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Abstract: State of the art powertrain optimization compares the energy consumption of different
powertrain configurations based on simulations with fixed driving cycles. However, this approach
might not be applicable to future vehicles, since speed advisory systems and automated driving
functions offer the potential to adapt the speed profile to minimize energy consumption. This study
aims to investigate the potential of powertrain optimization with respect to energy consumption
under optimal energy-efficient driving for electric buses. The optimal powertrain configurations
of the buses under energy-efficient driving and their respective energy consumptions are obtained
using powertrain-specific optimized driving cycles and compared with those of human-driven
unconnected buses and buses with non-powertrain-specific optimal speed profiles. Based on the
results, new trends in the powertrain design of vehicles under energy-efficient driving are derived.
The optimized driving cycles are calculated using a dynamic programming approach. The evaluations
were based on the fact that the buses under energy-efficient driving operate in dedicated lanes with
vehicle-to-infrastructure (V2I) communication while the unconnected buses operate in mixed traffic.
The results indicate that deviating from the optimal powertrain configuration does not have a
significant effect on energy consumption for optimized speed profiles; however, the energy savings
from an optimized powertrain configuration can be significant when ride comfort is considered.
The connected buses under energy-efficient driving operating in dedicated lanes may reduce energy
consumption by up to 27% compared to human-driven unconnected buses.

Keywords: energy-efficient driving; eco-driving; speed profile optimization; powertrain optimization;
dynamic programming

1. Introduction

Current road-based transport systems are dominated by combustion vehicles, which have a
major impact on energy consumption, air pollution and greenhouse gas emissions. In Singapore,
transportation is responsible for 17.6% of the total energy consumption, of which around 90% is
obtained from petroleum products [1]. Though 15% of all transportation carbon emissions in Singapore
are produced by buses [2], they make up only 2% of all vehicles on the road [3]. This means
that even small improvements in the energy efficiency of buses may have a significant impact on
overall emissions. Technological improvements in the field of alternative power sources, driving
assistance and intelligent control have the potential to reshape the environmental profile of the current
transportation systems.
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Energy consumption can be reduced at the operational level as well as at the vehicle level.
By reducing drag and using an efficient powertrain, energy consumption can be minimized at the
vehicle level. The operation level describes the usage of the vehicle and the driving style, which also
has an influence on power demand.

Sciarretta [4] (p. 142) gives a summary of energy-efficient driving and names dynamic
programming (DP) and Pontrayagin’s maximum principle (PMP) as the most used numerical
techniques to solve these problems. Han et al. [5] differentiates between the minimization of the
“wheel to distance” energy, which does not consider the powertrain, and the minimization of “tank
to distance” energy, which does. It was shown for the “wheel to distance” optimization that the
optimal speed profile between two stops consists of maximal acceleration, cruising and, depending on
the regeneration ability, coasting and/or maximal breaking. Furthermore, considering a combustion
powertrain, repeated accelerating and coasting, also called a pulse and glide (P&G) strategy, can be
more efficient than cruising, as the load points of the motor are shifted toward better efficiency.
Eo et al. [6] demonstrated the pulse and glide strategy for a hybrid vehicle on a dynamometer.
So et al. [7] showed that P&G may also reduce energy consumption for battery electric vehicles (BEVs).
Lajunen [8] investigated optimized speed profiles for different powertrain types using a DP algorithm.
Taking the load-point-dependent efficiency of the powertrain into account, the optimized speed profile
reduced the required energy consumption by 12% for the electric and 13% for the diesel powertrain
compared to the reference driving cycle for the considered bus. Kelouwani et al. [9] lists energy
savings between 14% and 21% compared to human drivers by using DP to optimize the speed profile.
However, no motor efficiency map was used in this study. Mensing et al. [10] achieved 19% energy
savings by optimizing the New European Driving Cycle (NEDC) for a small vehicle with a combustion
engine. References [11,12] presented a DP approach for a driver assistance system to optimize fuel
consumption. Luu et al. [11] used different cost coefficients for arrival time, fuel consumption and
comfort and showed that optimizing the fuel consumption results in longer travel times and can result
in uncomfortable speed profiles due to oscillation, which equates to the P&G strategy. Additionally,
vehicle-to-infrastructure (V2I) communication may allow for further energy savings by supporting
vehicles in avoiding unnecessary acceleration or deceleration when approaching traffic signals through
traffic actuated signals [13], green light optimized speed advisory [14] or a combination of both [15].
Teichert et al. [16] compared different combinations of eco-driving strategies and traffic management
measures. Results show that a dedicated lane with traffic light information results in the highest
energy savings, while the savings in mixed traffic depend on the maximal allowed inter-vehicle
distance. These strategies can be implemented as driver assistance for human-driven vehicles [11,12,14].
Furthermore, the automatization of vehicles is seen as an enabler of energy-efficient driving since
optimal speed profiles are no longer an advisory for a human driver but can be implemented through
a control strategy [4] (p. 8).

