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Abstract: To improve frequency nadir following a disturbance and avoid under-frequency load
shedding, two types of flexible kinetic energy release controllers for the doubly fed induction generator
(DFIG) are proposed. The basic idea is to release only a small amount of kinetic energy stored at the
DFIG in the initial transient period (1–3 s after the disturbance). When the frequency dip exceeds a
preset threshold, the amount of kinetic energy released is increased to improve the frequency nadir.
To achieve the goal of flexible kinetic energy release, a deactivation function based integral controller
is first presented. To further improve the dynamic frequency response under parameter uncertainties
and external disturbances, a second flexible kinetic energy release controller is designed using a
proportional-integral controller, with the gains being adapted in real-time with the particle swarm
optimization algorithm. Based on the MATLAB/SIMULINK simulation results for a local power
system, it is concluded that the frequency nadir can be maintained around the under-frequency load
shedding threshold of 59.6 Hz using the proposed controllers.

Keywords: doubly fed induction generator (DFIG); load frequency control (LFC); wind farm; particle
swarm optimization; kinetic energy

1. Introduction

To improve the dynamic frequency response of a local power system with high penetration of
wind power, a supplementary frequency controller (SFC) installed on the rotor side converter (RSC)
of a doubly fed induction generator (DFIG) has been widely investigated in recent years. The main
purpose of this work is to design a proper SFC such that the frequency nadir (FN) of the islanding
system following a grid disconnection event can be maintained higher than the threshold of 59.6 Hz,
which is equal to the sum of the low frequency load shedding limit of 59.5 Hz set by the local utility
and 0.1 Hz safety margin. In other words, frequency nadir following a disturbance causing a power
deficit is of major concern in this paper.

In the literature, a proportional (droop) controller which generates a control signal proportional
to the frequency deviation has been proposed [1–10]. When the control signal is added to the RSC
of the DFIG, the electrical power output of the DFIG can be modulated and the system frequency
response can be improved. To further improve the dynamic frequency response, the gain of the
proportional controller was varied based on the rate of change of frequency (ROCOF) [4], or DFIG rotor
speed [5]. In [7], the gain was decreased linearly with time. In [8], the particle swarm optimization
(PSO) technique was employed to adapt the proportional gain in real-time in order to have a good
dynamic frequency response following a disturbance. Other self-tuning techniques such as artificial
neural networks [11], model predictive controllers [12–15], and fuzzy set algorithm [16–18] have been
proposed to provide the required supplementary frequency control signal.
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A proportional (droop)-derivative (inertia) (PD) controller with the inertial control signal being
proportional to the derivative of frequency deviation has also been widely studied [19–28]. The effect
of the PD controller on the initial ROCOF [22,24] or frequency nadir [22] has been examined. It was
pointed out in [7,22] that the initial ROCOF might be improved during the inertia period (around 1–2 s
after the disturbance) by the inertia controller through injecting more DFIG electrical power to the
power system. However, the inertia control might have a negative impact on frequency nadir since the
DFIG injects more electrical power to reach a smaller frequency dip, causing the steam or gas turbine to
deliver less mechanical power to the synchronous generator (SG). The increase in DFIG kinetic energy
release and reduction in SG accumulated mechanical energy in the first few seconds might cause a
lower frequency nadir in the subsequent primary frequency regulation period (around 2–50 s after
the disturbance). Therefore, the optimal inertia controller gain to have the highest frequency nadir
was found to be close to zero [22]. Therefore, the inertia control will not be considered in this work,
since our goal is to reach the highest frequency nadir to avoid under-frequency load shedding.

In this paper, two flexible kinetic energy release controllers for a DFIG wind farm are proposed
in order to improve the frequency nadir after a disturbance. The basic idea is to release less kinetic
energy from the DFIG during the first few seconds after the disturbance when the system frequency is
above a certain threshold. When the system frequency drops to a level below the threshold, the kinetic
energy reserved in the DFIG during the first few seconds after the disturbance is gradually released to
improve the frequency nadir.

In the first flexible kinetic energy release controller, an integral controller is added to the conventional
droop controller when the system frequency is lower than 59.9 Hz. A deactivation function is proposed
to gradually decrease the integral controller output to zero and force the DFIG to return to its steady-state
maximum power point tracking (MPPT) operating mode when the system frequency eventually returns
to its nominal value of 60 Hz.

