Effect of Surface Treatment by Chemical-Mechanical Polishing for Transparent Electrode of Perovskite Solar Cells
Abstract
:1. Introduction
2. Experiment Details
2.1. Surface Treatment
2.2. Fabrication of Perovskite Solar Cells
2.3. Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Assadi, M.K.; Bakhodaa, S.; Saidur, R.; Hanaei, H. Recent progress in perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 81, 2812–2822. [Google Scholar] [CrossRef]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Sci. Rep. 2019, 9, 12482. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, S.; Balaji, S.; Panella, R.A.; Ydstie, B.E. Silicon solar cell production. Comput. Chem. Eng. 2011, 35, 1439–1453. [Google Scholar] [CrossRef]
- Noh, J.H.; Jeon, N.J.; Choi, Y.C.; Nazeeruddin, K.; Grätzel, M.; Seok, S.I. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. J. Mater. Chem. A 2013, 1, 11842–11847. [Google Scholar] [CrossRef]
- Wali, Q.; Elumalai, N.K.; Iqbal, Y.; Uddin, A.; Jose, R. Tandem perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 84, 89–110. [Google Scholar] [CrossRef]
- Yu, X.; Yu, X.; Zhang, J.; Zhang, D.; Ni, J.; Cai, H.; Zhang, D.; Zhao, Y. Efficient inverted polymer solar cells based on surface modified FTO transparent electrodes. Sol. Energy Mater. Sol. Cells 2015, 136, 142–147. [Google Scholar] [CrossRef]
- Murakami, T.N.; Miyadera, T.; Funaki, T.; Cojocaru, L.; Kazaoui, S.; Chikamatsu, M.; Segawa, H. Adjustment of Conduction Band Edge of Compact TiO2 Layer in Perovskite Solar Cells Through TiCl4 Treatment. ACS Appl. Mater. Interfaces 2017, 9, 36708–36714. [Google Scholar] [CrossRef]
- Kim, B.; So, C.I.; Ko, S.G.; Ri, J.H.; Ryu, G.I.; Sonu, G.S. Effects of TiCl4 post-treatment on the performance of hole transport material-free, screen printable mesoscopic perovskite solar cells with carbon electrode. Thin Solid Film. 2019, 692, 137627. [Google Scholar] [CrossRef]
- Adli, H.K.; Harada, T.; Nakanishi, S.; Ikeda, S. Effects of TiCl4 treatment on the structural and electrochemical properties of a porous TiO2 layer in CH3NH3PbI3perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 26898–26905. [Google Scholar] [CrossRef]
- Cojocaru, L.; Uchida, S.; Sanehira, Y.; Nakazaki, J.; Kubo, T.; Segawa, H. Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells. Chem. Lett. 2015, 44, 674–676. [Google Scholar] [CrossRef]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Bark, C.H.; Kim, K.H.; Choi, H.W. Characteristics of the Dye-Sensitized Solar Cells Using TiO2 Nanotubes Treated with TiCl4 . Materials 2014, 7, 3522–3532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Lu, X. Chemical mechanical polishing: Theory and experiment. Friction 2013, 1, 306–326. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, S.; Ryu, N.; Yamanouchi, A.; Shirosaki, T.; Horikawa, M.; Sakurai, H.; Takafuji, M.; Ihara, H. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads. Thin Solid Film. 2015, 576, 31–37. [Google Scholar] [CrossRef]
- Zhu, H.; Tessaroto, L.A.; Sabia, R.; Greenhut, V.A.; Smith, M.; Niesz, D.E. Chemical mechanical polishing (CMP) anisotropy in sapphire. Appl. Surf. Sci. 2004, 236, 120–130. [Google Scholar] [CrossRef]
- Zantye, P.B.; Kumar, A.; Sikder, A. Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R Rep. 2004, 45, 89–220. [Google Scholar] [CrossRef]
- Li, X.; Dar, M.I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Han, H.; Grätzel, M. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 2015, 7, 703–711. [Google Scholar] [CrossRef]
