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Abstract: Heat regenerators are simple devices for heat transfer, but their proper design is rather
difficult. Their design is based on differential equations that need to be solved. This is one of the
reasons why these devices are not widely used. There are several methods for solving them that were
developed. However, due to the time demands of calculation, these models did not spread too much.
With the development of computer technology, the situation changed, and these methods are now
relatively easy to apply, as the calculation does not take a lot of time. Another problem arises when
selecting a suitable method for calculating the heat transfer coefficient and pressure drop. Their choice
depends on the type of packed bed material, and not all available computational equations also
provide adequate accuracy. This paper describes the so-called open Willmott methods and provides a
basic overview of equations for calculating the regenerative heat exchanger with a fixed bed. Based on
the mentioned computational equations, it is possible to create a tailor-made calculation procedure of
regenerative heat exchangers. Since no software was found on the market to design regenerative heat
exchangers, it had to be created. An example of software implementation is described at the end
of the article. The impulse to create this article was also to broaden the awareness of regenerative
heat exchangers, to provide designers with an overview of suitable calculation methods and, thus,
to extend the interest and use of this type of heat exchanger.
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1. Introduction

Regenerative heat exchangers are devices used for indirect heat exchange between hot and cold
media. In these devices, heat is first transferred from a hot medium to a storage material and then
is transferred to a cold medium. Thus, the hot and cold media are alternately in contact with the
solid material forming the packed bed. In the hot cycle, heat is transferred from the medium to the
packed bed, and, in the cold cycle, the cold medium absorbs the heat stored in the solid material. This
cycle is the reason why regenerative heat exchangers must operate in pairs (they must have two beds)
to work continuously. Regenerative heat exchangers are used mainly in the metallurgical industry,
in air treatment, air preheating, or recovery of waste heat, and in turbine applications. However,
the complexity of the calculations resulted in their limited expansion.

Although there are several approaches to calculating these devices, more accurate methods require
the solution of differential equations. Their solution is quite time-demanding and they need the use
of a computer. This paper describes the solution of the calculation of regenerative heat exchangers
using the Willmott open method, which seems to be the best for computer use. This method shows
great stability (convergence) and allows the inclusion of calculation of the equations describing heat
transfer and pressure drop. The solution is performed by an iterative calculation, and the result is the
distribution of gas temperatures and pressure over time and along the bed.
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Another difficulty when calculating these devices is finding suitable computational equations to
describe the heat transfer between the gas and the packed bed material. Although these equations
can be found in the literature, they are usually given only for spherical shapes. In addition, different
equations give different results. It is, therefore, necessary to choose a suitable calculation equation in
order to get the best results. A better situation is in the calculation of pressure drops, for which many
computational equations can be found in the literature. However, some of them give different results
from those measured. This paper, therefore, provides an overview of suitable computational equations
so that a complete computational algorithm of regenerative heat exchangers can be compiled.

2. Description of the Regenerator

2.1. Classification of Regenerative Heat Exchangers

Regenerators can be divided into two categories: fixed-bed and rotary regenerators. In the
fixed-bed regenerator, a single fluid stream has cyclical or reversible flow. Valves are employed to
switch the flow the hot and cold gas streams. In the rotary regenerator, the storage material rotates
continuously through two counterflowing streams of fluids. Only one stream flows through a section
of the storage material at a given time. However, both streams eventually flow through all sections of
the storage material during one rotation.

Fixed-bed regenerators are commonly run in pairs. It means that two or more regenerators are
used in parallel because of the requirement for a continuous stream of the gas. During one part of a
cycle, the hot gas flows through one of the regenerators and heats up the storage material, while the
cold gas flows through and cools down the storage material in the second regenerator. Both gases
directly contact storage material in the regenerators, although not both at the same time, since each is
in a different regenerator at any given time. After a sufficient amount of time, the cycle is switched
such that the cooler storage material in the second regenerator is preheated with the hot gas, while
the hot storage material in the first regenerator exchanges its heat into the cold gas. This cycle is
permanently repeated.