The gains in the first flexible kinetic energy release controller are designed based on a particular
operating point. To improve the dynamic frequency response for the system subject to variations in
system parameters such as speed governor and steam turbine time constants or external disturbances
such as wind speed variation, the second flexible kinetic energy release controller, in which the
controller gains are adapted in real-time based on PSO algorithm, is proposed. The advantages and
disadvantages of the proposed controllers and controllers referred to in the literature are summarized
in Table 1.

Table 1. Summary of supplementary frequency controllers for doubly fed induction generator (DFIG).

Controller/Algorithm
Operating
Conditions
Dependent

Needs
Training

Needs
Rule
Base

Needs
Evaluation
Function

Computational
Burden

PID [1–10,19–28] YES NO NO NO LOW
ANN [11] NO YES NO NO LOW

MPC [12–15] NO NO NO YES HIGH
Fuzzy [16–18] NO NO YES NO LOW

Type I YES NO NO NO LOW
Type II NO NO NO YES HIGH

2. Test System Model

The test system under study is a local power system as illustrated in Figure 1.
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DFIG rotor speed ωmD. In the case of frequency drop due to grid disconnection, the DFIG kinetic 
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torque command of the DFIG as shown below: 

TeD = TeD,opt + TFKERC (2) 

Figure 1. One-line diagram for the studied local power system.

The six synchronous generators in the local power system in Figure 1 are lumped together as an
equivalent SG [29] and the inland and offshore wind farms are lumped together as an equivalent DFIG
in this study [1]. When the grid is subject to a fault, the local power system is disconnected from the
grid and is operated at an islanding operation mode. The functional block diagram for the equivalent
SG and equivalent DFIG frequency control system is depicted in Figure 2.
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To avoid considerable revenue losses, the approaches of power reserve such as pitch angle control
and de-loaded operating strategy are not considered in this work. Therefore, the DFIG operates at the
MPPT mode in a normal operation to achieve the maximum harvest of the wind power. The DFIG
electromagnetic torque under the MPPT mode is expressed as:

TeD = TeD,opt (1)

where TeD,opt is the optimum electromagnetic torque for MPPT, which is a quadratic function of the
DFIG rotor speed ωmD. In the case of frequency drop due to grid disconnection, the DFIG kinetic
energy is the only energy source from a wind farm that can be released to the system. To improve the
dynamic response of system frequency, a supplementary frequency control signal from the flexible
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kinetic energy release controller TFKERC is added to TeD,opt to obtain the desired electromagnetic torque
command of the DFIG as shown below:

TeD = TeD,opt + TFKERC (2)

In this work, the main purpose of the DFIG flexible kinetic energy release controller is to inject
additional real power into the islanding system such that the system frequency nadir is as high as
possible during the entire post-disturbance transient period. Due to the fast reaction of the RSC,
the frequency response is dominated initially by DFIG. As mentioned earlier, the flexible kinetic energy
release controller should be designed for the DFIG to release minimal kinetic energy in the initial
transient period. Then, the reserved kinetic energy of the DFIG can be released afterwards to improve
the frequency nadir. Details on the design of the two types of flexible kinetic energy release controllers
proposed in this work are described in Sections 3 and 4.

3. Type I Flexible Kinetic Energy Release Controller Using the Deactivation Function Based
Integral Controller

In this section, an innovative Type I flexible kinetic energy release controller, as depicted in
Figure 3, is proposed to release the kinetic energy flexibly and effectively from a DFIG wind farm.
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As shown in Figure 3, the Type I flexible kinetic energy release control signal TFKERC from the
deactivation function based integral controller can be written as:

TFKERC =

 −KPD∆ f (t), if f > 59.9 Hz
−

(
KPD + D(t)KID

s

)
∆ f (t), otherwise

(3)

In order for the DFIG to deliver only a small amount of kinetic energy in the initial transient period,
only the droop control is employed in Equation (3) when f > 59.9 Hz. When the system frequency is
below 59.9 Hz, the deactivation function based integral controller is started. With the proposed Type I
flexible kinetic energy release controller, an integral control signal u is gradually increased such that
the goal to have a smaller control signal TFKERC in the beginning and a larger control signal afterwards
can be met. Therefore, the system frequency nadir can be improved through the action of an integral
gain with a deferred and accumulated control output.

