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Abstract: Optimization of the microalgae culture conditions could significantly reduce the production
costs of microalgae-derived biodiesel. In the current study, a new process of adding different
forms using the multiple small-dose method was employed. The effects of different forms of
nitrogen (NaNO3, NH4Cl, and CH4N2O) and their concentrations (0.1, 0.5, 1, and 2 mg L−1) on
the growth and lipid production of Scenedesmus obliquus were studied. Algae density and lipid
production increased with increasing nitrogen concentration for all different forms of nitrogen
except NH4Cl. The Scenedesmus obliquus growth was promoted by adding NaNO3 and CH4N2O,
but was inhibited by adding NH4Cl. Adding 2 mg N L−1 of CH4N2O daily yielded the highest
cell density (1.7 × 107 cells mL−1) and lipid production (242.4 mg L−1). These conditions can thus
maintain the biomass of Scenedesmus obliquus, increase its lipid accumulation, and decrease the costs
of biodiesel production.
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1. Introduction

Microalgae are considered as the potential feedstock for biodiesel production [1], because they
have a rapid growth rate [2] and high lipid contents [3]. Scenedesmus obliquus is one of the most widely
used lipid-producing microalgae [4,5]. The proportions of C16–C18 and unsaturated fatty acid in the
fatty acids produced by Scenedesmus obliquus are both high [6]. These fatty acids are favorable for
the synthesis of high-quality biodiesel that exhibits good performance in terms of combustion and
low-temperature flow. However, the lipid content of Scenedesmus obliquus under conventional culture
conditions is less than 17% [7]. Microalgae’s lipid content plays a decisive role in determining the cost
of microalgae-derived biodiesel [8]. Therefore, it is imperative to increase the Scenedesmus obliquus
lipid content.

Nitrogen starvation is an effective method to increase the lipid content of microalgae [9].
Pancha et al. [10] found that the lipid content of Scenedesmus sp. CCNM 1077 cultured in a nitrogen-free
medium was significantly higher than that cultured in a BG-11 medium. Jia et al. [11] reported
that the lipid content of Nannochloropsis oceanica cultured under nitrogen-depleted conditions was
approximately twice as large as that observed for a sample cultured in a conventional medium.
Converti et al. [12] reported that the lipid contents of Nannochloropsis oculata and Chlorella vulgaris
increased from 7.9% to 15.3% and from 5.9% to 16.4%, respectively, when the nitrogen concentration
in the medium was decreased by 75%. Lv et al. [13] showed that the total lipid content of Chlorella
cells decreased as the nitrogen concentration was increased. More recently, Qi et al. [14] found that
the lipid content of Chlorella vulgaris SDEC-3M rapidly increased after the cells were shifted from
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a nitrogen-rich to a nitrogen-deficient broth. Unfortunately, the nitrogen deficiency could lead to
an unsatisfactory level of biomass production. Therefore, although microalgae synthesize lipid in
nitrogen-free environments, the growth inhibition in algae cells under these conditions results in an
overall lower lipid production.

Yu et al. [7] previously employed a two-step cultivation method to promote lipid production by
Chlorella and Scenedesmus. In the first step, each microalga was cultured in a culture medium that
contained sufficient nitrogen to ensure an optimal level of biomass production. In the second step,
the microalga was harvested and transferred into a nitrogen-free culture medium to increase the lipid
content. High production costs were observed due to the process for algae and water separation, which
prevented the method from being utilized in large-scale biodiesel production [15].

Biomass productivity improvement can be achieved by a fed-batch culture mode. Han et al. [16]
showed that adding a limited amount of NaNO3 to the medium daily was beneficial for algae growth
and lipid production. Accordingly, it could be possible to simultaneously promote the growth of
microalgae and increase the lipid content by adding a limited amount of nitrogen to the medium on
a daily basis. Moreover, lutein synthesized by Scenedesmus obliquus can be used as a by-product of
lipid production, which could further decrease the costs of lipid production. Sonkar and Mallick [15]
found that adding 0.01 g L-1 nitrate to the medium at an interval of three days facilitated the biomass
production and lipid productivity of Scenedesmus obliquus, Chlorella vulgaris, and Chlorella minutissima.
However, they did not study the effects of different nitrogen forms on the growth of microalgae
and lipid production. Nitrogen forms have a certain influence on the growth and lipid production
of microalgae. Li et al. [17] found that urea was more beneficial to microalgae growth and lipid
accumulation compared with nitrate. Amin et al. [18] reported that compared with nitrogen sources
such as (NH4)2CO3, KNO3, NH4NO3, and NaNO3, Chlorella M2 exhibited the higher biomass and
lipid production in the medium with urea as the nitrogen source. Based on the above discussion, it is
necessary to understand the effects of nitrogen forms on the growth and lipid production of microalgae.

