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Abstract: The most important thing to operate a power system is that the power supply should be
close to the power demand. In order to predict the amount of electric power transaction (EPT), it is
important to choose and decide the variable and its starting date. In this paper, variables that could be
acquired one the starting day of prediction were chosen. This paper designated date, temperature and
special day as variables to predict the amount of EPT of the Korea Electric Power company. This paper
also used temperature data from a year ago to predict the next year. To do this, we proposed single deep
learning algorithms and hybrid deep learning algorithms. The former included multi-layer perceptron
(MLP), convolution neural network (CNN), long short-term memory (LSTM), gated recurrent unit
(GRU), support vector machine regression (SVR), and adaptive network-based fuzzy inference system
(ANFIS). The latter included LSTM + CNN and CNN + LSTM. We then confirmed the improvement
of accuracy for prediction using pre-processed variables compared to original variables We also
assigned two years of test data during 2017–2018 as variable data to measure high prediction accuracy.
We then selected a high-accuracy algorithm after measuring root mean square error (RMSE) and mean
absolute percent error (MAPE). Finally, we predicted the amount of EPT in 2018 and then measured
the error for each proposed algorithm. With these acquired error data, we obtained a model for
predicting the amount of EPT with a high accuracy.

Keywords: Korea electric power transaction; short-term load forecasting; prediction; power
transaction; deep learning

1. Introduction

Nowadays, power consumption is gradually increasing due to rising introduction of smart factories,
electric cars, and embedded systems by adapting the concept of automatization, unmanned plant,
and artificial intelligence in the industry. As power consumption increases, more efficient and stable
operation of the power system is needed. One of the most important things to operate power systems
is that the supply and the demand of electric power should fit the balance within a fixed range of
electricity reservation ratio. Generally, when the power supply is larger than the power demand,
then surplus power is generated which is uneconomic. When the power supply is smaller than the
power demand, then a power failure occurs, which may cause a blackout.

In South Korea, Korea Electric Power Company (KEPCO) was responsible for electric power
production (generation), transportation (transmission and substation), and selling (distribution) before
year 2000. Thus, electric power trading as an integrated management between power supply and
power demand was not important for KEPCO. However, KEPCO was separated into electric power
production, transportation, and selling after year 2000. As the power plant responsible for electric power
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production is split into several subsidiary companies, the establishment of Korea Power Exchange
(KPX) is necessary. Thus, the role and importance of KPX for electric power trading are increasing.

In order to keep the balance between supply and demand of electric power, the electric power
exchanger need to figure out electric power demand accurately. When the exact electric power demand
is identified, power exchange companies can perform stable power trading with individuals and
companies that possess nuclear power, hydroelectric power, thermal power, and renewable energy
such as solar photovoltaic power and wind power generation. Thus, companies and individuals can
lay down various schemes necessary for electric power production. In addition, the KPX is known as a
joint-stock company that maximizes profit on its business. It needs stable electric power trading and
optimized operation planning. To do this, accurate prediction of its electric power trading amount is
required. If its prediction of the amount of EPT such as demand and supply of the electric power is not
accurate, then two problems can occur. First, if predicted electric demand is more than the electric
supply amount, then generation cost rises because surplus electric power can happen with overuse of
generation facilities. Second, if predicted electric demand is less than electric supply amount, then the
lack of electricity reserve can happen, causing a blackout. These two items can increase instability of
electric power systems. In South Korea, for example, the KPX failed to predict electric power demand
or consumption on 15 September 2011. As a result, they experienced a power outage. Since then,
the importance of predicting the amount of EPT has been continuously highlighted. Thus, research on
prediction or forecast of electric power demand is increasing.

Yang et al. (2020) have reported that the number of publications on the prediction of electric
power demand or consumption has been steadily increasing for 20 years, from eight in 1999 to 148 in
2018 [1]. Power demand forecasting for the amount of EPT needs to be predicted by time, day, month,
year, and so on because the predicted value can be different according to time scale. There are deep
correlations among electric power demand, amount of EPT, and optimal power generation. An optimal
power generation plan of the plant and the purchase or sale of exchange systems might have a direct
influence. Generally, prediction of electric power demand can be classified as Very Short-Term Load
Forecasting (VSTLF) which extends from seconds to minutes to minimize network response to demand
flow, short-term load forecasting (STLF) which minimizes day-to-day planning and shipping costs,
medium-term load forecasting (MTLF) which plans to operate power generation, and long-term load
forecasting (LTLF) which plans to expand network [2]. Criteria, range of applying time, and aim for
the classification of electrical power demand are summarized in Table 1.

Table 1. Classification of electricity demand by four criteria.

Criteria Input Variables Aim

Long-term load forecasting (LTLF) Range of month Expansion planning of the network
Medium-term load forecasting (MTLF) Range of weeks Operational planning

Short-term load forecasting (STLF) Range of day Day of day planning and dispatch cost minimization

Very short-term load forecasting (VSTLF) Minutes or hours Scale of seconds to minutes allows the network to
respond to the flow of demand

Among various techniques for predicting electric power demand, STLF is an essential component
of energy management systems (EMS) because it provides input data for load flow and accidental
analysis [3]. Hernandez et al. (2014) [4] have explained that weekly, daily, and hourly forecasts are the
most important forecasts. Among the four forecasts they emphasize prediction of power demand for
the next 24 h because power companies require accurate forecasting power demand.

Power transaction represents actual transactions between power generation and KEPCO in the
power market. Power transactions have the same characteristics as power demand. Thus, in this
paper, we replaced demand for electricity with amount of EPT. In South Korea, the KPX performs
power trading.

The KPX as the source of Korea’s EPT has the following characteristics:
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• The KPX operates the electricity market under a cost-based pool (CBP) system which determines
prices based on actual costs.

• The power industry structure is independent only for the power generation sector while and
sectors of transmission and distribution sales are operated exclusively by KEPCO.

• Except for power generation companies that have signed a separate power purchase agreement
with KEPCO, all electric power generated by generators with capacity of 20 MW or more must be
traded through the Korea Electric Power Exchange.

As shown in Figure 1, the KPX maintains an energy system which has a vertical integrated
monopoly structure except for the power generation sector. Thus, it is possible to collect nationwide data.
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Figure 1. Korea energy system [5,6].