The advantage of regenerators over recuperators is that they have a much higher surface area
for a given volume. Hence, the regenerator usually has a smaller volume and weight than an
equivalent recuperator. This means that regenerators are more economical in terms of materials and
manufacturing. The storage material of regenerators also has a degree of self-cleaning characteristics,
reducing fluid-side fouling and corrosion. Disadvantages include mixing the media as a result of
alternating the passage of hot and cold media through the packed bed. Regenerators are, thus, ideal
for gas–gas heat exchange.

Various materials and shapes can be used as storage materials. Because solids have a very large
heat capacity compared to gases, they are used as intermediary storage of the heat. Their selection
depends on given conditions and requirements, especially temperature. For very high temperature,
ceramic storage material should be used. For low or moderate temperatures, the heat storage material
can be made of metal, e.g., steel or aluminum. There exist several types of storage shapes (see Figure 1).
For large regenerators, bricks can be used. For smaller regenerators, honeycombs, spherical particles,
monoliths, saddles, rings, or Raschig rings can be used.
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Figure 1. Some types of geometry of storage materials [1].

Regenerative heat exchangers can be used in various processes. The most common applications
include the following:

• The glass and steel industry;
• Cryogenics;
• Air preheating or recovery of waste heat (see Figure 2a);
• Heating and cooling media from different parts of the same system (see Figure 2a);
• Cleaning of flue gases or waste gasses (see Figure 2b,c).
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Figure 2. Possibilities of connection of regenerative heat exchanger: (a) connection of regenerative
heat exchanger for heating or cooling media; (b) connection for cleaning of flue gases or waste gasses
—option 1; (c) connection for cleaning of flue gases or waste gasses—option 2.

The benefit of the exchanger is seen in the potential of its current multiple function. The exchanger
could be used, for example, for simultaneous gas purification. This means that the storage material
also serves as a catalyst on which the chemical reaction takes place.

2.2. Basic Geometric Characteristics of Packed Bed

Packed bed calculations use various geometric characteristics describing the packed bed. The main
ones are specified in this section.
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Voidage, -
An important parameter in the calculation of the flow in a packed bed is voidage. The voidage ε

is defined as the ratio of the free volume of the packed bed to the total volume.

ε =
Vb −Vp

Vb
× 100 =

Vm

Vb
× 100, (1)

where Vb is the total volume of the packed bed (m3), Vp is the volume of the packed bed material (m3),
and Vm is the free volume of the packed bed (m3).

Particle diameter, m
The particle diameter can be defined as the diameter of a sphere that has the same volume as

the particle,

dV =
( 6
π

Vp

)1/3
, (2)

or as the equivalent particle diameter dp (m), according to the specific surface given by Ergun [2], which
has the same ratio of the surface to the volume as the given particle and is given by

dp =
6
∑

Vp

Ap
, (3)

where Ap is the particle surface area (m2).
Sphericity, -
Sphericity is defined in Reference [3] as the ratio of the surface area of the sphere to the surface

area of the particle. The sphericity is 1 for a sphere and is less than 1 for any particle that is not a sphere.

ψ =
As

Ap
=

36πV2
p

A3
p

1/3

=
πd2

p

Ap
, (4)

where As is the surface area of a sphere that has the same volume as the particle (m2), Ap is the particle
surface area (m2), and Vp is the volume of the particle (m3).

Hydraulic diameter of packed bed, m

dh = 4rh = 4
ε
a
=

4ε
ar(1− ε)

, (5)

where rh is the hydraulic radius (m), a is the absolute specific surface (m2), and ar is the relative specific
surface (m−1).