BEVs offer another opportunity to reduce energy consumption [17,18]. Nonetheless, the adoption
of electric vehicles has been slow, due to the small vehicle range, which is mainly caused by limitations
in battery technology [19]. Apart from improving battery technology, the effective range of an electric
vehicle can be increased by reducing its energy consumption. Powertrain concept optimization is
a method to reduce the energy consumption of a future vehicle and can be conducted at different
abstraction levels of the vehicle: sizing the components, choosing the components and designing the
powertrain topology [20].

Improving energy efficiency at the component size and type level includes the optimization
of the motor and gearbox combination [21–23]. Regarding the motor type, the permanent magnet
synchronous machine (PMSM) and induction machine (IM) are the most commonly used alternatives
in electric vehicles on the market [24,25]. The advantages and disadvantages of both types have been
studied extensively [26–30]. In general, PMSMs have a better power density and overall efficiency,
whereas IMs are the less expensive option [26]. Furthermore, the two motor types reach optimal
efficiencies at different speed–torque load points. References [27–29] conducted a direct comparison
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between a PMSM and IM for a battery electric hybrid vehicle, concluding that the energy losses in
the IM were higher for the considered UDDS, HWFET and US06 driving cycles. Pellegrino et al. [30]
performed a detailed comparison in terms of output power and efficiency among a surface-mounted
PMSM, an interior PMSM and an IM. The energy consumption analysis revealed that the interior PMSM
performed best, followed by the IM and then the surface-mounted PMSM for the regarded NEDC.

Another aspect of the powertrain configuration is the transmission design. With a fixed driving
cycle, the gear ratio defines the load points of the motor and, thus, the optimal gear ratio matches
the frequent load points of the driving cycle to the high-efficiency regions of the motor [31].
Wang et al. [31] investigated different powertrain topologies using a genetic algorithm solver,
optimizing the motor size and gearbox ratio to achieve the lowest energy consumption for a given
driving cycle. Hofman et al. [22] compared the energy efficiency of different motor and gear ratio
combinations for an ultra-light vehicle with a single speed gearbox based on two driving cycles.
The results showed the high dependency of the energy consumption on the gear ratio.

Some studies incorporated energy-efficient driving in powertrain optimization.
Tate et al. [32] investigated the efficiency gains due to connected autonomous driving, mainly through
the example of a combustion vehicle. Speed profiles were smoothed and the engine was downsized.
References [33,34] optimized the powertrain and speed profile of an automated/autonomous BEV,
using DP to generate speed profiles. Anselma and Belingardi [33] assumed optimal cooperative
driving. Thus, it was assumed that the vehicle knows the entire speed profile of the leading vehicle a
priori. The results indicate that the optimal powertrain configurations of a human-driven vehicle and
a connected autonomous vehicle under optimal control differ. Gambhira [34] used driving cycles
as a reference and assumed no traffic. He concluded that savings are higher due to optimal driving
rather than due to powertrain optimization. However, no study incorporated traffic lights and V2I
communication in their optimization. Furthermore, these studies do not explain the differences in the
powertrain design of vehicles derived from driving cycles and vehicles under energy-efficient driving.

Most studies investigating the impact of powertrain configuration on energy consumption
in the literature rely on driving cycles. The emergence of connected driving assistance systems
and connected automated driving systems has brought unprecedented opportunities to further
improve the energy usage through predictive control strategies. While there is abundant literature
showing the substantial energy consumption improvement benefits achieved through optimized
speed profiles, the simultaneous optimization of speed profile and powertrain configuration using V2I
communication has never been conducted. This study aims to investigate the potential of powertrain
optimization with respect to energy consumption under optimal speed control. Furthermore, the effects
of optimal powertrain configuration for connected, energy-efficient driven buses (CEEDBs) with fixed
driving cycles and human-driven unconnected buses without speed advisory (UCBs) are analyzed.
Based on the results, new trends in the powertrain design of connected vehicles under energy-efficient
driving are derived. The optimization uses an enumerative approach in which the speed profile
of each powertrain configuration is optimized for minimum energy consumption using DP, taking
the traffic light and speed constraints into account. The speed profile optimization assumes that the
connected energy-efficient driven bus (CEEDB) is operated in dedicated lanes with V2I communication.
The energy consumption of the human-driven unconnected bus (UCB) is based on the measured speed
profiles of two buses operating on two different bus routes in Singapore.
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2. Methodology