Since the integral controller output will not be zero after the transient period is over, the DFIG may
work at an operating point which is different from that before the disturbance. For the DFIG to return
to its MPPT mode operation when the system frequency approaches its nominal value, the integral
controller output must be gradually decreased to zero. In the present work, a deactivation function
D(t), as depicted in Figure 4, is proposed to gradually decrease the integral control output to zero in a
very smooth manner.
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As shown in Figure 4, the integral controller output must be gradually decayed to zero in a period
of decay time (t2) after a delay time (t1) from the instant of the lowest system frequency (the nadir
time tn). The dynamic frequency response curves for different delay times (t1) and decay times (t2) are
shown in Figure 5a,b, respectively, for the case of Vw = 11 m/s and Pgrid = 30 MW at t = 10 s.
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delay, Table 1. (b) Different decay times (t2).

It is observed from Figure 5a that, after a brief period of frequency rise, the system frequency
will drop again to a new low value when the integral controller output is gradually decreased to zero.
The decay time t2 is chosen to be 20 s, and the PI controller gains are KPD = 20 and KID = 1.5 in Figure 5a.
As shown from the response curves in Figure 5a, the delay time t1 should be kept as small as possible
in order to decrease the subsequent frequency drop. This is due to the fact that a longer delay time will
cause a greater drop in the DFIG kinetic energy and a lower system frequency following the removal
of the integral controller. In the present work, a delay time of 1 s is chosen for t1 to cover the time
required to detect the system frequency nadir.

Figure 5b compares the frequency responses for different decay times t2. The PI controller gains
are chosen to be KPD = 20 and KID = 1.5. It is observed that the system frequency after the decay of
the integral controller output dips to a value even lower than the first nadir when a short decay time
t2 = 10 s is employed. This is due to the fact that the DFIG output power is decreased rapidly and the
SG does not have enough time to increase its output power, causing a power deficit and subsequent
frequency dip. On the other hand, the DFIG kinetic energy will be consumed too much, causing a later
frequency drop if a long decay time such as t2 = 50 s is used. In the present work, a moderate decay
time t2 = 20 s is employed.

Since it takes a long time to get a solution from MATLAB/SIMULINK circuit-level simulations,
system-level simulations are conducted to approximately estimate the effects of integral controller
gains KID on the system frequency nadir under different values of KPD for the system subject to a
disturbance of Pgrid = 45 MW at t = 10 s, as depicted in Figure 6.
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(a) KPD = 5, (b) KPD = 10, (c) KPD = 15, (d) KPD = 20.

An observation of Figure 6 reveals that a higher frequency nadir can be achieved for the four
different values of KPD when a moderate gain of KID is employed. Table 1 lists the highest frequency
nadir for various combinations of KPD and KID under different values of Pgrid.

It is observed from Table 2 that a combination of KPD = 20 and KID = 1 gives the highest frequency
nadir for the base case of Pgrid = 45 MW. The preliminary gains of KPD = 20 and KID = 1 from
system-level simulations are further refined to be KPD = 20 and KID = 1.1 using more time-consuming
circuit-level simulations. In Section 5, the pair of gains KPD = 20 and KID = 1.1 will be employed for
the simulations.

Table 2. The highest frequency nadir for various combinations of KPD and KID under different values
of Pgrid.

KPD KID FN

Pgrid = 30 MW

5 5.5 59.63

10 3.7 59.70

15 2.3 59.75

20 1.3 59.78

Pgrid = 35 MW

5 5.4 59.56

10 3.6 59.65

15 2.2 59.71

20 1.2 59.74

Pgrid = 40 MW

5 5.3 59.50

10 3.5 59.60

15 2.1 59.67

20 1.1 59.70

Pgrid = 45 MW

5 5.1 59.43

10 3.4 59.55

15 2 59.62

20 1 59.66
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4. Type II Flexible Kinetic Energy Release Controller Using PSO

In the design of Type I flexible kinetic energy release controller, the controller gains are designed
based on a certain set of system parameters and operating conditions in order to have a good frequency
response under that particular operating point. However, the dynamic frequency response may become
unsatisfactory when there is a change in system parameters or operating conditions. In order to have a
good frequency response when the system is subject to variations in system parameters or operating
conditions, the gains of the Type I flexible kinetic energy release controller may be adapted in real-time
using the Type II PSO controller, as shown in Figure 7.
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The procedures followed by the proposed flexible kinetic energy release controller using PSO to
adjust the controller gains have been described in [30,31]. As shown in Figure 8, in each iteration i,

particle n has positions Ki
n= [ Ki

PD,n Ki
ID,n

]T
and velocities Vi

n= [ Vi
PD,n Vi

ID,n

]T
. The positions

and velocities are updated as follows:

Ki+1
n = Ki

n+Vi+1
n (4)

Vi+1
n = wi

n ·V
i
n+r1 ·

(
Kn(pbest)−Ki

n

)
+r2 ·

(
K(gbest)−Ki

n

)
(5)

where r1 and r2 are random numbers between 0 and 1, Kn(pbest) is the best particle position, K(gbest) is
the best global position, and wi

n is a weighting factor expressed as:

wi
n = wMAX −

(w MAX−wmin)

N
i (6)

The number of particles N is chosen to be 12 and the total number of iterations is 15. The maximum
and minimum values for the weight of the velocity vector are chosen to be wMAX = 0.5 and wmin = 0.1,
respectively. In this work, the evaluation function E in the PSO algorithm is defined as follows:

E = MAX
∣∣∣∆ f pu (t)

∣∣∣ − ∆ f
∗

pu (7)

where ∆ f pu(t) = fpu(t)− 1 pu and ∆ f ∗pu = 1 − (59.6/60) pu. Note that the PSO algorithm is started only
when the system frequency is lower than 59.6 Hz and the evaluation function is chosen to keep the
system frequency as close to 59.6 Hz as possible. In this way, the retained DFIG kinetic energy can be
released in critical conditions to avoid under-frequency load shedding.
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5. Simulation Results

To demonstrate the effectiveness of the proposed flexible kinetic energy release controllers,
the local power system in Figure 1 with the parameters in the Appendix A was simulated using
MATLAB/SIMULINK. The dynamic responses from detailed circuit-level simulations are presented
as follows.

5.1. Dynamic Performance of Type I Flexible Kinetic Energy Release Controller

To examine the dynamic performance of the Type I flexible kinetic energy release controller,
dynamic response curves for the following three cases are depicted in Figure 9 under the condition of
KPD = 20, Pgrid = 45 MW, and Vw = 11 m/s:

• Case 1: Droop control only (KID = 0).
• Case 2: Type I controller with KID = 1.1.
• Case 3: Type I controller with KID = 2.
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Figure 9. Comparison of dynamic response curves from different integral gains (KPD = 20, Pgrid = 45 MW,
Vw = 11 m/s). (a) Frequency, (b) DFIG speed, (c) DFIG electrical power, (d) deactivation function based
integral control signal.

The local power system was disconnected from the main grid at the instant of t = 10 s and
remained in islanding operation afterwards. The power deficit of 45 MW immediately following the
grid disconnection caused a frequency dip, which should be controlled by increasing the DFIG electrical
power PeD in order to present the frequency from dropping to a level lower than the under-frequency
load shedding threshold of 59.6 Hz.

On comparing the response curves for the three cases in Figure 9, the following observations are
in order:

1. The frequency response curves for the three cases are essentially the same during the inertia
period (1–2 s after the disturbance or 10 s ≤ t ≤ 11–12 s) since the frequency nadir is of major
concern and inertia control is not considered in this work.

2. The frequency nadir for Case 1 with only a droop controller is lower than the prespecified
threshold of 59.6 Hz.

3. With the proposed Type I flexible kinetic energy release controller, the frequency nadir is improved
to a value higher than the threshold of 59.6 Hz. This is achieved through the addition of an
integral controller with a gain of KID = 1.1. As shown in Figure 9c,d, both the DFIG electrical
power PeD and control signal are increased by the proposed Type I flexible kinetic energy release
controller during the first few seconds in the primary frequency regulation period (12 s ≤ t ≤ 22 s)

4. As evidenced by the response curve in Figure 9d, the control signal u from the proposed Type I
flexible kinetic energy release controller is gradually increased when the system frequency drops
to 59.9 Hz at t = 10.5 s. The deactivation function in Figure 4 begins to work at t = 13 s when
the frequency nadir is detected. Due to the action of deactivation function, the rate of change
of control signal u is gradually decreased and the control signal u is decreased to zero in a very
smooth manner in order to avoid the second frequency nadir.