This study investigated the effects of different nitrogen forms and supply methods on the growth,
lipid production, and other major components of Scenedesmus obliquus. It was suggested that adding
different forms of nitrogen with multiple small-dose methods could simultaneously promote the
growth and lipid production of Scenedesmus obliquus, leading to a lower biodiesel production cost.

2. Materials and Methods

2.1. Alga Strain

A unicellular strain of Scenedesmus obliquus (FACHB 416) was purchased from the Freshwater
Algae Culture Collection of the Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China.
The strain in the logarithmic phase was used for inoculation and testing after it was cultured for more
than three months in the M-11 medium.

2.2. Experimental Design

Experiments were carried out with Scenedesmus obliquus cultured in the M-11 medium and a
two-step cultivation method was used as a control test. The novel process involved the daily addition
of multiple small-dose nitrogen. For the two-step cultivation method, the first step was to culture
the algae in the M-11 medium until the logarithmic phase was reached. The second step was to
harvest and transfer the algae into a nitrogen-free M-11 medium for the further cultivation until
20 days. The process of the daily addition of multiple small-doses of nitrogen was described as follows:
The Scenedesmus obliquus was firstly cultivated in the nitrogen-free M-11 medium, 0.5 mL solution
with varying different nitrogen concentrations (the term “nitrogen” in this context is used as catchall
for different types of nitrogen containing compounds, including NaNO3, NH4Cl, and CH4N2O) was
added daily. The final nitrogen concentrations for different forms of nitrogen were set to 0.1, 0.5, 1, and
2 mg L−1, respectively. Each sample was conducted in triplicate.
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2.3. Culture Conditions

The Scenedesmus obliquus strain was inoculated with a density of 10 × 104 cells mL−1 into a 250 mL
conical flasks, which contained a 150 mL M-11 medium (NaNO3 100 mg L−1, K2HPO3 10 mg L−1,
MgSO4 75 mg L−1, CaCl2 40 mg L−1, Na2CO3 20 mg L−1, ferric citrate 6 mg L−1, and Na2EDTA
1 mg L−1; pH 8.0). It was then incubated with a temperature of 25 ◦C, a light intensity of 50 µmol
photons m−2 s−1, and a 12 h light: 12 h dark photoperiod. The flasks were agitated by hand three times
per day.

2.4. Analytical Methods

2.4.1. Analysis of Cell Density

Cell density was monitored daily by measuring the OD680 value using an ultraviolet–visible
spectrophotometer (UV-1780, Shimadzu, Japan) [19]. The linear correlation (Equation 1) between the
cell density of Scenedesmus obliquus and OD680 was established for the subsequent Scenedesmus obliquus
density determination:

Cell density (104 cells mL−1) = 1037OD680 + 38, R2 = 0.999 (1)

2.4.2. Chemical Analysis

The total dissolved nitrogen (TDN) concentration was determined by potassium peroxodisulfate
oxidation-ultraviolet spectrophotometry [20]. Here, 10 mL of filtrate was added to a 25 mL colorimetric
tube. Then, 5 mL of alkaline potassium peroxodisulfate was added, a stopper plug was fitted, and
the sample was placed in an autoclave where it was heated to 121 ◦C and kept for 30 min. After
being allowed to cool naturally, 1 mL of 1 mol L−1 hydrochloric acid was added and the sample was
diluted to a volume of 25 mL by adding ammonia-free water. The absorbance at 220 nm (OD220) and
275 nm (OD275) was then measured using ammonia-free water as the blank. This information was
then combined with data from the standard TDN curve to obtain the TDN concentration.