2.1. Vehicle Speed Optimization

The speed profile of the BEV is optimized for minimum energy consumption using a DP
algorithm [35]. The problem is formulated as:

min
Tk

N−1

∑
k=0

E(xk, Tk) where


xk+1 = f (xk, Tk)

xk ∈ [xk,min xk,max]

Tk ∈ [Tk,min Tk,max]

(1)

where xk is the system state, which consists of the vehicle speed and time from the starting point;
Tk is the control input, which corresponds to the traction torque at the wheel; and the subscript k
represents the discrete distance from the starting point. The problem is defined in the spatial domain,
since the boundary conditions along the route, such as traffic lights and speed limits, are distance-based
characteristics. The solution of the problem finds the torque control strategy that minimizes the total
consumed energy E, while considering the boundary conditions for the state and control variables.

The calculation of the energy consumption is based on a longitudinal vehicle simulation.
First, the traction torque is discretized between two torque limits. The discretization at the traction
torque level was used to achieve the same discretization for different gear ratios. Subsequently, for all
torques, the resulting vehicle acceleration is calculated using Equation (2).

ak =
1
m

(
Tk

rtire
− Fdrag − Froll − Fslope

)
(2)

where ak corresponds to the acceleration, rtire is the tire radius, m is the vehicle weight and Fdrag,
Froll and Fslope correspond to the vehicle drag, roll and slope resistance, respectively. The resistance
forces are calculated based on the equations given in [36] with constant drag coefficients.

Based on the derived acceleration, the new state variables are calculated with Equations (3) and (4),
where v corresponds to the vehicle speed, s is the distance from the start and t is the time from the
starting point.

vk+1 =
√

v2
k + 2 (sk+1 − sk) ak (3)

tk+1 = tk +
2 (sk+1 − sk)

vk+1 + vk
(4)

The motor torque TM and motor speed n are calculated based on the gear ratio i and its efficiency
ηG by Equations (5) and (6). Even though the efficiency of a gearbox is dependent on speed and torque,
an assumption of a constant efficiency is reasonable [37].

TM,k =

{ Tk
i ηG

, Traction
Tk ηG

i , Recuperation
(5)

nk =
1

rtire

vk+1 + vk
2

i (6)

Finally, the energy consumption to move to the next state is calculated using Equation (7):

Ek =

{
(TM,k

1
ηk

nk) (tk+1 − tk), Traction

(TM,k ηk nk) (tk+1 − tk), Recuperation
(7)

where η is the motor efficiency derived from the motor map for the current load point.
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The optimal control strategy for the traction torque can then be found by implementing an optimal
path search, which is evaluated backwards at discrete distances sk. The algorithm is implemented in
MATLAB in a vectorized form to improve computation time. Its main sequence is similar to [38].

2.2. Ride Comfort Evaluation

Since lack of comfort is not penalized, the optimization algorithm may lead to uncomfortable
speed profiles due to P&G. The optimal controlled vehicle may oscillate around a certain speed, which
may result in a jagged speed profile. Ref. [11] showed this effect for light vehicles with combustion
engines and smoothed the speed profile with an added term in the cost function. To gain more
comfortable and thereby realistic speed profiles and determine the effects of comfort on the powertrain
configuration and energy consumption, further optimizations are conducted with a modified cost
function (Equation (8)). With the weighted sum method [39], multiple objectives can be reduced to
one scalar value. Similar to [11], who used weighted penalty for acceleration, the new cost function,
given in Equation (9), penalizes jerk, whereas j represents the jerk.

min
Tk

N−1

∑
k=0

C(xk, Tk) where


xk+1 = f (xk, Tk)

xk ∈ [xk,min xk,max]

Tk ∈ [Tk,min Tk,max]

(8)

C = E + c1 j6 +

{
0 abs(j) < 1

c2 abs(j) ≥ 1
(9)

The weights and exponents of the cost function have been selected based on iterative simulations
of speed profiles for all motor types and gear ratios to reduce P&G while leaving enough freedom to
save energy due to gliding. The first term minimizes the jerk in general. The last term penalizes the
jerk values over 1. Values were set to c1 = 9 · 106 and c2 = 1010. Other similar approaches using the
weighted sum method can be seen in [40,41]. To find the global optimal solution, the DP algorithm
would require acceleration as an additional state. As this would increase the computation time to
a great extent, another approach was chosen. The acceleration of the optimal control at sk is saved.
At sk−1, the control vector is applied for all discrete points and the jerk is calculated by Equation (10).

jk =
ak+1 − ak
tk+1 − tk

(10)

2.3. Derivation of Boundary Conditions and Discretization

To find the optimal control strategy for the motor torque and the corresponding speed profile for
a given route, the boundary conditions along the route need to be taken into account, i.e., speed limits,
permitted cornering speed, traffic lights, stops and the total available time to complete the route.