Previous studies about the amount of EPT have achieved successes for prediction with low accuracy.
They used variables such as temperature, growth domestic product (GDP), holiday, sunlight and
humidity to predict the amount of EPT, which will occur after starting day of prediction. Therefore,
each variable are also necessary to predict the prediction error occurred in each variable. For such
reason, previous studies about the prediction of the amount of EPT have a critical point for long-term
prediction with one year or more. To overcome such problem, we need to choose variables that can be
acquired on the starting day of prediction to predict the amount of EPT.

In this paper, we choose variables which occurred before starting day of prediction. The amount of
EPT was then predicted using deep learning. To do this, we proposes single deep learning algorithms
including MLP, CNN, LSTM, GRU, SVR, and ANFIS and hybrid deep learning algorithms including
LSTM + CNN and CNN + LSTM to predict the amount of daily EPT STLF in KPX of South Korea.
We then confirmed the improvement of accuracy for prediction using pre-processed variables compared
to original variables. We also assigned two years of test data during 2017–2018 as variable data to
measure prediction accuracy. We then selected an algorithm with high accuracy after measuring RMSE
and MAPE.

Key processes used in this study are as follows.
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• Variables were selected by investigating characteristics of EPT in South Korea.
• Data of selected variables were obtained from one year ago at the time of EPT in KPX of South Korea.
• Variables were pre-processed to increase their correlations with the amount of EPT.
• Various algorithms such as single algorithms including CNN, LSTM, GRU, and SVR and hybrid

algorithms including CNN + LSTM and LSTM + CNN were applied.

The organization of this paper is as follows.
Chapter 2 introduces deep learning algorithm and prediction for EPT and demand. Chapter 3

explains features of EPT amount in South Korea and describes correlations between characteristics of
EPT amount and features for variables used. Chapter 4 describes the preprocessing process of variables
to increase the prediction performance of deep learning. Chapter 5 presents the process of predicting
the amount of EPT using deep learning, introduces each algorithm, and designates parameters of each
algorithm through an empirical process. Chapter 6 analyzes prediction values of each algorithm by
specific pattern and measures the error of prediction value for one year. Finally, Chapter 7 shows
results of prediction for EPT amount and proposes directions for future research.

2. Related Works

Research for predicting the amount of EPT has been studied such as VSTLF, STLF, MTLF, LTLF.
Many researchers have predicted the amount of EPT using time series [7], fuzzy theory [8], and neural
network [9]. Prediction techniques using artificial intelligence including deep learning and machine
learning have also been reported recently.

Artificial intelligence including deep learning and machine learning has been widely researched in
various fields such as autonomous driving vehicle [10], global horizontal irradiance [11], stock prices [12],
wind speed [13], traffic flow [14], and prediction of EPT amount and demand. Related research studies
on the amount of EPT are summarized below.

González-Romera et al. [15] have predicted monthly electricity transaction volume energy demand
using an MLP algorithm for market research and maintenance plan of electricity producers. They used
two methods to predict the volume of electrical power demand: trend of time series and monthly
fluctuation. However, their paper has a critical point in that only long-term prediction is possible.

Lin et al. [16] have classified users according to the type of electricity consumption and predicted
power consumption amount of each group using an LSTM algorithm. Their method showed better
prediction performance than conventional multiple linear regression based on error of MAPE and R2.

KASULE and AYAN [17] have applied an ANFIS algorithm to predict power consumption in
Uganda and presented a long-term power prediction model for easier market prediction. They used
Particle Swarm Optimization-ANFIS (PSO-ANFIS) and Genetic Algorithm-ANFIS(GA-ANFIS) to
optimize parameters of the model. The prediction performance of their method was better than the
multivariate linear regression model. Ogihara et al. [18] have predicted the amount of electricity
power demand in Japan. They used a multiple stress model and Artificial Neural Network (ANN)
as algorithms for prediction. To do this, they eliminated holidays and performed forecasting using
two weeks, one month, and two months, respectively. They also used economic indicators such as
opening price, high price, low price, and volume as variables in order to achieve prediction with high
accuracy. Predictable economic indicators would be very useful variables as very good references to
predict power demand. However, they did not describe these values as variables.

Duong-Ngoc et al. [19] have predicted electricity demand (per hour) over a week in Ho Chi Minh
City, Vietnam. They used feed-forward deep neural network (FF-DNN) and recurrent deep neural
network (R-DNN) algorithms. They also used temperature, holiday, and electric power demands
before day, hour, and week as variables. They showed a high accuracy by using features of the
algorithm. However, it was impossible to predict in the long term because the amount of electricity
demand was predicted using variables a day ago and an hour ago.

Eshragh et al. [20] have predicted electricity demand (weekly) in New South Wales (NSW),
South Australia (SA) and Victoria (VIC) regions of Australia. To do this, they developed a hybrid
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algorithm with seasonal auto regressive integrated moving average (SARIMA) and a linear model.
They used the lowest temperature, the highest temperature, and amount of sunlight on the day of
demand for electricity as variables. They showed that the proposed algorithm had a higher accuracy
than the recurrent neural network (RNN) algorithm.

Kim et al. [21] have profiled Korea’s temperature, humidity, holidays, day of the week, and n-day
of the season as variables and showed a high-accuracy prediction of power demand. They used a
hybrid model by combining advantages of LSTM and CNN. Considering electric power demand
value as a key value and other variables as contest information, data were preprocessed as a <key,
contest > pair. Through this process, important contextual information for training neural networks
was efficiently used.

Del real et al. [22] have predicted power demand in France by combining CNN and ANN
commonly used for image classification and showed a higher accuracy than Support Vector Machine
(SVM), ARIMA, and ANN. Variables used in their study included temperature of the day before the
power demand forecast day, week (1 to 52), hour (0 to 23), day of the week (0 to 6), and public holidays
(false true).

Li et al. [23] have predicted electricity demand in Australia and Singapore using algorithms such
as SVM and extreme learning machine (ELN). In order to increase accuracy, they extracted data noise.
They also used fast Fourier transform (FFT) in order to grasp and remove periodicity of power demand.

Imani [24] has provided an improvement of forecasting performance by selecting an appropriate
feature space for Iran’s electricity demand. The provided domain contained complementary information
about the shape and variation of electrical load sequence. Obtained load characteristics were then
integrated with original load values in the time domain and input to the LSTM.

Ma et al. [25] have forecasted energy consumption in South Africa for 2017–2030. They used
ARIMA and Nonlinear Gray Model-Autoregressive Integrated Moving Average (NGM-ARIMA)
algorithms with energy consumption in 1998–2016 as variables for the prediction.

Table 2 summarizes recent studies on the prediction of EPT amount for each country.