The total dissolved phosphorus (TDP) concentration was determined by molybdenum antimony
spectrophotometry [20]. Firstly, 25 mL of the filtrate was pipetted into a 50 mL colorimetric tube,
afterwards, 5 mL of potassium peroxodisulfate solution was added. The tube was then sealed with a
glass stopper and placed in an autoclave where it was heated to 121 ◦C and kept for 30 min. After
being allowed to cool naturally, 1 mL of 10% ascorbic acid was added, followed by adding 2 mL of
molybdate solution 30 s later. The sample was mixed well and diluted to 50 mL with distilled water
and allowed to stand for 15 min. The sample was finally adjusted to zero at 700 nm using distilled
water. Absorbance was then determined, and TDP concentration was obtained based on the standard
TDP curve.

The total organic carbon analyzer (TOC-CPN, Shimadzu, Japan) was used to analyze the dissolved
organic carbon (DOC) concentration [19].

2.4.3. Total Organic Carbon Analysis

The total organic carbon (TOC) concentration was determined by testing 10 mL of algae solution
using a TOC analyzer (TOC-CPN, Shimadzu, Japan).

2.4.4. Analysis of Quantum Yield and Lutein

The maximum quantum yield (Fv/Fm) was measured by phytoplankton fluorometry (Aquapen-C)
using a sample solution of algae that was placed in dark adaptation conditions for 20 min [19].

Lutein was extracted by filtering a 5 mL algae solution with a 47 mm GF/F filter. The filter
membrane was transferred to 25 mL test tubes and 10 mL of acetone solution was added before the
sample was ultrasonically mixed at 4 ◦C for 10 min. The sample was then transferred to dark conditions
at −20 ◦C for 24 h. The filtrate extracted with a Teflon syringe filter was placed into a 2 mL brown
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chromatography bottle for high performance liquid chromatography (1100 Series, Agilent USA) for
pigment analysis [21].

2.4.5. Lipid Content Analysis

The algae solution was centrifuged at 10,000 rpm for 6 min and the algae residue was dried to
constant weight at 60 ◦C to collect dry algae. The lipid was extracted using the methanol–chloroform
method described by Gan [20].

Then, 100 mg of dried algae was precisely measured and transferred (Wa) into a 50 mL centrifuge
tube. Afterwards, 12 mL of 1:2 chloroform–methanol solution was added. The tube was centrifuged at
25 ◦C for 60 min and then centrifuged at 10,000 rpm for 6 min. After filtering through a 0.45 µm filter
membrane (Whatman # 1), the filtrate was transferred into a clean tube. The above extraction process
was repeated again, and the two filtrates were combined. The combined filtrate was thoroughly mixed
with 16 mL of 5% NaCl. The liquid in the lower layer was separated and concentrated with a rotary
evaporator (RE-2000A, Yarong Biochemical Instrument Company, Shanghai, China), then transferred
into a 4 mL vial (Wi). The vial was dried using a nitrogen purging instrument (ND200-1, Hang Zhou Rui
Cheng Instrument Co., Ltd., Hang Zhou, China) at 45 ◦C until the sample reached a constant mass (Wf).
Equation (2) and Equation (3) were used to calculate the lipid content and lipid production, respectively.

Lipid content (%) = (Wf −Wi)/Wa × 100 (2)

Lipid production (mg L−1) = Lipid content (%) × Dry mass (mg L−1) (3)

2.4.6. Fatty acid Composition Analysis

Fatty acid methyl esters (FAMEs) were analyzed according to the method described by Peng [5].
The extracted dry lipid was completely dissolved by 4 mL of 14% BF3–methanol and then kept in a
boiled water bath for 15 min. After cooling, 2 mL of n-heptane and 4 mL of saturated NaCl solution
were added and the mixture was shaken intensively. After stratification, the supernatant was filtered
using a 0.22 µm organic phase needle filter (TPFM012, Nan Jing Tai Pu Rui Instrument Equipment Co.,
Ltd., Nan Jing, China). FAMEs were analyzed using a gas chromatograph (GC-2014C, Shimadzu, Japan)
equipped with Flame Ionization Detector (FID) and a DB-5 ms (60 m) capillary column. The carrier
gas was N2 and the injection and detector temperatures were 250 and 290 ◦C, respectively. The initial
column temperature was kept at 120 ◦C for 3 min. It was then increased to 220 ◦C at the rate of 4 ◦C
min−1 and kept for 5 min. The final temperature was increased to 280 ◦C at the rate of 3 ◦C min−1 and
kept for 20 min. The injection volume was 1 µL.