- Tathavadekar, M.C.; Agarkar, S.A.; Game, O.S.; Bansode, U.P.; Kulkarni, S.A.; Mhaisalkar, S.G.; Ogale, S.B. Enhancing efficiency of perovskite solar cell via surface microstructuring: Superior grain growth and light harvesting effect. Sol. Energy 2015, 112, 12–19. [Google Scholar] [CrossRef]
- Choi, H.; Nahm, C.; Kim, J.; Moon, J.; Nam, S.; Jung, D.-R.; Park, B. The effect of TiCl4 -treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 2012, 12, 737–741. [Google Scholar] [CrossRef]
- Seo, Y.-J.; Choi, G.-W.; Lee, W.-S. Evaluation of electrical and optical properties of indium tin oxide thin film using chemical mechanical polishing technique. Microelectron. Eng. 2007, 84, 2896–2900. [Google Scholar] [CrossRef]
- Hu, X.; Song, Z.; Liu, W.; Qin, F.; Zhang, Z.; Wang, H. Chemical mechanical polishing of stainless steel foil as flexible substrate. Appl. Surf. Sci. 2012, 258, 5798–5802. [Google Scholar] [CrossRef]
- Choi, G.-W.; Lee, K.-Y.; Kim, N.-H.; Park, J.-S.; Seo, Y.-J.; Lee, W.-S. CMP characteristics and optical property of ITO thin film by using silica slurry with a variety of process parameters. Microelectron. Eng. 2007, 83, 2213–2217. [Google Scholar] [CrossRef]
- Choi, G.-W.; Kim, N.-H.; Seo, Y.-J.; Lee, W.-S. Behaviour of electrical and optical properties of indium tin oxide transparent electrode after CMP process. Electron. Lett. 2006, 42, 487. [Google Scholar] [CrossRef]
- Dai, X.; Shi, C.; Zhang, Y.; Wu, N. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl 4 isopropanol/water solution for inorganic–organic hybrid heterojunction perovskite solar cells. J. Semicond. 2015, 36, 74003. [Google Scholar] [CrossRef]
- Lee, H.; Bark, C.W.; Choi, H.W. Fabrication and characterization of perovskite solar cells with ZnGa2O4 mixed TiO2 photoelectrode. Jpn. J. Appl. Phys. 2019, 58, SDDE15. [Google Scholar] [CrossRef] [Green Version]
Treatment Time | Ra (nm) | RMS (nm) | |
---|---|---|---|
None surface treatment | - | 26.620 | 32.996 |
After CMP treatment | 5 min | 12.917 | 16.043 |
10 min | 9.320 | 11.379 | |
15 min | 9.132 | 11.177 |
VOC a (V) | ISC b (mA) | JSC c (mA/cm2) | F. F. d (%) | PCE e (%) | ||
---|---|---|---|---|---|---|
Bare cell (Before CMP) | 0.899 (0.024) | 1.291 (0.050) | 24.365 (0.947) | 52.582 (3.879) | 11.551 (1.351) | |
After CMP treatment | 5 min | 0.947 (0.020) | 1.264 (0.065) | 23.833 (1.256) | 56.005 (2.476) | 12.648 (0.999) |
10 min | 0.931 (0.015) | 1.306 (0.033) | 24.621 (0.657) | 58.270 (3.081) | 13.387 (1.173) | |
15 min | 0.901 (0.015) | 1.206 (0.082) | 22.742 (6.269) | 47.751 (6.269) | 9.840 (1.939) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Bark, C.W. Effect of Surface Treatment by Chemical-Mechanical Polishing for Transparent Electrode of Perovskite Solar Cells. Energies 2020, 13, 585. https://doi.org/10.3390/en13030585
Kim S, Bark CW. Effect of Surface Treatment by Chemical-Mechanical Polishing for Transparent Electrode of Perovskite Solar Cells. Energies. 2020; 13(3):585. https://doi.org/10.3390/en13030585
Chicago/Turabian StyleKim, Sangmo, and Chung Wung Bark. 2020. "Effect of Surface Treatment by Chemical-Mechanical Polishing for Transparent Electrode of Perovskite Solar Cells" Energies 13, no. 3: 585. https://doi.org/10.3390/en13030585
APA StyleKim, S., & Bark, C. W. (2020). Effect of Surface Treatment by Chemical-Mechanical Polishing for Transparent Electrode of Perovskite Solar Cells. Energies, 13(3), 585. https://doi.org/10.3390/en13030585