Table 2. Previous studies on the prediction of amount of EPT.

Number Reference Year Country Model Description

1 [18] 2019 Japan MLR, MLP

• Uses meteorological data,
• Optimizes combinations when

predicted values select
• Organize seasonal models
• Predicted start point is older than

used variable

2 [19] 2019 Vietnam FF-DNN, RNN

• Variables are used one day ago,
one hour ago and one week ago.

• Use as a variable that cannot be
acquired at the beginning of
the prediction

3 [20] 2020 Australia SARIMA

• Develop a SARIMA-regression
model for the weekly
power demand

• Use as a variable that cannot be
acquired at the beginning of
the prediction

4 [21] 2019 Korea LSTM + CNN

• Pre-process data by pairing for
power demand values.

• Predicted start point is older than
used variable
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Table 2. Cont.

Number Reference Year Country Model Description

5 [22] 2020 French CNN + ANN

• Using a combination of CNN
and ANN

• Predicted start point is older than
used variable

6 [23] 2020 Australia and
Singapore

SVR,
sine, cosine

optimization
algorithm et.

• Combining SVR, sine and
cosine optimization

• Data preprocessing method was
used (AFD, FFT)

• Predicted start point is older than
used variable

7 [24] 2020 Iran LSTM

• Significantly improve electric load
forecasting by integrating
acquired load characteristics and
time series

• Predicted start point is older than
used variable

8 [25] 2020 South Africa ARIMA,
NGM-ARIMA

• On the basis of NGM and ARIMA
single models, a new combined
NGM-ARIMA model proposed

• Predicted start point is older than
used variable

Propose method - - Korea CNN, LSTM +
CNN, GRU etc.

• The predicted start point is placed
in the future for variable used

• Preprocess variables for better
prediction of power demand

Except for one study [25], papers presented in Table 2 performed predictions by selecting various
algorithms and various variables. Although variables used in these studies should not be used for
the prediction starting date, these variables were used on the after prediction date. Thus, there are
limitations for long-term prediction when variables used are based on the after prediction date.
In Figure 2, 2-1 represents used variables proposed in this paper and 2-2 represents used variables in
the previous work. The point of 2-1 has no error because we knew the variable value. On the other
hand, the point 2-2 shows prediction error because it required prediction.

Energies 2020, 13, x FOR PEER REVIEW 6 of 31 

 

variable 

6 [23] 2020 
Australia and 

Singapore 

SVR, 
sine, cosine 

optimization 
algorithm et. 

• Combining SVR, sine and cosine 
optimization 

• Data preprocessing method was used 
(AFD, FFT) 

• Predicted start point is older than used 
variable 

7 [24] 2020 Iran LSTM 

• Significantly improve electric load 
forecasting by integrating acquired load 
characteristics and time series 

• Predicted start point is older than used 
variable 

8 [25] 2020 South Africa 
ARIMA, 

NGM-ARIMA 

• On the basis of NGM and ARIMA single 
models, a new combined NGM-ARIMA 
model proposed 

• Predicted start point is older than used 
variable 

Propose 
method 

- - Korea 
CNN, LSTM + 

CNN, GRU etc. 

• The predicted start point is placed in the 
future for variable used 

• Preprocess variables for better 
prediction of power demand 

 
Except for one study [25], papers presented in Table 2 performed predictions by selecting 

various algorithms and various variables. Although variables used in these studies should not be 
used for the prediction starting date, these variables were used on the after prediction date. Thus, 
there are limitations for long-term prediction when variables used are based on the after prediction 
date. In Figure 2, 2-1 represents used variables proposed in this paper and 2-2 represents used 
variables in the previous work. The point of 2-1 has no error because we knew the variable value. On 
the other hand, the point 2-2 shows prediction error because it required prediction. 

 
Figure 2. Time point of selected variable. 

This paper attempts to predict the amount of EPT by selecting the point of variable 2-1 that can 
be used on the starting date of prediction for selecting various algorithms and parameters. 

3. Data Characteristics 

In this section, data characteristics such as the amount of EPT, temperature, and special day are 
reviewed. 

3.1. Amount of EPT of Korea Power Exchange 

In order to predict the amount of EPT, first of all, it is necessary to apprehend the pattern of the 
amount of EPT. The amount of EPT in South Korea largely has three characteristics: year periodicity, 
weekday periodicity, and pattern of special day. First, South Korea has four distinct seasons of spring, 
summer, fall and winter. According to seasonal changes, climate including temperature and 
humidity has year-round periodic characteristics. Second, due to the amount of EPT which is closely 
related to people’s lives, according to the day of the week, the pattern of the amount of EPT has a 
periodicity. For example, every Monday or Tuesday has nearly the same amount of power transaction. 
Third, EPT in South Korea has a special day pattern. For holidays including New Year holiday (both 

Figure 2. Time point of selected variable.

This paper attempts to predict the amount of EPT by selecting the point of variable 2-1 that can be
used on the starting date of prediction for selecting various algorithms and parameters.

3. Data Characteristics

In this section, data characteristics such as the amount of EPT, temperature, and special day
are reviewed.
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3.1. Amount of EPT of Korea Power Exchange

In order to predict the amount of EPT, first of all, it is necessary to apprehend the pattern of the
amount of EPT. The amount of EPT in South Korea largely has three characteristics: year periodicity,
weekday periodicity, and pattern of special day. First, South Korea has four distinct seasons of spring,
summer, fall and winter. According to seasonal changes, climate including temperature and humidity
has year-round periodic characteristics. Second, due to the amount of EPT which is closely related to
people’s lives, according to the day of the week, the pattern of the amount of EPT has a periodicity.
For example, every Monday or Tuesday has nearly the same amount of power transaction. Third,
EPT in South Korea has a special day pattern. For holidays including New Year holiday (both solar
and lunar calendars), Thanksgiving Day, and two, three, or more days of holiday, irregular pattern of
EPT can be observed depending on weather, day of the week, and business condition.

Figure 3 presents the amount EPT from 1 January 2014 to 31 December 2018.
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Red lines indicate annual periodicity of the amount of EPT. Lines that frequently and repeatable
rise and fall indicate weekly periodicity.

Numbers 1O, 2O, 3O, and 4O indicate transition status from winter to spring, from spring to summer,
from summer to autumn, and from winter to autumn, respectively.

Red circle shows the pattern that occurs when it is a holiday (New Year’s Day, Thanksgiving Day)
in a row during a special day.