2.5. Statistics

All data in this study were presented as the mean value ± the standard deviation, and data
processing and mapping were performed using Microsoft Excel 2010. Significant differences were
determined by the analysis of variance (ANOVA) using the Tukey post-hoc test in SPSS 19.0. Significant
levels were recorded at p < 0.05.

3. Results and Discussion

3.1. Growth of S. obliquus

Figure 1 showed the growth curves of Scenedesmus obliquus under different culture modes. Results
for the first step of the two-step cultivation method (the first nine days) were basically consistent
with the growth trend of Scenedesmus obliquus in the M-11 medium. However, in the second step,
the growth rate of Scenedesmus obliquus obviously slowed. On the 20th day, the biomass was recorded
at 6.3 × 106 cells mL−1, which was significantly lower than the 1.0 × 107 cells mL−1 observed in the
M-11 medium (Figure 1a). Sonkar and Mallick [15] demonstrated a similar trend that the biomass
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concentration of Scenedesmus obliquus with a limited KNO3 feed was 27% higher than the two-step
cultivation method. Under the condition that different nitrogen sources were added to the nitrogen-free
medium every day, the algae density increased with increasing nitrogen concentration in the same form
of nitrogen source (Figure 1b–d). Another study identified the similar trend of NaNO3 and CH4N2O
that high nitrogen concentration could promote the algae biomass [17]. Compared to cultivation
in the M-11 medium, the daily addition of NH4Cl inhibited Scenedesmus obliquus growth, while the
Scenedesmus obliquus growth has been promoted only in the conditions where 2 mg L−1 nitrogen of
NaNO3 or CH4N2O was added. The largest algae density (1.7 × 107 cells mL−1) was recorded with the
addition of 2 mg N L−1 of CH4N2O. Li et al. [17] found that the microalgae were able to utilize CH4N2O
as a nitrogen source for growth compared to NaNO3, and the biomass of Chlorococcum ellipsoideum
were the largest with 246 mg N L−1 of CH4N2O. This similar result indicated that CH4N2O was better
than NaNO3 for microalgae growth.
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Figure 1. Growth curves of Scenedesmus obliquus under different treatments: M-11 medium and two-step
cultivation method (a); and with daily additions of various concentrations of NaNO3 (b); NH4Cl (c);
and CH4N2O (d).

3.2. TDN, TDP, and DOC Concentrations in Medium Filtrate

The microalgae lipid content was also determined by the nutrient concentration in the culture
medium. The final concentrations of TDN, TDP, and DOC following the different treatments were
shown in Figure 2. The maximum filtrate TDN concentration (19.6 µg mL−1) was obtained following
the daily addition of 2 mg N L−1 of NH4Cl (Figure 2a). This value was significantly higher than that of
the control (1.5 µg mL−1) and that of the two-step cultivation method (1.3 µg mL−1) (p < 0.05). There
were no significant differences in TDN concentrations among the three nitrogen source treatments
at nitrogen concentrations of 0.1, 0.5, and 1 mg N L−1 (except for 1 mg N L−1 NH4Cl). Among the
three nitrogen source treatments with a concentration of 2 mg N L−1, the lowest concentration of
TDN was 5.644 µg mL−1 when 2 mg N L−1 of CH4N2O was added, which indicated that the addition
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of 2 mg N L−1 CH4N2O could promote the nitrogen uptake of Scenedesmus obliquus. However, the
addition of 2 mg N L−1 NH4Cl was not conducive to the absorption of Scenedesmus obliquus.
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Figure 2. Final concentrations of total dissolved nitrogen (a); total dissolved phosphorus (b); and
dissolved organic carbon (c) under different treatments. Lowercase letters indicate significant differences
among treatments (p < 0.05).

TDP concentrations in the samples treated with NaNO3 and NH4Cl initially increased with
increasing nitrogen concentration, but decreased when 2 mg L−1 of nitrogen was added. Conversely,
the concentration of TDP in samples treated with CH4N2O firstly declined as a function of nitrogen
concentration, then increased when the nitrogen concentration was higher than 1 mg L−1 (Figure 2b).
The maximum filtrate TDP concentration was 0.1 µg mL−1 for the medium treated with 0.1 mg N L−1

of CH4N2O and no significant difference (p > 0.05) in TDP concentration among all treatments, which
is similar to the conclusion of Li [22] that 83–99% of nitrogen and 99% of phosphorus in the medium
can be absorbed, and the lipid accumulation increased when the nutrition was relatively lacking. The
filtrate DOC concentration increased with the nitrogen concentration during the addition of NaNO3

and CH4N2O. Conversely, the filtrate DOC concentration following the addition of NH4Cl decreased
with increasing nitrogen concentration (Figure 2c). The maximum DOC concentration in the control
sample was 19.9 mg L−1, which was significantly higher than that observed for the various nitrogenated
media (p < 0.05).

