3 6.0446 30.0000 0.0000 1.7900 −8.8879 30.0000
4 6.0282 30.0000 0.0000 1.7800 −7.6826 30.0000
5 6.0493 30.0000 0.0000 1.7900 −1.8190 30.0000
6 6.0045 30.0000 0.0000 0.9200 7.3482 30.0000
7 6.0027 30.0000 0.0000 1.7900 14.3143 30.0000
8 6.0005 30.0000 0.2000 1.3100 27.4728 13.7642
9 29.997 30.0000 3.7500 1.7800 30.0000 −29.3026

10 29.0909 30.0000 7.5300 3.0900 30.0000 −30.0000
11 18.7481 30.0000 10.4500 8.7700 30.0000 −30.0000
12 12.1225 30.0000 11.9500 10.4100 30.0000 −30.0000
13 6.0163 30.0000 23.9000 3.9100 28.9134 −30.0000
14 10.3198 30.0000 20.0500 2.3700 30.0000 −30.0000
15 26.5753 30.0000 7.8700 1.7800 30.0000 −30.0000
16 29.9974 30.0000 4.2200 1.3100 30.0000 −25.8165
17 29.9980 30.0000 0.5500 1.7800 30.0000 −17.1583
18 6.0017 30.0000 0.0000 1.7900 30.0000 21.0241
19 6.0002 30.0000 0.0000 1.3000 28.7291 30.0000
20 6.0005 30.0000 0.0000 1.7800 30.0000 17.9934
21 29.9983 30.0000 0.0000 1.3000 30.0000 −23.3302
22 29.9999 30.0000 0.0000 1.3000 30.0000 −15.6415
23 6.0054 30.0000 0.0000 0.9200 4.7649 30.0000
24 6.0074 30.0000 0.0000 0.6200 −2.6961 30.0000
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Table 7. Optimal power scheduling (β = 0.5).

Hour
Units (kWh)

MT FC PV WT ESS Utility

1 6.0196 30.0000 0.0000 1.7900 −9.6310 30.0000
2 6.0204 30.0000 0.0000 1.7800 −11.8594 30.0000
3 6.0031 30.0000 0.0000 1.7900 −11.8298 30.0000
4 6.2472 30.0000 0.0000 1.7800 −10.9673 30.0000
5 6.0209 30.0000 0.0000 1.7900 −5.1570 30.0000
6 6.0083 30.0000 0.0000 0.9200 3.5573 30.0000
7 6.0050 30.0000 0.0000 1.7900 10.5224 30.0000
8 6.0014 30.0000 0.2000 1.3100 8.9664 30.0000
9 29.9970 30.0000 3.7500 1.7800 30.0000 −25.9567

10 29.9918 30.0000 7.5300 3.0900 30.0000 −27.3799
11 22.1811 30.0000 10.4500 8.7700 30.0000 −30.0000
12 15.3795 30.0000 11.9500 10.4100 30.0000 −30.0000
13 8.0987 30.0000 23.9000 3.9100 30.0000 −30.0000
14 13.4887 30.0000 20.0500 2.3700 30.0000 −30.0000
15 29.9203 30.0000 7.8700 1.7800 30.0000 −30.0000
16 29.9975 30.0000 4.2200 1.3100 30.0000 −22.2957
17 29.9998 30.0000 0.5500 1.7800 30.0000 −14.5210
18 6.0007 30.0000 0.0000 1.7900 30.0000 21.6680
19 6.0001 30.0000 0.0000 1.3000 25.6865 30.0000
20 6.0004 30.0000 0.0000 1.7800 30.0000 19.2081
21 29.9994 30.0000 0.0000 1.3000 30.0000 −19.8983
22 29.9998 30.0000 0.0000 1.3000 30.0000 −18.0410
23 6.0036 30.0000 0.0000 0.9200 2.5509 30.0000
24 6.0600 30.0000 0.0000 0.6200 −4.6747 30.0000

Table 8. Optimal power scheduling (β = 1).

Hour
Units (kWh)

MT FC PV WT ESS Utility

1 6.4208 30.0000 0.0000 1.7900 −13.1397 30.0000
2 6.2111 30.0000 0.0000 1.7800 −15.0381 30.0000
3 6.0744 30.0000 0.0000 1.7900 −14.9114 30.0000
4 6.0550 30.0000 0.0000 1.7800 −13.8230 30.0000
5 6.0597 30.0000 0.0000 1.7900 −8.5424 30.0000
6 6.0133 30.0000 0.0000 0.9200 −0.2126 30.0000
7 6.0036 30.0000 0.0000 1.7900 6.3406 30.0000
8 6.0000 30.0000 0.2000 1.3100 30.0000 8.1371
9 29.9989 30.0000 3.7500 1.7800 30.0000 −22.7060