Figure 5 shows geographical locations of Seoul, Gwangju, and Busan in South Korea.
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3.2. Temperature

The temperature of South Korea has characteristics of four distinct seasons. Rainy season and
typhoon occur mainly during the summer season, although global warming is affecting the time of
them recently. Figure 6 shows the amount of EPT and the highest temperatures in Seoul, Busan,
and Gwangju from 2014 to 2018. Here, the blue line represents the amount of EPT and red, green,
and yellow lines represent Gwangju, Busan, and Seoul’s highest temperatures, respectively.
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In order to use temperature as a variable based on the prediction date, we obtained the highest
temperatures of day in Seoul, Gwangju, and Busan from 1 January 2013 to 31 December 2017 one year
ago based on the amount of EPT from 1 January 2014 to 31 December 2018.

Figure 7 presents the highest temperatures of day in Seoul, Gwangju, and Busan from 1 January
2013 to 31 December 2017.Energies 2020, 13, x FOR PEER REVIEW 9 of 31 
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Figure 7. Highest temperatures of day in Seoul, Gwangju and Busan during 2013–2017.

The highest and the lowest temperatures of year in South Korea were observed to in August
of the summer season and January of the winter season, respectively. Temperature features showed
periodic characteristics of seasonal changes. Temperatures ascend rapidly in spring season until early
summer. It means that from early summer, the rising of temperature is getting smaller. Temperatures
then descend rapidly after August, falling into lower than the freezing point in the winter season.

EPT changes according to seasonal variation, showing periodic characteristics of a year that reflect
four distinct seasons. Generally, temperatures affect demands for cooling and heating. Thus, high and
low temperatures will increase or descries the demand for electricity.

Table 3 summarizes correlation between amount of EPT and temperature.
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Table 3. Correlation between amount of EPT and temperature.

Number Sortation Temperature Amount of EPT Correlation

1O Winter→ Spring Increase Decrease −

2O Spring→ Summer Increase Increase +
3O Summer→ Fall Decrease Decrease +
4O Fall→Winter Decrease Increase −

The numbers in Table 3 represent the numbers of sections in Figure 3.

Numbers 1O, 2O, 3O, and 4O indicate transition status from winter to spring, from spring to summer,
from summer to autumn, and from winter to autumn, respectively.

In Section 1O and Section 4O, when the temperature was increasing, the amount of EPT was
decreasing. Additionally, the amount of EPT was increasing when the temperature was decreasing.
Amount of EPT for Section 2O and Section 3O were also increasing (or decreasing) when the amount of
EPT was decreasing (or increasing).

The solar calendar has a leap day in quadrennial. Data of temperature, amount of power transaction,
etc., were acquired during 2013–2017. A leap occurred in 2016. In order to predict the amount of power
transactions on 29 February 2016, the highest temperature variable of each city on 29 February 2015
must be generated. The maximum highest temperature variable for 29 February in 2015 was generated
by averaging the highest temperatures of each city on 28 February and 1 March 2015.

3.3. Special Day

Since the amount of EPT is closely related to how people live, daily EPT during the week also
shows periodicity affected by holidays. Table 4 indicates current public holidays in South Korea.

Table 4. Features of Korean holidays.

Public Holiday Date Solar/Lunar Replacement Holiday

New year’s day 1.1 S
Lunar New Year’s Day 12.31–1.2 L

√

Independence Movement Day 3. 1 S
Buddha’s birthday 4. 8 L

√

Children’s Day 5. 5 S
Memorial Day 6.6 S

National Liberation Day 8.15 S
Thanksgiving Day (Chuseok) 8.14–8.16 L

√

the National foundation Day of Korea 10.3 S
Hangul Proclamation Day 10.9 S

Christmas 12.25 S
Election Day

There are solar and lunar holidays in South Korea. The solar calendar is made based on the sun.
It has year-based dates that revolve around the sun. The lunar calendar is dated based on the moon as
center on the period while the moon goes around the earth. Solar holidays are fixed even the year
changes. Lunar holiday changes by the date of solar calendar every year.

When holidays such as lunar New Year’s Day and Thanksgiving Day are overlapped with Sunday,
or Children’s Day overlaps either on Saturday or Sunday, alternative holidays are designated as
holidays at the first coming days of non-holiday. The most popular social special day is the election
day in South Korea. The presidential election is held every five years. The parliamentary election is
held every four years. National simultaneous local elections are held every four years in South Korea.

Figure 8 indicates Election Day interval from 2014–2018. The light green graph represents amount
of EPT. The red vertical line represents the Election Day. The blue vertical line represents Saturday.
The green vertical line represents Sunday. The declining pattern of the amount EPT for Election days
was similar to the pattern of holiday.
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Figure 9. Children’s Day in South Korea during 2014–2018.

In Figure 9, the light green graph represents amount of EPT. Red vertical, blue vertical, green vertical,
and gray vertical lines represent Children’s day, Saturday, Sunday, and alternative holiday or Buddha’s
day, respectively. Amount of EPT was decreased on these days as seen on Election Days.
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The pattern of Saturday and Sunday showed that the amount of EPT changed with a constant
pattern within almost the same range. The amount of EPT was constantly declining during intervals of
Friday–Saturday and Saturday–Sunday. The amount of EPT decreased from Friday to Sunday, although
it began to increase during the interval of Sunday–Monday followed by a stabilized amount until Friday.
This can be seen as a phenomenon that industrial loads is reduced because most industrial actions are
stopped during weekends and start to operate again after work hours on Monday. Since holidays of
Lunar New Year and Thanksgiving Day in South Korea are designated as holidays in lunar calendars,
their dates are different every year.

Figures 10 and 11 show the beginning and the ending of holidays for lunar New Year holidays
and Thanksgiving Day indicated by red vertical lines. The light green graph represents amount of EPT.
Red vertical lines represent beginning and the ending of holidays
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The holiday season is different every year. Thus, the holiday in a row includes lunar New Year
holiday, alternative holidays, weekends, and so on. The lowest amount of EPT was recorded for lunar
New Year’s Day and Thanksgiving Day except for lunar New Year’s Day in year 2014. The amount of
EPT was also lower during weekends of holidays in a row.

Table 5 presents acquired data for the amount of EPT and temperatures from KPX and Korea
meteorological administration.

Table 5. Characteristics of acquired data.