3.3. Total Organic Carbon Concentration, and Content

The concentration of TOC in Scenedesmus obliquus increased as the added nitrogen concentration
was increased (Figure 3a). The highest TOC concentration among the control samples was 458.2 mg L−1,
which was significantly higher than that in the two-step cultivation method (190.6 mg L−1) (p < 0.05).
Scenedesmus obliquus absorbs organic carbon in the culture medium and converts it into lipid [23].
The TOC content of each cell decreased with increasing nitrogen concentration in the NH4Cl and
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CH4N2O media (Figure 3b). This showed that Scenedesmus obliquus converted the absorbed organic
carbon into lipid to conserve energy.Energies 2019, 12, x  7 of 13 
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Figure 3. Total organic carbon concentration (a) and total organic carbon content (b) of Scenedesmus
obliquus following different treatments. Lowercase letters indicate significant differences among
treatments (p < 0.05).

3.4. Chlorophyll Fluorescence

From the perspective of photosynthetic efficiency of algae cells, the Fv/Fm value indicates the
maximum photochemical efficiency of PS II. This value reflects the photosynthetic efficiency of
algae cells, and is an indicator of the toxicity degree of the stress environment to algae cells. In
general, the Fv/Fm values of algae cells remain constant under favorable environmental conditions,
but significantly decrease in algae cells under stress conditions [24]. In the current study, the value
of Fv/Fm gradually increased when the concentration of different forms of nitrogen added daily was
increased from 0.1 to 0.5 mg L−1 (Figure 4). The Fv/Fm of Scenedesmus obliquus remained constant
with NaNO3 and CH4N2O treatments, but showed the downward trend in NH4Cl treatments when
the nitrogen concentration was further increased from 0.5 to 2 mg L−1. These results indicated that
the addition of NaNO3 and CH4N2O treatments could provide favorable conditions for Scenedesmus
obliquus, allowing improvement in its photosynthetic efficiency. The maximum Fv/Fm value of 0.6 was
observed in the treatment with 0.5 mg N L−1 of CH4N2O addition. Among the three nitrogen sources
in our study, adding 2 mg N L−1 of CH4N2O resulted in a high Fv/Fm of Scenedesmus obliquus, which
could promote the growth of Scenedesmus obliquus.
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Figure 4. Fv/Fm values of Scenedesmus obliquus following different treatments. Lowercase letters indicate
significant differences among treatments (p < 0.05).



Energies 2020, 13, 697 8 of 13

3.5. Lipid Content, Production, and Productivity

The lipid content firstly decreased and then increased with increasing nitrogen concentration
for the treatments where NaNO3 and NH4Cl were added daily. The highest lipid content of 30.6%
was observed when 0.1 mg N L−1 of NH4Cl was added (Figure 5a). Lipid production increased with
increasing nitrogen concentration for each form of nitrogen (Figure 5b). The addition of 2 mg N L−1 of
CH4N2O resulted in the highest lipid production (242.4 mg L−1), which was significantly higher than
the control sample (87.9 mg L−1) and that observed for the two-step cultivation method (91.8 mg L−1)
(p < 0.05).
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Figure 5. Lipid content (a) and lipid production (b) of Scenedesmus obliquus under different treatments.
Lowercase letters indicate significant differences among treatments (p < 0.05).

The above results showed that adding 2 mg N L−1 of CH4N2O every day yielded the highest
lipid productivity (12.1 mg L−1 day−1), and this value was significantly higher than those found for
the other treatments. Reported values of lipid productivity of Scenedesmus obliquus under different
non-aerated culturing processes were shown in Table 1. Li et al. [22] reported that the lipid productivity
of Scenedesmus LX1 was 11.6 mg L−1 day−1 when the nitrogen content in the medium was 10 mg L−1.
Yu et al. [25] noted a lipid productivity of 11.9 mg L−1 day−1 when 5 mg L−1 auxin was added to the
BG-11 medium when undergoing the two-step cultivation method. Compared to the data in Table 1,
it can be suggested that multiple small-doses of nitrogen can increase lipid productivity.