The speed of the vehicle on straight segments of the road is capped at speed limits, while the
maximum speed at the turns is calculated using Equation (11), with alat,max describing the upper
bound of comfortable lateral acceleration and rcorner the cornering radius. Additionally, longitudinal
acceleration is limited to 1 m/s2 to ensure comfort. As an example, the resulting speed boundary
profile is shown for a 3000 m stretch of a bus route with eight stops and eight turns in Figure 1a.

vcorner =
√

alat,maxrcorner (11)

The lower and upper time bounds are calculated by Equations (12) and (13), respectively,
where tk,min is the lower time bound, tk,max is the upper time bound, vk,max refers to the upper
speed bound based on the acceleration limit, tend is the maximum time to complete the route and tdwell
is the dwelling time at the stops. The maximum time to complete the route and the dwelling time are
based on actual bus operation data. Subsequently, the effect of traffic lights on the obtained upper and
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lower time bounds is incorporated. Traffic lights are modeled by a red phase and a green phase, where
the duration of the green and red phases is fixed. When a red phase is encountered, the lower time
bound is shifted up, while the upper time bound is shifted down. An example of the resulting upper
and lower time bounds is shown in Figure 1b.

tk,min =
k

∑
i=1

2(si − si−1)

vk,max + vk−1,max
(12)

tk,max = tk,min + tend − tdwell − tN,min (13)Version November 28, 2020 submitted to Energies 6 of 18
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Figure 1. Example of the solution space for a) speed and b) time
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Figure 1. Example of the solution space for (a) speed and (b) time.

The optimization is conducted along distance s. The step size in s varies, depending on the upper
bound of the speed. Thereby, the discretization is small where the vehicle is expected to be slow and
wider where the vehicle is expected to be faster. The step size in s was set such that, corresponding
to the upper bound speed, delta t is 0.3 s but not smaller than 0.2 m. The speed was discretized with
300 equally spaced points between the upper limit and zero. A stop was approximated with an upper
value of 0.1 m/s. Time was discretized between the lower and upper bound with 350 equally distanced
points and traction torque at the wheel was discretized in 15 Nm steps.

2.4. Assumptions

Various assumptions were made in the speed profile optimization. To see the effect of
energy-efficient driving on the powertrain, it was assumed that the vehicle follows the optimal
speed profile at all times, representing a best case scenario. With the V2I communication, the signal
phase timings of all traffic lights are available before the start of the journey. Additionally, since the
CEEDB drives in a dedicated lane, it was assumed that there are no vehicles or pedestrians that
interfere with the bus operation. To see the effects of the powertrain isolated, the auxiliary power was
set to zero.

3. Case Study

The powertrain optimization was implemented for the two bus routes in Singapore, routes 91
and 185, as they differ in their characteristics and represent two types of bus routes. Route 91 connects
an MRT station to a business park and is characterized by frequent turns and a relatively short
distance between stops. Route 185 connects a residential area to an industrial area via an expressway.
The expressway section has a length of 4.2 km, with no stops or traffic lights, and a speed limit
of 60 km/h instead of the standard 50 km/h speed limit. Route 185 is therefore characterized by



Energies 2020, 13, 6451 7 of 19

longer straight segments and a higher average speed than Route 91. Measurement data in the form
of geographic coordinates and speed were recorded for each route using a smartphone app [42].
Wittmann et al. [42] proposes the use of these data for the determination of energy consumption.
Since the buses on Route 91 operate in a loop, the full operation was recorded, while for Route
185, which is bidirectional, only operation in the east–west direction was recorded. The obtained
information was combined with the geographic location data of traffic lights and bus stops provided
by the Singapore Land Transport Authority [43]. Figure 2 shows the measured route and the locations
of stops and traffic lights. The measured route length, number of stops, average distance between
stops, number of turns, number of traffic lights, speed limits, duration, total dwelling time and average
speed of both routes are summarized in Table 1.
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Table 1. Bus route characteristics

Parameter Bus Route 91 Bus Route 185

Measured route length 6.0 km 15.9 km
Measured number of bus stops 13 28
Average distance between stops 460 m 570 m
Number of turns 14 14
Number of traffic lights 18 45
Speed limits 50 km/h 50 or 60 km/h
Duration 1612 s 3766 s
Dwelling time 114 s 565 s
Average speed (without dwelling) 14.4 km/h 17.9 km/h
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Figure 2. Map showing the path, stops and traffic lights of (a) Route 91 and (b) Route 185.