10 29.9963 30.0000 7.5300 3.0900 30.0000 −23.9606
11 25.5194 30.0000 10.4500 8.7700 30.0000 −30.0000
12 18.5466 30.0000 11.9500 10.4100 30.0000 −30.0000
13 11.1802 30.0000 23.9000 3.9100 30.0000 −30.0000
14 16.5702 30.0000 20.0500 2.3700 30.0000 −30.0000
15 29.9993 30.0000 7.8700 1.7800 30.0000 −26.8263
16 29.9983 30.0000 4.2200 1.3100 30.0000 −18.8726
17 29.9990 30.0000 0.5500 1.7800 30.0000 −10.8822
18 6.0004 30.0000 0.0000 1.7900 30.0000 20.9689
19 6.0002 30.0000 0.0000 1.3000 23.4763 30.0000
20 6.0002 30.0000 0.0000 1.7800 30.0000 19.9705
21 29.9992 30.0000 0.0000 1.3000 30.0000 −16.5598
22 29.9989 30.0000 0.0000 1.3000 30.0000 −19.6862
23 6.0179 30.0000 0.0000 0.9200 0.3184 30.0000
24 6.0214 30.0000 0.0000 0.6200 −7.3639 30.0000
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6.3. Comparison of DR Analysis

In the comparison analysis, the effects of RH-DRP are verified by comparing with a different
DR strategy for the typical low-voltage MGs operation. To evaluate these strategies, three cases are
implemented as follows:

Case 1:MG operation model without DRP.
Case 2:MG operation model with prevalent economic DRP.
Case 3:MG operation model with RH-DRP.
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All cases are simulated under the same constraints, but the DRP is different. In Case 1, risk-based
costs are determined to purchase only real-time market prices without DRP. Case 2, which considers
the prevalent economic DRP, is used to minimize operations costs but does not respond to the risk
problem. Case 3 is applied with the proposed DRP strategy, which is the optimal risk-based operation
in MG using RH-DRP.

Figure 11 indicates the risk-based operational costs and CVaR at various risk parameter for each
case. Case 1 shows high CVaR and risk-based operational costs as peak load reduction and risk
control constraints are not considered. As Case 2 utilizes all DRP capacity as economic DR, it shows
lower operational costs than Case 1; however, the greater the β value to operate the MG, the higher
the risk-based operating costs owing to the lack of risk management capabilities. For Case 3, the CVaR
is generally lower that of the other cases because the volume ratio of RH-DRP is appropriately adjusted
according to β and risk management is effectively performed; furthermore, owing to proper risk
management, the risk-based operational cost does not increase significantly, even when MG is operated
with a large value of β. Therefore, when MGOs operate MGs considering uncertainty problems, Case 3
promotes optimal economic and stable operation.
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6.4. Performance Test for the IML-ABC

To demonstrate the superiority of IML-ABC, performance tests were evaluated without DRP to
fairly compare the IML-ABC with various algorithms. Table 9 presents optimal results for the forecasted
operation costs or each algorithm. The simulation process for different algorithms was repeated
20 times, with the results of the best, worst, and average solutions shown. The IML-ABC algorithm
reached an optimal solution compared with the other algorithms. The IML-ABC performs better than
the conventional ABC algorithm in terms of simulation time. Figure 12 illustrates the convergence
performances of ABC and IML-ABC. The IML-ABC algorithm found the optimal solution during
the first iteration, and, when compared with the ABC algorithm, it improved the initial convergence
rate. The IML-ABC and ABC reached less than a 0.1% error value compared for the final solution at
168 and 423 iterations, respectively. Therefore, these results verify that the simulation time necessary to
find the optimal value is improved by reducing the number of unnecessary iterations.
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Table 9. Comparison results for various algorithms.

Algorithm Best Solution ($) Worst Solution ($) Average ($) Mean Simulation
Time (sec)

GA [38] 277.7444 304.5889 290.4321 -
PSO [38] 277.3237 303.3791 288.8761 -

AMPSO [38] 274.4317 274.7318 274.5643 -
θ-PSO [39] 275.3491 281.7841 277.6191 -
GSA [40] 275.5369 282.1743 277.8021 -

ABC 274.3801 274.9271 274.6536 35.28
IML-ABC 272.4761 272.6803 272.5782 29.11
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7. Conclusions

In this study, we proposed two-stage optimal operation of MGs considering uncertainty problems
with risk-based DR strategies. To account for uncertainty, WT, PV, and load were modeled as Weibull,
Beta, and normal PDF, respectively. The proposed RH-DRP provides a hybrid solution using both
economic and risk-based DR to reduce risk-based operational costs. The objective optimization problem
consisted of two-stage optimization using the IML-ABC. In the first-stage, the expected operational
costs were calculated by deterministic inputs; in the second stage, the risk-based operational costs
considered CVaR. To verify the effectiveness of the proposed approach, simulation was conducted
on a low-voltage grid-connected MG. The results demonstrate that reasonable operational costs can
be determined under the risk aversion parameters compared to conventional optimization solutions.
Moreover, our RH-DRP remarkably reduces risk-based operational costs via comparison with various
DR strategies. The comparison with various other algorithms also confirmed the superiority of
the proposed IML-ABC in identifying the optimal solution and reducing simulation times. Therefore,
the proposed approach provides MGOs not only an additional degree of freedom in decision-making
under uncertainty but also a solution to reduce risk-based operational costs. Our future work is under
way to focus on not only reducing risk-based operating costs but also solving reliability about dynamic
problems caused by uncertainty.

Author Contributions: H.-S.R. proposed the main idea of this paper, and M.-K.K. coordinated the proposed
approach and thoroughly reviewed in the manuscript. All authors have read and agreed to the published version
of the manuscript.
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