The nitrogen concentration directly affects the composition of macromolecular organic matter in
microalgae cells. Some studies [7,10,28] have found that microalgae could preferentially synthesize
lipid to store energy when they were starved of nitrogen. Conversely, Long et al. [29] found that
Microcystis aeruginosa preferentially synthesizes proteins when the concentration of nitrogen was
increased. It can be inferred that the lipid content of Scenedesmus obliquus would decrease when the
nitrogen concentration was increased, which is due to the transformation of organic matter into protein.
This trend was consistent with the observed results.

Although a higher nitrogen concentration may decrease the lipid content, this study showed
that lipid production significantly increased when culturing with multiple small doses of nitrogen.
Li et al. [22] found that lipid content decreased but lipid production increased with increasing nitrogen
concentration under nitrogen-starvation conditions. These results can be explained by the fact that the
total amount of lipid accumulation is determined by the accumulation rate of organic matter under
photosynthesis, algae respiration, the composition of organic matter, and the transformation mechanism
of organic matter to different macromolecular organic substances such as lipids, polysaccharides,
and proteins. The TOC and biomass content of Scenedesmus obliquus increased when the nitrogen
concentration was increased for different forms of nitrogen. This indicated that the increased nitrogen
concentration was beneficial to the synthesis of organic matter and can increase the biomass of
Scenedesmus obliquus with the treatment of multiple small doses of nitrogen. In this study, the increase
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in biomass directly led to the increase in lipid production. Adding 2 mg N L−1 of CH4N2O every day
increased the organic matter accumulation rate of Scenedesmus obliquus and yielded the highest lipid
production (242.4 mg L−1) of all treatments. It suggested that this culturing process can effectively
improve the lipid productivity of Scenedesmus obliquus.

Table 1. Lipid productivity for various microalgae species grown under different culture conditions
without aeration.

Algae Strain Treatment
Lipid

Content
(%)

Lipid Productivity
(mg L−1 day−1) References

Scenedesmus obliquus
FACHB-416

BG-11 + 1.2 g L−1 NaCl 16.2 9.9 Gan et al. [20]
BG-11 + 8.8 g L−1 NaCl 20.8 1.8

Scenedesmus sp. LX1
mBG-11 + 2.5 mg N L−1 of NaNO3 29.7 8.7

Li et al. [22]mBG-11 + 5 mg N L−1 of NaNO3 22.5 8.5
mBG-11 + 10 mg N L−1 of NaNO3 20.8 11.6

Scenedesmus sp. SDEC-8

BG-11 + two-step
cultivation method 18.9 3.8

Yu et al. [25]BG-11 + two-step cultivation
method + 5 mg L−1 auxin 46.9 11.9

BG-11 + two-step cultivation
method + 30 mg L−1 auxin 16.7 5.2

BG-11 + two-step cultivation
method + 50 mg L−1 auxin 14.7 2.3

Scenedesmus obliquus
GU732418

BBM — 2.3
Salama et al. [26]BBM + 1.75 mg L−1 IAA — 4.6

BBM + 2.15 mg L−1 DAH — 5.8
Dunaliella salina

CCAP 19/20
ESM — 0.8 Kichul et al. [27]

ESM + 500 mg L−1 myo-inositol — 0.9
Scenedesmus obliqquus

FACHB-416
multiple-dose of 2 mg N L−1 of

CH4N2O
22.9 12.1 Current study

The form of nitrogen can also affect the macromolecular composition of algae organisms.
Qu et al. [30] found that the extracellular polysaccharide content of Microcystis aeruginosa grown
in an ammonium culture was higher than that grown in nitrate and urea media. Rückert and Giani [31]
found that Microcystis aeruginosa had higher protein content when grown in a nitrate medium than in an
ammonium medium. Kamyab et al. [32] reported that 1.5 M of NH4NO3 concentration produced higher
lipid content compared to the same nitrogen concentration which included NaNO3. The above studies
showed that the form of nitrogen played an important role in the algae synthesis of organic matter.