Table 1. Bus route characteristics.

Parameter Bus Route 91 Bus Route 185

Measured route length 6.0 km 15.9 km
Measured number of bus stops 13 28
Average distance between stops 460 m 570 m
Number of turns 14 14
Number of traffic lights 18 45
Speed limits 50 km/h 50 or 60 km/h
Duration 1612 s 3766 s
Dwelling time 114 s 565 s
Average speed (without dwelling) 14.4 km/h 17.9 km/h

The longitudinal vehicle simulation was based on the vehicle characteristics of the 12 m
battery electric BYD bus [44], hereinafter referred to as the reference vehicle. The mass, front area,
drag coefficient, rolling resistance coefficient, tire radius and transmission efficiency are listed in Table 2.
The bus is powered by a pair of motors connected to the rear drive axle, with a single gear stage at
each wheel (see Figure A1). The torque is assumed to be split evenly between both motors. For the
CEEDB and UCB, the same vehicle model and energy consumption simulation is used to see the effect
of energy-efficient driving on powertrain design.
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Table 2. Reference vehicle parameters.

Parameter Value Source

Mass 15,850 kg [44]
Front area 8.6 m2 [44]
Drag coefficient 0.7 assumption
Rolling resistance coeff. 0.008 [45]
Tire radius 0.48 m [44]
Transmission efficiency 0.96 assumption

The powertrain configuration is explored in terms of motor type and gear ratio. The motor types
evaluated included IM and PMSM, which are modeled using motor efficiency maps. To enable a
fair comparison, the efficiency maps were generated by a validated motor simulation tool using the
same nominal voltage, maximal and nominal rotational speed, cooling type, number of pole pairs
and nominal power, as listed in Table 3 [46]. The values are based on the motor used by the reference
vehicle [47]. The simulation model used a squirrel-cage rotor for the IM and a rotor with internal
permanent magnets for the PMSM.

Table 3. Motor parameters.

Parameter Value

Nominal voltage 540 V
Max. rotational speed 7500 U/min
Nominal rotational speed 3500 U/min
Type of cooling liquid
Number of pole pairs 4
Nominal power 90 kW

Data from the Singapore Land Transport Authority were used to derive the route infrastructure
parameters. A turning radius of 12 m, which corresponds to the minimum corner radius specified
by Singapore infrastructure guidelines, was used for all turns [48]. Combined with the suggested
maximum lateral acceleration of 0.05 g [48], this results in a maximum cornering speed of 8.7 km/h.
The signal phase durations of the traffic lights along the routes were provided by the Singapore Land
Transport Authority. The start of each green phase was aligned with the data from the measured bus
routes as follows. At the traffic lights where the bus had to stop, the time at which it resumed driving
was used for the start of the green phase. At the traffic lights where the measured bus did not stop,
it was assumed that it passed halfway through a green phase.

4. Results

4.1. Speed Profiles

Figure 3 illustrates optimal speed profiles for the CEEDB with a PMSM and an IM with their
optimal gear ratio with and without the comfort factor (e.g., PMSM-Comfort indicates the CEEDB
PMSM with controlled comfort) on a stretch of Route 91 along with the measured driving cycle of the
UCB operating on that route. The bus stops and traffic lights are indicated in the figure with vertical
lines. Without the comfort factor, the figure shows similar speed profiles for PMSM and IM, with
primarily three phases of movement, including acceleration, coasting with no applied motor torque
and deceleration. A P&G strategy can be seen. With the applied comfort factor, the speed profiles are
smoother, but the three phases of movement can still be identified.
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The UCB has to stop more often as traffic lights, right turns with oncoming traffic or traffic
congestion may force it to stop. These stop events are avoided by the CEEDB and, therefore, the CEEDB
drives slower but continuously, only stopping at bus stops. Queuing vehicles explain the shift between
the actual stop position of the UCB and traffic light positions. The small shift between bus stops and
the stop position of the UCB can be explained by measuring errors. The respective load points within
the efficiency map for the speed profiles with the comfort factor are shown in Figure 4.
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Figure 5. Comparison of relative energy consumption for different powertrains for a) the CEEDB with
comfort factor and b) the UCB on Route 91