5. Although the DFIG output power PeD can be further increased and the first frequency nadir at
around t = 13 s can be improved further using a higher integral gain of KID = 2 for the Type I
flexible kinetic energy release controller, the DFIG speed will drop significantly and the DFIG
kinetic energy will be exhausted in the primary frequency regulation period. As a result, a very
low second frequency nadir (59.4 Hz) will be observed at t = 34 s. A moderate gain of KID = 1.1
seems to be a good choice for the study system.

5.2. Dynamic Performance of Type II Flexible Kinetic Energy Release Controller

Detailed comparisons of the dynamic frequency responses for the system with Type I and Type II
flexible kinetic energy release controllers, when the system is subject to parameter uncertainties and
external disturbances, are described below.
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5.2.1. Dynamic Response Curves under Uncertainties in System Parameters Servo-Motor Time
Constant Tsm and Reheater Time Constant Tt4 (Pgrid = 45 MW, Vw = 11 m/s, Tsm = 0.375 s, Tt4 = 6.625 s)

To investigate the dynamic performance of the Type II controller under parameter uncertainties,
the servo-motor time constant Tsm and the reheater time constant Tt4, were changed from 0.3 and 5.3 s
to 0.375 and 6.625 s, respectively. It is assumed that the Type II controller is unaware of the change in
system parameters. The dynamic response curves from the Type I and Type II controllers are compared
in Figure 10. Note that the initial gains for the Type II controller were set to be KPD = 10 and KID = 0.
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(a) Frequency, (b) DFIG speed, (c) PSO proportional gain, (d) PSO integral gain.

It is observed from the frequency response curves in Figure 10a, for the case of Tsm = 0.375 s and
Tt4 = 6.625 s, that the system frequency nadir is lower than the threshold of 59.6 Hz when a Type I
controller with the same controller gains of KPD = 20, KID = 1.1, and deficit power Pgrid = 45 MW as
those used in Figure 9 was employed. Recall that the Type I controller with the gains KPD = 20 and KID

= 1.1 gave a satisfactory frequency response for the system with the original parameters (Tsm = 0.3 s
and Tt4 = 5.3 s), as shown in Figure 9a. Therefore, it is concluded that the frequency response from a
Type I controller is sensitive to system parameter variations.

On the other hand, as evidenced by the response curve in Figure 10a, the frequency nadir remained
around 59.6 Hz when the Type II controller was employed. As shown in Figure 10c,d, an improvement
of the system frequency response was achieved by the Type II controller through the use of a pair of
lower initial gains (KPD = 10, KID = 0) immediately following the grid disconnection. As explained
earlier, more kinetic energy retained in the DFIG as a result of lower initial gains during the first few
seconds after disturbance enabled the DFIG to deliver more electrical power to the islanding system
and to improve frequency response.

As shown in Figure 10c,d, the Type II controller was started when the frequency was lower than
59.6 Hz and higher gains for KPD and KID from the Type II controller forced the DFIG to deliver
more electrical power to the system. With the increase of the electrical power output from the DFIG,
the system frequency was improved. In order to return to the MPPT operation mode, when the system
frequency exceeded 59.65 Hz, the PSO gains were gradually decayed to the initial values (KPD = 10,
KID = 0).
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5.2.2. Dynamic Response Curves under Change of Wind Speed

To examine the dynamic performance of the Type II controller under a change of wind speed as
shown in Figure 11, Figure 12 depict the dynamic response curves for this case.Energies 2020, 13, x FOR PEER REVIEW 11 of 15 
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Since the gains of the Type I controller had been selected based on a fixed wind speed of
Vw = 11 m/s, the system frequency nadir failed to meet the requirement of 59.6Hz when the system was
subject to a wind speed change, as evidenced by the frequency response curve in Figure 12a. However,
the Type II controller can still maintain a satisfactory frequency response by adjusting the controller
gains in real-time when the system is subject to a wind speed change, as shown in Figure 12c,d.

5.2.3. Dynamic Response Curves under Uncertainties in System Parameters and Fluctuation of Wind
Speed in Different Pgrid

In order to assess the effectiveness of the Type II controller, the dynamic responses for different
values of Pgrid under the combined effects of the SG time constant change, as described in Section 5.2.1,
and the wind speed fluctuation, as shown in Figure 13, are depicted in Figure 14.
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Figure 14. Dynamic response curves of the Type II controller under parameters uncertainties and the
fluctuation of wind speed at different deficit powers. (a) Frequency, (b) DFIG speed.