Algae convert nitrate to ammonium by using nitrate reductase when absorbing and utilizing
nitrates, which consumes energy. A high concentration of ammonium ions can be toxic to algae [33],
directly affecting their physiological state and composition. Qu et al. [30] showed that energy
consumption by nitrate reductase decreased the amount of extracellular polysaccharides. In the current
study, the lipid content was basically the same for all treatments where different forms of nitrogen
were added at 1 mg N L−1, because the growth of Scenedesmus obliquus was limited by the low nitrogen
concentration. Lipid production by Scenedesmus obliquus treated with 2 mg N L−1 of CH4N2O was
significantly higher than that treated with NaNO3 and NH4Cl. This is due to the fact that during
treatment with NaNO3, Scenedesmus obliquus convert nitrate to ammonium. The process consumed a
substantial amount of energy and led to an increase in the ammonium ions concentration. Moreover,
the increase in the ammonium ion concentration directly affects lipid synthesis. For NH4Cl, a high
concentration of ammonium ions was toxic to algae cells, and thus, not conducive to lipid synthesis.
Therefore, for a given concentration, treatment with CH4N2O was most beneficial to the synthesis of
lipids by Scenedesmus obliquus.

Li et al. [22] found that the lipid productivity of Scenedesmus sp. LX1 increased from 8.5 mg L−1 day−1

without aeration to 134 mg L−1 day−1 after aeration under nitrogen-limited conditions. Rodolfi et al. [34]
also showed that the lipid content of Nannochloropsis sp. F&M-M26 nearly doubled following aeration.
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Babu et al. [35] found that adding 10−5 mol L−1 of indole-3-acetic and 10−9 mol L−1 of DA-6 increased
the lipid productivity of Chlorella by 49% and 84%, respectively. Yu et al. [7] also showed that the lipid
productivity of Scenedesmus SDEC-8 tripled after auxin was added. Therefore, further decrease in
biodiesel production cost could be realized by improving the lipid productivity of Scenedesmus obliquus
using aeration and phytohormones addition.

3.6. The Concentration of Lutein in Scenedesmus obliquus

The highest lutein concentration of Scenedesmus obliquus was 11.3 mg L−1 following the daily
addition of 1 mg N L−1 of CH4N2O (Figure 6). For the different treatments with NaNO3, NH4Cl,
and CH4N2O, the lutein concentration firstly increased with increasing nitrogen concentration, and it
reached the maximum value when 1 mg N L-1 was added, afterwards, it decreased as a function of
nitrogen concentration. Overall, the different nitrogen forms appeared to have little impact on the
lutein content.
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Figure 6. Lutein concentrations of Scenedesmus obliquus under different treatments.

The pigment lutein is a valuable byproduct of lipid production that can effectively decrease the
lipid production cost. Lutein is rich in microalgae cells and is the main pigment in the macular area of
the human eye where it protects the retina from near-ultraviolet light and decreases the incidence of
diseases in the eyes, and delays their ageing and degeneration.

Del Campo et al. [36] reported that the lutein content doubled (reaching 23 mg L−1) when the
nitrogen concentration in the medium was increased from 140 to 280 mg L−1, but it did not increase
further as the nitrogen concentration was increased. Similar to the results presented in the current work,
Del Campo et al. [37] found that the lutein content of Chlorella firstly increased and then decreased
as the nitrogen concentration was increased from 70 to 560 mg L−1. However, in the current work
the lutein content of Scenedesmus obliquus was only 0.5 mg L−1 following treatment with 2 mg N L−1

of CH4N2O (the highest lipid production), which was much lower than the values reported above.
Changing the form of nitrogen (NaNO3, NH4Cl, or CH4N2O) employed did not affect the lutein
content of Scenedesmus obliquus.

3.7. Fatty Acid Composition Analysis

The composition of fatty acids extracted from Scenedesmus obliquus was shown in Table 2. C16:0
(palmitic acid) and C18:1 (oleic acid) were the main components, being ideal for biodiesel production [38].
The highest proportion of C18:1 (55.8%) was observed following treatment with 0.1 mg N L−1 of NaNO3.
The largest proportion of C16–C18 fatty acids was 98.2% and the largest proportion of unsaturated
fatty acids was 66.7%.
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Table 2. Fatty acid composition (%) of Scenedesmus obliquus treated with different culture conditions.