As can be seen from the figures, gear ratios range from 10 to 22 for the PMSM and 12 to 22 for253

the IM, as they correspond to a minimal gradeability of 12% and a minimal top speed of 60 km/h for254

the reference vehicle. For both routes, the PMSM performed best for the CEEDB and UCB. The IM255

required more energy than the PMSM for all cases. For the CEEDB, the optimal gear ratios are higher256

compared to the UCB for the IM but similar for the PMSM. As the region of best efficiency for the257

IM is at higher revolutions, the optimal gear ratio was higher compared to that of the PMSM, which258

moves the load points to higher motor revolutions, as can be seen in figure 4. The sensitivity of the259

energy consumption over the gear ratio is lower for the CEEDB. On Route 91, for the CEEDB with260

the comfort factor, the optimal gear ratio may result in energy savings of up to 3.7% and 1.8% for the261

Figure 4. Load points of optimized speed profiles (CEEDB) with comfort factor of (a) PMSM and (b) IM.

4.2. Powertrain Optimization Analyses

As the speed profiles without the comfort factor seem uncomfortable due to the occurring P&G,
further discussion focuses on the speed profiles with the comfort factor. Figures 5 and 6 show the
optimal gear ratio for each motor type along with the change in energy consumption for different
gear ratios for the CEEDB with the comfort factor and the UCB operating on Route 91 and Route 185,
respectively.
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required more energy than the PMSM for all cases. For the CEEDB, the optimal gear ratios are higher256

compared to the UCB for the IM but similar for the PMSM. As the region of best efficiency for the257

IM is at higher revolutions, the optimal gear ratio was higher compared to that of the PMSM, which258
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Figure 5. Comparison of relative energy consumption for different powertrains for (a) the connected
energy-efficient driven bus (CEEDB) with comfort factor and (b) the unconnected bus (UCB) on
Route 91.

As can be seen from the figures, gear ratios range from 10 to 22 for the PMSM and 12 to 22 for
the IM, as they correspond to a minimal gradeability of 12% and a minimal top speed of 60 km/h for
the reference vehicle. For both routes, the PMSM performed best for the CEEDB and UCB. The IM
required more energy than the PMSM for all cases. For the CEEDB, the optimal gear ratios are higher
compared to the UCB for the IM but similar for the PMSM. As the region of best efficiency for the IM is
at higher revolutions, the optimal gear ratio was higher compared to that of the PMSM, which moves
the load points to higher motor revolutions, as can be seen in Figure 4. The sensitivity of the energy
consumption over the gear ratio is lower for the CEEDB. On Route 91, for the CEEDB with the comfort
factor, the optimal gear ratio may result in energy savings of up to 3.7% and 1.8% for the PMSM and
IM, respectively, while for the UCB, energy savings of up to 9% and 6.2% can be achieved for the
PMSM and IM, respectively. On Route 185, for the CEEDB with the comfort factor, optimal gear ratio
may result in energy savings of up to 4.2% and 2.9% for the PMSM and IM, respectively, while for the
UCB, energy savings of up to 10.1% and 9.9% can be achieved for the PMSM and IM, respectively.
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Figure 7 illustrates the lowest achieved energy consumption of each motor for the CEEDB with
and without the comfort factor and UCB. As expected, the energy consumption for the optimal
controlled vehicle with a dedicated lane and V2I communication is significantly lower than the UCB
for all motors and routes. Between the CEEDB and the UCB, savings of up to 27% can be achieved.
With the comfort factor (indicated with C), the energy consumption is 6.8–10.8% and 6.5–8.9% higher
compared to the CEEDB without the comfort factor for PMSM and IM, respectively.
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Figure 7. Required energy consumption of the best powertrain configuration for the CEEDB and UCB.

The share of gear-ratio-specific operation on energy consumption is explored by evaluating
one optimized speed profile for different gear ratios for the PMSM and IM. The speed profile
of the smallest gear ratio was chosen for the fixed speed profile for each motor. Figure 8a,b
show the energy consumption relative to the best configuration for the PMSM and IM, with
the fixed and gear-ratio-specific optimized speed profiles for Route 91 with and without the
comfort factor, respectively. The difference in the energy consumption can be explained by the
gear-ratio-specific operation. It can be seen from the figure that for the CEEDB with IM, the effect of
gear-ratio-specific operation is noticeable only at high gear ratios. However, with the PMSM, the effect
of gear-ratio-specific operation becomes more pronounced, resulting in savings of up to 1% based on
the minimal archived energy consumption. For the CEEDB with PMSM, it can be seen that the impact
of gear ratio on energy consumption decreases even more if comfort is neglected.
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Figure 8. Comparison of relative energy consumption for gear ratio-specific optimized speed profiles
and fixed optimized speed profiles a) with the comfort factor and b) without the comfort factor for
Route 91

5. Discussion283
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A sensitivity analysis was conducted for the CEEDB without the comfort factor, varying the time285

and acceleration limit by 20%. The simulations were conducted for the first four bus stops of Route 91286

without traffic lights to reduce computation time. As a reference, the maximum time was set to 224.1 s,287
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Figure 8. Comparison of relative energy consumption for gear ratio-specific optimized speed profiles
and fixed optimized speed profiles (a) with the comfort factor and (b) without the comfort factor for
Route 91.