Data Sources Time Unit Data-Type Measure

Amount of power transaction Korea power exchange day float GWh
Temperature Korea meteorological administration day float Celsius

Year, month, day - day Date-time -
Holiday - day True/False -

Data for the amount of EPT were acquired by the KPX. Such data showed total amount of EPT in
South Korea. The data type was “float” and the unit was GWh. Since the acquired amount of EPT
was based on the national standard, temperature data to be acquired must also designate the nation’s
temperature as a variable. However, temperature data need too much computation if the entire Korean
city is designated as a variable. Thus, three large cities, Seoul metropolitan area, Yeongnam region,
and Honam region (Seoul, Gwangju, and Busan), were selected. Temperature data were acquired from
the Korea Meteorological Administration. We used the unit of Celsius.

In South Korean government, legal holidays are designated according to “Regulations on Public
Holidays of Public Offices” of Korea’s Presidential Decree. In this paper, we assigned 1 to holiday and
0 to a business day as a true or false type.

4. Preprocessing Data

Typically, it difficult to predict the desired pattern when applying data as a variable without
preprocessing data. Therefore, in this paper, we performed preprocessing of data in order to
improve the prediction performance by applying artificial intelligence algorithms after acquiring data.
The preprocessing of data was performed for temperature and amount of EPT during weekends and
holiday in a row as special days.

4.1. Temperature

If the temperature is high or low, the amount of EPT is increasing because temperature affects
cooling and heating demand. Generally, we should set criteria for cooling and heating. However,
there is no recommended or unified proposal for indoor temperature in Korean public institutions.
In this paper, we set heating was a positive number and cooling was a negative number by applying
standardization of temperature value. Since cooling and heating have positive correlations with the
amount of EPT, we should unify both cooling and heating with a positive number using square as
represented in Equation (1):

T_temperature = (

(
temp− tempmean

tempstd

)
)2 (1)

Here, temp is the highest daily temperature in Seoul, Busan, and Gwangju of South Korea, tempmean

is the average value of temp, and tempstd is the standard deviation of temp.
Figure 12 presents the highest temperature in Seoul, Busan, and Gwangju as blue lines. The highest

temperature of each city is then applied into Equation (1) to find T_temperature indicated by red lines.
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4.2. Special Day: Saturday, and Sunday

The pattern for the amount of EPT on weekdays showed a characteristic that it nearly linearly
decreased it as the day passed on Saturday and Sunday. It then rapidly increased on Monday. To make
variables reflect these patterns, holiday data were applied into Equation (2):

T_holiday1 = −(holiday + holiday−1) × holiday (2)

where holiday indicated whether it was a holiday and holiday−1 indicated whether it was a holiday the
day before. Both were binary.

Figure 13 shows different amounts of EPT in seven days and Equation (2) as a graph. Here, blue,
red, and gray vertical lines represent Saturday, Sunday, and Monday, respectively.
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4.3. Special Day: Continuous Holiday

The pattern for the amount of EPT on continuous holidays was different from the pattern of
weekends. There were quite a few cases where the amount of EPT sharply dropped from the start
day of the holiday in a row. The amount of EPT for continuous holidays was also significantly
reduced compared to that for weekends. Thus, we need to create a pattern in which EPT decreases for
continuous holidays. Such pattern is different from Equation (2). In addition, EPT on the start day
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and the last day of the holiday should be lower than that of the rest of holidays while it should be the
highest in the middle point of holidays.

Equation (3) refers to EPT in which patterns decrease during continuous holidays. It is characterized
by adding up holidays between n days before and after the day of calculation so that the first day and
the last day of holidays had lower EPT than the middle point.

T_holiday2 = −(
n∑

i=1

holiday−n + holidayn + holiday) (3)

where holiday represents the holiday, holiday−n is a public holiday before n day, and holidayn is a public
holiday after n day.

In this paper, in order to generate appropriate variables, we calculated correlation (COR) according
to the n value. We then chose variables with the highest value among COR as shown in Equation (4):

COR =

1
n
∑n

i=1

(
Fi − Fi

)(
Oi −Oi

)
√

1
n
∑n

i=1

(
Fi − Fi

)2
√

1
n
∑n

i=1

(
Oi −Oi

)2
(4)

where Oi is the observation value, Oi is the mean value of the observation value, Fi is the prediction
value, and Fi is the mean prediction value.

Table 6 presents COR ranked according to n value. As a result of comparison by COR, we obtained
the highest variable COR which was the sum of three days (from the day before calculation to the day
after calculation).

Table 6. COR rank by n value.

n COR Rank

3 3.2 1
5 0.2 5
7 2.1 2
9 0.4 4

11 1.2 3

5. Machine Learning Pipeline to Predict the Amount of EPT

The process of predicting the amount of EPT using deep learning is summarized in Figure 14.
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First of all, to predict the amount of EPT, data for the amount of EPT were acquired from the
KPX. Temperature data of Seoul, Busan, and Gwangju as a variable were obtained from the Korea
Meteorological Administration as a comma-separated values (CSV) file. Second, acquired data for the
amount of EPT amount, maximum temperature data, and holiday and daily data were merge into CSV
type. Third, to analyze merged data as CSV type easily, we applied standardization. Standardize data
were then divided into two categories: learning data and test data at a ratio of 70% to 30%. Fourth,
the algorithm was trained using learning data. We also measured error and performed an optimization
process. Then, we predicted the amount of EPT using test data. Finally, we carried out an inverse
standardization for predicted results and measured the accuracy of prediction results.

We used total seven variables including years, months, days, holidays, and prior work. We also
performed standardization for each variable in order to easily learn algorithms. Then we predicted the
amount of EPT. Each variable used for prediction in this paper was placed in the past rather than at the
starting point. We needed data acquired for years, months, days, and national holidays at any time.
We could predict the highest temperature in each city because we used data a year ago.

Table 7 presents input data of years, months, days, and holidays as references for predicting the
amount of EPT. We used holiday and temperature as preprocessing variables.

Table 7. Dates of variable used as a basis for forecasting the amount of EPT.

EPT Years Months Days Holidays Temperature

2018-01-01 2018 1 1 1 2017-01-01
2018-01-02 2018 1 2 0 2017-01-02
2018-01-03 2018 1 3 0 2017-01-03
2018-12-30 2018 12 30 0 2017-12-30
2018-12-31 2018 12 31 0 2017-12-31

If we want to predict the amount of EPT on the date of 1 January 2018, we can use two kinds of
data as variable. First, we can use data to appoint the day, for example the year, month, and public
holidays in 1 January 2018. Second, we can use temperature data for 1 January 2017. We can acquire
these variables as past data rather than data on the date of prediction.