Fatty Acid M-11
NaNO3 NH4Cl CH4N2O Two-Step Cultivation

Method0.1 0.5 1 2 0.1 0.5 1 2 0.1 0.5 1 2

C14:0 0.3 0.2 0.0 0.0 0.6 0.2 0.0 0.0 1.0 0.0 0.2 0.0 0.4 0.5
C15:0 0.6 0.3 0.4 0.5 0.5 0.3 1.7 1.0 0.9 0.3 0.4 0.6 0.9 0.6
C16:0 31.7 29.5 30.5 34.4 51.9 32.3 53.1 47.4 51.2 30.8 31.6 40.7 34.0 58.0
C16:1 0.8 0.6 1.0 0.6 0.7 0.5 1.0 1.4 1.0 0.5 0.6 0.8 1.0 0.8
C18:0 3.3 2.8 2.7 2.7 4.7 3.0 5.0 4.3 5.3 3.1 2.5 3.6 2.8 5.2
C18:1 52.7 55.8 54.4 49.4 28.0 53.6 25.4 32.0 17.6 55.5 53.6 40.9 46.3 24.6
C18:2 8.4 9.2 8.9 9.5 10.5 8.3 9.2 9.6 19.1 8.0 8.8 9.4 10.2 7.2
C18:3 0.4 0.3 0.3 0.6 0.8 0.3 0.9 1.1 0.8 0.1 0.3 0.8 1.0 0.7
C20:1 0.7 0.8 0.8 0.6 0.0 0.8 0.0 0.0 0.0 0.9 0.7 0.7 0.4 0.7
C22:0 0.5 0.3 0.4 0.6 0.9 0.4 1.3 1.5 1.7 0.4 0.4 0.9 0.8 0.8
C24:0 0.7 0.3 0.6 1.1 1.4 0.4 2.4 1.7 1.5 0.5 0.8 1.5 2.2 1.0

Unsaturated 63.0 66.7 65.4 60.7 40.0 63.5 36.5 44.1 38.4 65.0 64.0 52.6 58.9 34.0
C16-C18 97.3 98.2 97.8 97.2 96.6 98.0 94.6 95.8 94.9 98.0 97.4 96.2 95.3 96.5

The fatty acid component is also an important indicator of suitability for biodiesel production.
C16–C18 fatty acids can improve the combustion performance of biodiesel [39]. In addition, the increase
of unsaturated fatty acids proportion can improve biodiesel’s low-temperature flow properties [7].
For all the treatments in this study, the proportion of C16–C18 fatty acids exceeded 90% of the total
fatty acids, which was higher than the average value reported in the literature. Moreover, adding
2 mg N L−1 of CH4N2O increased the proportion of C16–C18 and unsaturated fatty acids further, to
95.3% and 58.9%, respectively. Amin et al. [18] reported an increased proportion (63.6%) of C16–C18
fatty acids when 41.2 mg N L−1 of CH4N2O was added to the medium. Yu et al. [7] reported that the
proportion of C16–C18 fatty acids produced by the two-step cultivation method was approximately
80%. The increase in the proportion of C16–C18 fatty acids in the current study suggested that multiple
small-doses of nitrogen could improve both the combustion performance and low-temperature flow
performance of biodiesel.

4. Conclusions

This study investigated the improvements of growth and lipid production of Scenedesmus
obliquus by adding multiple small-doses of nitrogen. The highest biomass and lipid production were
1.7 × 107 cells mL−1 and 242.4 mg L−1, respectively, with the daily addition of 2 mg N L−1 of CH4N2O.
These values were significantly higher than those of the control sample (1.0 × 107 cells mL−1 and
87.9 mg L−1, respectively) and the two-step cultivation method (6.3 × 106 cells mL−1 and 91.8 mg L−1,
respectively). In addition, the daily addition of 2 mg N L−1 of CH4N2O yielded a lutein content of
Scenedesmus obliquus of 0.48 mg L−1, but this was insufficient to promote commercial production of
lutein as a byproduct (which would have decreased the overall cost of lipid production). Therefore,
further investigation should be performed to decrease the costs of lipid production of Scenedesmus
obliquus through the high value co-produced pigment. This study demonstrated that adding multiple
small-doses of nitrogen under nitrogen-starvation condition could improve lipid production, which
could be applied to the large-scale biofuel production.
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