Based on the dynamic response curves in Figure 14, the following observations can be made.

1. When the deficit power Pgrid is 30 MW, the PSO algorithm will not be initiated since the frequency
response during the entire post-fault period is higher than the threshold of 59.6 Hz. Therefore,
the controller gains for the Type II controller will remain at the initial values (KPD = 10, KID = 0).

2. As the deficit power Pgrid is increased to 45 MW, the controller gains for the Type II controller
can be adjusted online to improve the frequency response, even though the PSO algorithm is
unaware of the change in SG parameters and the fluctuations in wind speed.

3. When the system encounters a large deficit power, e.g., Pgrid = 50 MW, the system frequency
can be kept around 59.6 Hz in the first few seconds after disturbance using the proposed Type
II controller. However, the DFIG stall and frequency collapse are observed afterwards since
the large deficit power exceeds the upper limit of the DFIG stored kinetic energy, which can be
released to the power system under disturbance conditions.

6. Conclusions

Two flexible kinetic energy release controllers have been designed for a DFIG to improve the
frequency nadir of an islanding system, comprising an equivalent SG and an equivalent DFIG. Specific
conclusions are summarized as follows:

1. The Type II flexible kinetic energy release controller with the controller gains being adapted
in real-time, using the PSO technique, has been found to be able to offer a better dynamic
frequency response than the Type I controller when the system is subject to external disturbances
or parameter variations.

2. In this paper, the pitch angle is set to be zero to avoid considerable revenue losses. However,
the de-loaded operation may be used to improve the system frequency at the price of revenue
loss when the deficit power exceeds the DFIG kinetic energy limit.

3. Although the dynamic frequency response can be improved by the proposed Type I and Type II
controllers, the delay time and decay time in the Type I controller must be properly designed in
order to achieve good performance. In addition, it takes a long time for the PSO algorithm to
reach the desired optimal gains of KPD and KID. In order to reduce the computational burden,
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it is necessary to limit the number of particles per iteration. However, the local minimum may be
experienced as a result of an insufficient number of particles.

4. Future work will be devoted to the implementation and field test of the proposed controllers.
Furthermore, the coordination between the pitch angle controller and the proposed controller
will be investigated.
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Nomenclature

DS load damping
D(t) deactivation function
HS, HD equivalent inertia time constants of synchronous machine and DFIG
f system frequency
KPD, KID DFIG supplementary proportional and integral controller gain
Pgrid grid power
PeD electromagnetic power of DFIG
PmS mechanical power of synchronous machine
TmD, TeD mechanical torque and electromagnetic torque of DFIG
TeD,opt electromagnetic torque command of DFIG for MPPT
TFKERC flexible kinetic energy release control signal
t1,t2,tn decay time, delay time, and nadir frequency time
ωmD DFIG speed
VW wind speed
∆ incremental quantity

Appendix A

Speed governor and turbine:

Droop and integral controller gains: KPS = 20 and KIS = 0.1.
Speed relay and servo-motor time constants: Tsr = 0.1 s and Tsm = 0.3 s.
Steam chest, reheater, and crossover time constants: Tt5 = 0.68 s, Tt4 = 5.3 s, and Tt3 = 0.58 s.
Power fractions: F5 = 0.241, F4 = 0.399, and F3 = 0.360.

Synchronous machine:

Rated power: 480 MVA.
Rated voltage: 18 kV.
Rated frequency: 60 Hz.
Number of poles: 2 poles.
Machine parameters: HS = 3.3 s, DS = 0.

DFIG:

Rated power: 200 MVA.
Rated voltage: 690 V.
Proportional and integral gains of q-axis rotor current regulator: Kpq = 0.0756, Kiq = 0.8318.
Stator, rotor, and mutual inductances: Ls = 3.1 pu, Lr = 3.08 pu, and Lm = 3 pu.
Rotor resistance: Rr = 0.01 pu.
Number of poles: 4 poles.
Machine parameters: HD = 3.5 s.

Loads:
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Load 1 = 26 MW; Load 2 = 160 MW; Load 3 = 50 MW; Load 4 = 24 MW.

Infinite bus parameters:

Rated short-circuit power: 11,072.92 MVA.
Rated short-circuit current: 39.71 kA.
Rated voltage: 161 kV.
X/R ratio: 31.6912.
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