There are four digits of data of year and the amount of EPT. However, there is maximum two digit
for data of month, day, and holiday data. If we directly apply these data into the algorithm, there is
a high possibility to have a large weight incline value and fall into local minimum. To reduce such
possibility, we applied standardization as shown in Equation (5) which transformed zero as average into
each variable and the amount of EPT.

standardization =
xi − ximean

xistd
(5)

where xi was data to be applied, ximean was the average value of xi, and xistd was the standard deviation
of xi.

To measure the performance of each algorithm, we divided data into learning (or training) data
and test data. Learning data accounted for 60% of data from 2014 to 2016 and test data accounted
for 40% of data from 2017 to 2018. We trained the algorithm with learning data and measured the
performance of algorithm with test data.

In this paper, we predicted the amount of EPT with eight algorithms and measured the error
of test data. The measurement of error was performed using RMSE and MAPE as shown in
Equations (6) and (7):

RMSE =

√√
1
n

n∑
i=1

(αi − βi)
2 (6)
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MAPE =
1
n

 n∑
i=1

∣∣∣αi − βi
∣∣∣

|αi|

× 10 (7)

where n was the number of data, αi was the amount of EPT, and βi was the predicted value.
Figure 15 presents the amount of EPT. Blue lines represent learning data and red lines represent
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In this paper, we proposed eight algorithms such as MLP, LSTM, CNN, GRU, SVR, ANFIS,
CNN + LSTM, and LSTM + CNN to predict the amount of EPT. We also compared these results
of prediction.

5.1. MLP

MLP is type of a sequence of several layers organized by perceptron. MLP consists of an input
layer, a hidden layer, and an output layer. The input layer inputs the value of variable while the output
layer gives the final output [26]. We performed training using learning data consisting of pairs of
input and output. We determined the weight of connection line and deviation using information about
certain values for the output when an input was given. The weight of connection line and deviation
terms can be presented as shown in Equation (8). Figure 16 shows configuration of CNN, LSTM,
and GRU algorithms based on MLP algorithms, not just MLP algorithms.

YMLP = WX + b (8)
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5.2. LSTM

LSTM is a derivative algorithm from RNN. The hidden layer of RNN consists of three gates:
Input Gate, Output Gate, and Forget Gate [27]. Figure 17 shows the basic structure of LSTM.
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Figure 17. Basic structure of LSTM.

We added the following calculation processing. If (t-1) hidden layer of Figure 17 is changed into
(t) hidden layer, (t-1) hidden layer will keep it or delete it vice versa.

Figure 18 presents the computational structure of the hidden layer of LSTM. The input variable is
specified according to the time flow. The LSTM bundles variables, inputs variables into the hidden
layer before N-day, and then outputs the current prediction value while ignoring the past prediction
value. Figure 18 shows how we designate variables and target data.
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Figure 18. Designation of variables and target data.

As shown in Figure 18, after bundling the variable of time flow into (N) days, we designated it as
input X data. We also designated Y output data as target value of t time of prediction target value.
Table 8 and Figure 19 show RMSE values of train data and test data according to N and node values
when nodes are 5.
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Table 8. RMSE of train and test data according to N and node value of LSTM algorithm.

N
RMSE Node

(N = 5)
RMSE

Train Data Test Data Train Data Test Data

1 0.1929 0.6444 1 0.2168 0.7171
2 0.1568 0.7071 2 0.1185 0.5553
3 0.1431 0.6136 3 0.0916 0.5516
4 0.1060 0.6012 4 0.0637 0.6410
5 0.0543 0.7550 5 0.0543 0.7550
6 0.0485 0.8361 6 0.0394 0.6653
7 0.0528 0.7110 7 0.0364 0.6743
8 0.0665 0.6242 8 0.0368 0.5933
9 0.0520 0.7308 9 0.0258 0.6317

10 0.0598 0.7560 10 0.0245 0.5752
11 0.0585 0.6866 11 0.0199 0.7526
12 0.0597 0.7270 12 0.0158 0.6669
13 0.0541 0.7097 13 0.0186 0.5825
14 0.0610 0.7736 14 0.0134 0.6293
15 0.0578 0.6540 15 0.0110 0.6345
16 0.0730 0.6968 16 0.0097 0.6246
17 0.0577 0.8223 17 0.0114 0.6570
18 0.0625 0.8660 18 0.0075 0.6507
19 0.0673 0.7243 19 0.0080 0.6499

As shown in Figure 19, when N value increases, the error of the learning data decreases. However,
N value should be applied properly because N increases the computer’s computation. If the value of
N is less than 5, the slope of the graph is steep. If it exceeds 5, the slope is gentle. In order to improve
training efficiency, we designated N to be 5. We then calculated RMSE.

Figure 20 presents RMSE values of train data and test data according to the number of nodes.
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5.3. CNN

CNN has the advantage to easily train two-dimensional data. In addition, the number of
parameters is small [28]. CNN algorithm can represent weighting value and bias term like Equation (9).
The computation processing of MLP is the same as that of CNN. However, CNN has a feature in that
its input data are organized by two dimensions.

YCNN = WX + b (9)
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We created two-dimensional data by designating the column as time flow and the row as variable
to be applied to the CNN algorithm in this paper.

Figure 21 shows a data reordering process and a calculation process for the CNN algorithm.
The table in Figure 21 shows that when data are merged, the row in table is time flow and the column
consists of variable and target value.
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Figure 21. Data reordering process and the calculation process for the CNN algorithm.

Input data of CNN had two dimensions. The column was variable and the row was D.
Variables were year, month, day, holiday, and T_temperature. D was date. Boxes with various
colors inside the table were input data. We made two-dimensional data for each one-day stride.
Noting that the most empirically optimized value of the N learning course in the LSTM learning course
was 5. We designated D as 5, the same value as N.

Target value is the amount of EPT the algorithm that is trying to predict. Since input data used
past data, target value data before D-day without past data were not available. Weight stands for W
for Equation (9), while Weight’s shape is designated as (ω, 1). ∂ stands for node of convolution layer
and ∂αβ stands for output value of node.

Figure 22 shows a training process for the algorithm. Flatten of Figure 22 changes the output
value of the secondary source convolution layer to one dimension. Since the value of target value was
one power transaction volume, we designated the number of nodes in the output layer as one.
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Figure 22. Training process of the algorithm.

Table 9 presents RMSE of train data and test data according to the size of D and ω when the
number of nodes is five. We could see that the larger the D value, the smaller the error. After this,
the error did not change significantly according to D value even when D was greater than 5.