5. Discussion

5.1. Sensitivity Analysis

A sensitivity analysis was conducted for the CEEDB without the comfort factor, varying the time
and acceleration limit by 20%. The simulations were conducted for the first four bus stops of Route 91
without traffic lights to reduce computation time. As a reference, the maximum time was set to 224.1 s,
which corresponds to an average speed of 20 km/h, and the reference acceleration was set to 1 m/s2.

Figure 9a–c show the optimal gear ratio for each motor type along with the change in energy
consumption for different gear ratios for the varying maximal arrival times.

The optimal gear ratio for each motor type along with the change in energy consumption for
different gear ratios for the different acceleration limits of 0.8, 1 and 1.2 m/s2 can be seen in a, b and c
of Figure 10, respectively.
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Figure 9. Comparison of relative energy consumption for different powertrains for a maximal arrival
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Figure 10. Comparison of relative of energy consumption for different powertrains for a maximal
acceleration of a) -20% b) reference c) +20%
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gear ratios can be explained in two possible ways. One is that longer coasting but shorter acceleration311
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phases is independent from the gear ratio in the implemented model. The short acceleration and313

recuperation phases are driven with high torque and hence result in load points at higher efficiency314
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The relative difference between PMSM and IM decreases with released boundary conditions.
This can be explained by the efficiency maps. The PMSM has high efficiency over a broad range,
while the IM’s efficiency varies significantly with torque and RPM. Therefore, with the released
boundary conditions, the IM has more potential to shift the load points to a higher efficiency area.
Thus, the life cycle costs of the IM become more competitive, as the acquisition cost of the IM is lower
than that of a PMSM.

5.2. Ride Comfort

The literature has shown the effect of a P&G strategy to achieve maximal efficiency for combustion
engines [5,11]. This work has shown, similar to [7], that P&G maximizes efficiency for electric motors as
well, which can be explained by load point shifting. As load points at low torques have low efficiencies,
it may be more efficient with the implemented model to repeatedly accelerate in short increments with
a high torque, followed by some coasting, than to drive at a constant speed. However, this results in
an uncomfortable speed profile. Therefore, a comfort factor is required to enable passenger comfort.

5.3. Effect of Gear Ratios on Energy Consumption

For optimal speed profiles, the impact of gear ratio on energy consumption decreases compared
to the UCB, as can be seen from Figures 5 and 6. The reduced change in energy consumption over gear
ratios can be explained in two possible ways. One is that longer coasting but shorter acceleration and
recuperation periods may reduce the effect of gear ratio. The energy consumption of the coasting phases
is independent of the gear ratio in the implemented model. The short acceleration and recuperation
phases are driven with high torque and hence result in load points at higher efficiency areas with
small gradients for all gear ratios. Therefore, the gear ratios may not further improve the energy
consumption of the optimized speed profiles with predominantly coasting phase and acceleration and
recuperation phases that are already in high efficiency areas. Another explanation is that the effect
of gear ratio on energy consumption may subside because of the gear-ratio-specific operation, as the
speed profiles are optimized for each powertrain configuration.

For the CEEDB with PMSM, both effects are significant, as can be seen from Figure 8.
Thus, the great share of coasting and the gear-ratio-specific operation reduce the sensitivity. However,
for the CEEDB with IM, the effect of coasting is dominant, as can be seen in Figure 8. Due to the
low acceleration limit combined with the slow speed and the desired high motor speed for best
efficiency, the acceleration profiles for the considered gear ratios look almost identical. Thus, the effect
of gear-ratio-specific control is smaller for the IM in this scenario.