Table 9. RMSE according to D and ω.

Filter
(Node = 5) RMSE Filter

(Node = 5) RMSE

D ω Train Data Test Data D ω Train Data Test Data

1 1 0.7095 5.3227 6 4 0.5284 3.8690
2 1 0.6881 5.2076 6 5 0.5273 3.8889
2 2 0.6787 5.1663 6 6 0.5297 3.9206
3 1 0.6619 5.0385 7 1 0.5361 3.9313
3 2 0.6645 5.0485 7 2 0.5433 3.9700
3 3 0.6668 5.0344 7 3 0.5285 3.9058
4 1 0.6293 4.7151 7 4 0.5329 3.9407
4 2 0.6214 4.7711 7 5 0.5246 3.8812
4 3 0.6216 4.6647 7 6 0.5435 4.0078
4 4 0.6242 4.6801 7 7 0.5310 3.9299
5 1 0.5512 4.0790 8 1 0.5323 3.9287
5 2 0.5500 4.0490 8 2 0.5264 3.9228
5 3 0.5481 4.0558 8 3 0.5365 3.9635
5 4 0.5564 4.0907 8 4 0.5208 3.8832
5 5 0.5474 4.0393 8 5 0.5346 3.9507
6 1 0.5221 3.8586 8 6 0.5281 3.9112
6 2 0.5336 3.8973 8 7 0.5305 3.9288
6 3 0.5204 3.8571 8 8 0.5295 3.8915

Figure 23 shows RMSE according to D and filter size. The higher the RMSE, the darker the red
color. The lower the value, the darker the blue color.Energies 2020, 13, x FOR PEER REVIEW 22 of 31 

 

 
Figure 23. RMSE according to D and ω. 

5.4. GRU, SVR, ANFIS 

Chung et al. [29] have proposed GRU using reset gate and update. GSU is a simpler model than 
LSTM algorithm. When GRU and LSTM are compared, GRU shows better performance than LSTM. 
In this paper, we trained the LSTM algorithm using input data SVR is an algorithm proposed by 
Drucker et al. [30]. It is a regression algorithm based on SVM. It can be applied to cases where 
variables are continuous, unlike SVM. 

ANFIS is a combination of neural network and fuzzy theory [31]. This model automatically 
adjusts the membership function and control rules to fit control object from information of input and 
output obtained from the control environment using the structure of neural network and train 
performance. 

5.5. CNN + LSTM 

CNN + LSTM is composed of algorithms of CNN which can easily train 2D data and LSTM 
which can predict using past information [32]. In this paper, we designated filter size to be 3 and the 
number of nodes to be 6. We then measured the error using the CNN algorithm. The error did not 
change significantly according to filter size or the LSTM algorithm as shown in Tables 8 and 9. Figure 
24 shows the organization of CNN + LSTM. ∂ in Figure 24 represents node of the convolution layer. 

 
Figure 24. Structure of CNN + LSTM. 

Figure 23. RMSE according to D and ω.



Energies 2020, 13, 6649 22 of 30

5.4. GRU, SVR, ANFIS

Chung et al. [29] have proposed GRU using reset gate and update. GSU is a simpler model than
LSTM algorithm. When GRU and LSTM are compared, GRU shows better performance than LSTM.
In this paper, we trained the LSTM algorithm using input data SVR is an algorithm proposed by
Drucker et al. [30]. It is a regression algorithm based on SVM. It can be applied to cases where variables
are continuous, unlike SVM.

ANFIS is a combination of neural network and fuzzy theory [31]. This model automatically adjusts
the membership function and control rules to fit control object from information of input and output
obtained from the control environment using the structure of neural network and train performance.

5.5. CNN + LSTM

CNN + LSTM is composed of algorithms of CNN which can easily train 2D data and LSTM which
can predict using past information [32]. In this paper, we designated filter size to be 3 and the number
of nodes to be 6. We then measured the error using the CNN algorithm. The error did not change
significantly according to filter size or the LSTM algorithm as shown in Tables 8 and 9. Figure 24 shows
the organization of CNN + LSTM. ∂ in Figure 24 represents node of the convolution layer.
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5.6. LSTM + CNN

LSTM is an algorithm that variable enters the hidden layer until before n–day. It ignores the
prediction value of the past and outputs prediction value of the current. LSTM + CNN algorithm
applies all prediction values of the past and current. It then makes a two-dimensional output value
which applies the CNN algorithm.

Like CNN + LSTM in this paper, we designated filter size to be 3 and the number of nodes to be
6. We then measured error using the CNN algorithm in which the error did not change significantly
according to filter size or LSTM algorithm as shown in Tables 8 and 9.

Figure 25 presents the LSTM algorithm showing target values of the past and the present.
Figure 26 shows the CNN + LSTM structure that connects Figure 25’s LSTM algorithm with the
CNN algorithm.
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6. Prediction Result

6.1. Preprocessing and Non-Processing Comparison

In order to investigate the influence of preprocessing variables, we compared prediction values
between non-processing and preprocessing variables. To improve the train performance of the
algorithm, we standardized Equation (5). We also measured the precision of performance using data
of 2017–2018 rather than data of 2018 as test data.

Figure 27 shows a comparison graph between amounts of EPT and the two predictions for
non-preprocess and preprocess. The blue graph and orange graph shows the predicted value and
amount of EPT, respectively.
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When predicting the amount of EPT using variables without preprocessing, seasonal patterns
were not found. The amount of EPT decreased with the same degree on Saturday and Sunday.
In addition, the amount of power electric transaction decreased in the same degree on a holiday
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and holidays in a row. However, when the amount of EPT was predicted after we added data with
preprocessed variables, seasonal patterns, weekend patterns, and special day patterns were observed.
These patterns were not completely the same. When measurement errors were compared between
preprocessing and not preprocessing, the error was smaller when variables were preprocessed than that
without preprocessing. Table 10 shows comparison results of predicted values between preprocessing
and non-preprocessing.

Table 10. Comparison of prediction results between preprocessing and non-preprocessing of variables.

Number Sortation
Pre-Process

EPT
Before After

1 Winter→ Spring Decrease Decrease Decrease
2 Spring→ Summer Decrease Increase Increase
3 Summer→ Fall Increase Decrease Decrease
4 Fall→Winter Increase Increase Increase

6.2. Pattern Analysis of Prediction Values

Pattern 1: Seasonal pattern
Figure 28 presents a graph of prediction results for the amount of EPT from January 2017 to

December 2017 proposed for sections by applying each algorithm. Blue and gray graph represent
predictive amount of EPT of each algorithm and amount of EPT. The prediction performance was
determined based on MAPE and RMSE. Results showed that SVR and CNN algorithms had high
accuracy. In order to accurately evaluate the performance of each algorithm, we analyzed seasonal,
Sunday, and special day patterns for each algorithm from 1 January 2017 to 31 December 2017. Results of
pattern analysis revealed that all predicted amount of EPT had seasonal patterns, increasing in summer
and winter seasons but decreasing in spring and autumn seasons.
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A large error occurred for the prediction of the amount of EPT in winter season of 2017 using
proposed algorithms. However, CNN + LSTM algorithm showed the lowest prediction error among
all algorithms.

Pattern 2: Week pattern
Figure 29 shows the amount of EPT from 5 January 2017 to 17 January 2017. Blue and gray graph

represent predictive amount of EPT of each algorithm and amount of EPT. The green vertical line and
the red vertical line represent Saturday and Sunday, respectively. Week pattern showed that variables
of Equation (2) were well applied to all algorithms presented in Section 5.
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Pattern 3: Special day pattern
Figure 30 shows the amount of EPT from 3 June 2017 to 9 June 2017. Blue and gray graph represent

predictive amount of EPT of each algorithm and amount of EPT. The red vertical line represents a
special day of Memorial Day. MLP, CNN, SVR, and ANFIS algorithms predicted that the amount of
EPT would decreasing during this period.
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Pattern 4: Special day (holiday season) pattern
Figure 31 shows the amount of EPT from 25 September 2017 to 13 October 2017. Blue and gray

graph represent predictive amount of EPT of each algorithm and amount of EPT. Red vertical lines
represent starting day and ending day of holidays in a row. Holidays in row of October 2017 continued
for 10 days, including Armed Forces Day, temporary holidays, opening days, Thanksgiving Day,
alternative holidays, and Hangul Day. During the holiday season, four algorithms (MLP, CNN, LSTM,
and CNN + LSTM) showed prediction patterns consistent with the holiday pattern displayed in
Section 4.3. However, the other four algorithms showed prediction patterns inconsistent with the
holiday pattern as the decrease in holidays at the middle point was predicted to be lower than the
decrease in the beginning day or the last day.



Energies 2020, 13, 6649 27 of 30

Energies 2020, 13, x FOR PEER REVIEW 28 of 31 

 

 
Figure 31. Comparison of special day (holiday season) patterns with different algorithms. 

Table 11 shows RMSE and MAPE results for the prediction of the amount of EPT from 1 January 
2017 to 31 December 2017 using eight algorithms tested in this study, when we apply 60% of train 
data and 40% of test data. As a result, CNN algorithm showed the best prediction. 

Table 11. RMSE and MAPE Results of Predicted Values for 1 Year. 

 RMSE[GWh] MAPE [%] 
MLP 74.720 3.970 

LSTM 82.954 4.680 
CNN 67.350 3.513 
GRU 74.744 3.952 
SVR 71.106 3.577 

ANFIS 75.128 4.046 
LSTM + CNN 86.183 4.681 
CNN + LSTM 72.840 3.975 

Table 12 also shows RMSE and MAPE results for the prediction of the amount of EPT of 2017 for 
validation and 2018 for test using eight algorithms tested in this study. As a result, CNN algorithm 
also showed the best prediction. 
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Table 11 shows RMSE and MAPE results for the prediction of the amount of EPT from
1 January 2017 to 31 December 2017 using eight algorithms tested in this study, when we apply
60% of train data and 40% of test data. As a result, CNN algorithm showed the best prediction.

Table 11. RMSE and MAPE Results of Predicted Values for 1 Year.

RMSE [GWh] MAPE [%]

MLP 74.720 3.970
LSTM 82.954 4.680
CNN 67.350 3.513
GRU 74.744 3.952
SVR 71.106 3.577

ANFIS 75.128 4.046
LSTM + CNN 86.183 4.681
CNN + LSTM 72.840 3.975
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Table 12 also shows RMSE and MAPE results for the prediction of the amount of EPT of 2017 for
validation and 2018 for test using eight algorithms tested in this study. As a result, CNN algorithm
also showed the best prediction.

Table 12. RMSE and MAPE Results of Predicted Values for 2 Year.

RMSE [GWh] MAPE [%]

Validation Test Validation Test

MLP 74.720 86.424 3.970 4.220
LSTM 82.954 89.590 4.680 4.996
CNN 67.350 79.785 3.513 3.932
GRU 74.744 85.106 3.952 4.459
SVR 71.106 110.996 3.577 5.833

ANFIS 75.128 115.571 4.046 6.215
LSTM + CNN 86.183 81.226 4.681 10.813
CNN + LSTM 72.840 154.404 3.975 8.746

7. Conclusions

In this paper, we investigated seasonal, Sunday, and special day patterns of the amount of EPT
in the past to predict the amount of EPT in South Korea. We selected date, holiday, and temperature
data. Korean holiday was acquired on the day stipulated in the “Regulations on Public Holidays of
Government Offices” by the Presidential Decree of Korea. It was presented with a binary digit.

Since the acquired amount of EPT was the amount of total EPT in South Korea, we designated
three large cities in each region and acquired their temperature data. In order to use variables that
could be used as references on 31 December 2016, we used temperature data of the prior year.

For example, if we want to predict the amount of EPT in 2017, we used temperature data in 2016.
In addition, in order to improve the correlation between variables and amount of EPT, we preprocessed
variables. We found differences when we compared predicted values without preprocessing of variables
and those with preprocessing of variables.

We tested various algorithms such as MLP, LSTM, CNN, GRU, SVR, ANFIS, CNN + LSTM,
and LSTM + CNN to predict the amount of EPT for 2017 of South Korea. When we measured errors for
the predicted amount of EPT in 2017 with various proposed algorithms, the CNN algorithm with six
nodes and three filter sizes showed the lowest prediction error (67.35 for RMSE and 3.513% for MAPE).

We found that the accuracy of prediction using CNN was the highest among all algorithms for a
weekly pattern. However, CNN could not predict the trend of annual amount of EPT in 2017 of South
Korea. The prediction error using CNN was large from 1 November 2017.

In the future studies, it is necessary to add variables with characteristics of unforeseen patterns.
In this study, we used temperature variable from one year ago. We also need temperature data after one
year as variable. To do this, prediction of future temperature, humidity, wind speed and atmosphere
pressure are required.
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