5.4. Limitations

This study compared different powertrain configurations for vehicles operating under
energy-efficient driving, which may apply to connected vehicles with speed advisory systems as
well as to automated/autonomous vehicles. In the former, a human driver controls the vehicle and the
optimal speed profile is only an advisory which may or may not be followed. Accordingly, the extent
of the described effects on the powertrain design due to energy-efficient driving depend on the
adoption rate of the human driver. The automation of vehicles takes the human out of the loop. Thus,
autonomous vehicles are seen as enablers of energy-efficient driving. However, they require high
maturity of autonomous driving functions. In this work, we assumed the vehicle parameters of a
state-of-the art electric production bus. This allows an isolated examination of the energy-efficient
operation’s impact on the powertrain design. However, today’s concepts of autonomous buses differ
in design and their maximum speed is low [49,50]. Thus, the actual energy consumption for current
autonomous buses may differ from our results.

As Singapore has no dedicated lanes for buses, it was not possible to obtain measured driving
cycles and the necessary geo-data for a bus with a dedicated infrastructure to derive the benchmark
for the optimization results. Thus, the measurements were conducted at off-peak hours with
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low traffic to obtain speed profiles that were close to those of a bus operating in a dedicated
lane. Furthermore, the measured speed profiles were filtered to remove unrealistic accelerations.
This may limit the accuracy of the absolute energy consumption of the UCB. Without the comfort
factor, the results are globally optimal within the discretization of the model; however, inclusion of
jerk requires a new state, which would increase calculation time. Therefore, the new state was not
introduced and the speed profiles with the comfort factor are not a global minimum per se.

Only one motor of two different kinds was analyzed. The IM with its significant change in
efficiency over torque and RPM becomes more competitive with the introduction of energy-efficient
driving and released boundary conditions. Based on the design parameters, the efficiency map of
different PMSM and IMs can focus on maximal efficiency or high overall efficiency. Subsequently,
further research with multiple PMSMs and IMs is required to derive trends in motor design for vehicles
under energy-efficient driving.

The analysis in this study is limited to single speed transmission systems. Previous studies have
shown the potential reduction in the energy consumption of multi-gear or continuously variable
transmissions for fixed driving cycles [23]. Further research is required to assess this potential
for CEEDBs.

The achieved energy savings in this study were higher compared to those of the reviewed
literature [8]. This may be explained by the fact that the energy savings in this study are achieved due
to the combination of optimal control and V2I communication.

Finally, the study was limited to buses that drive in a dedicated lane and have traffic light
information available. Although the work did not focus on the implementation of the driving strategies
in real time, an implementation could be realized by communicating the desired speed to the vehicles
based on its location, as shown in [51]. To extend the validity of the results, an analysis of a bus within
dynamically changing boundary conditions, like mixed traffic, should be conducted. However, this
would introduce additional constraints to the system, which would require advanced control strategies.

6. Conclusions

This study demonstrated optimal powertrain configurations for a connected, energy-efficient
driven bus and a human-driven unconnected bus. The impact of powertrain configuration for the
connected, energy-efficient driven bus was further evaluated for the cases of powertrain-specific
optimal speed, non-powertrain-specific optimal speed and with and without consideration of
ride comfort. It was shown that the connectivity and speed optimization may reduce the energy
consumption of a bus by up to 27%.

The PMSM has lower energy consumption compared to the IM for all considered cases. However,
with released boundary conditions, the difference in energy consumption decreases between PMSM
and IM, making the cheaper IM more competitive.

The optimal gear ratio for PMSM is smaller than that of the IM. This is mainly due to the IM having
higher efficiencies at higher speeds and therefore requiring higher gear ratios to shift the operating
points to higher motor revolutions. However, the optimal gear ratio does not change significantly for
the connected bus under energy-efficient driving when the comfort factor is considered compared to
that of the human-driven unconnected bus.

The connected bus under optimal speed control predominantly operates at coasting, which is
independent of the powertrain, and the remaining operating phases, acceleration and recuperation,
already correspond to the high motor efficiencies for all regarded powertrain configurations.
Hence, the change in energy consumption over different gear ratios subsides for the connected
energy-efficient driven bus. Furthermore, due to the powertrain-specific optimization of the speed
profiles, the change in energy consumption over different gear ratios subsides even more compared to
the human-driven unconnected bus. The reduced sensitivities show that intelligent driving may help
powertrain designers to achieve a good compromise between drivability and energy consumption.
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Abbreviations

The following abbreviations are used in this manuscript:

BEV Battery electric vehicle
CEEDB Connected energy-efficient driven bus
DP Dynamic programming
IM Induction motor
NEDC New European Driving Cycle
P&G Pulse and glide
PMP Pontryagin’s Maximum Principle
PMSM Permanent magnet synchronous motor
UCB Unconnected bus
V2I Vehicle to infrastructure

Appendix A

Figure A1. Overview of vehicle’s powertrain structure with its gearbox (GB) and motor (M).
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