Absolute specific surface, (m−1)
Absolute specific surface is the ratio between the particle surface area and the volume of the

packed bed.

a =
Ap

Vb
=

Ap(1− ε)

Vp
. (6)

Relative specific surface, (m−1)
Relative specific surface is the ratio between the particle surface area and the volume of the particle

in the packed bed.

ar =
Ap

Vp
. (7)

The relationship between relative and absolute specific surface is

a = ar(1− ε). (8)
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3. Mathematical Model of the Regenerative Heat Exchanger

3.1. Energy Balance of the Regenerator

If the gas flows through the packed bed of the regenerator and the total heat transfer area between
the bed and the gas is Ap, then the mean temperature change of packed bed Tb at time t can be expressed
in the form

MbCp,b
∂Tb
∂t

= htA
(
Tg − Tb

)
, (9)

where Mb is the mass of packed bed (kg), Tb is the mean temperature of packed bed (◦C), Tg is the
temperature of the gas flowing through the bed (◦C), ht is the total heat transfer coefficient (W·m−2

·K−1)
between the flowing gas and the bed material, Cp,b is the heat capacity of packed bed (J·kg−1·K−1),
and A is the total heat transfer area (m2). In a cooling period, where the gas temperature, Tg, is lower
than the bed temperature, Tb, the gas temperature increases over time while the bed temperature
decreases dTb

dt < 0. During the heating period (Tg > Tb), the gas outlet temperature decreases with time,

while the bed temperature increases dTb
dt > 0.

Heat is recovered or absorbed by the flowing gas through the packed bed of the regenerator. Since
the gas flowing through the regenerator changes its temperature over time, we consider a change in
the y-axis (along the height of the regenerator).

mgCp,gL
∂Tg

∂y
+ MgCp,g

∂Tg

∂t
= htA

(
Tb − Tg

)
, (10)

where mg is the mass flow rate of gas (kg·s−1), Cp,g is the heat capacity of gas (J·kg−1·K−1), Mg is mass
of gas resident in the regenerator (kg), and L is the height of regenerator (m).

The most important assumption in this model is that the thermal conductivity of the packing
material is infinite in a direction perpendicular to gas flow (and zero in a direction parallel to the gas
flow). This implies that, at any level in the regenerator, the solid material is isothermal in a direction
perpendicular to gas flow, and this may be true or approximately true where the packing is thin or
is made of materials of high conductivity. In this case, the coefficient ht is the surface heat transfer
coefficient, usually a convective coefficient to which may be added a radiative component.

However, if the packing of the regenerator is constructed of material of low thermal conductivity
and/or the thickness of packing around the channels through which the gases flow is comparatively
large, then it is necessary to incorporate the resistances to heat transfer at the solid surface and within
the solid into a lumped or total heat transfer coefficient. Hausen [4] developed an equation to calculate
this heat transfer coefficient in the following form:

1
ht

=
1

hlum
+

1
hr

=
1
hc

+
d

2(n + 2)λb
φH +

1
hr

, (11)

where n = 1 for slabs (plane walls) of thickness d in (m), n = 2 for solid cylinders of diameter d in (m), and
n = 3 for spheres of diameter d in (m), λb is the thermal conductivity of packing material of regenerator
(W·m−1

·K−1), hlum is the lumped heat transfer coefficient (W·m−2
·K−1), hc is the convective heat transfer

coefficient (W·m−2
·K−1), and hr is the radiative heat transfer coefficient (W·m−2

·K−1). The lumped heat
transfer coefficient incorporates the surface convective heat transfer coefficient, hc, and the resistance
to heat transfer within the regenerator packing, as represented by the d

2(n+2)kφH therm. The total
heat transfer coefficient can be used in the conventional model of the thermal performance of the
regenerator, set out in the differential equations.

The function φH, called Hausen factor, attempts to reproduce the effect of the very rapid
temperature changes within the packing, immediately after a reversal, at the start of a hot or cold period.
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According to Reference [5], this factor can be calculated in the case that d2

4α

(
1
P′ +

1
P′′

)
≤ 5(n + 1)/2

using equation

φH = 1 −
d2

4α(n + 3)2
− 1

{ 1
P′

+
1

P′′
}
, (12)

and, for other values,

φH = π(n + 2)/

√(
ε+

d2

4α
18

{ 1
P′

+
1

P′′
})

, (13)

where α is the thermal diffusivity (m2
·s−1), P is the length of period for heating and cooling process (s),

ε = 2.7 for plates, ε = 9.9 for cylinders, and ε = 27.0 for spheres, Ω′ is the reduced time for hot period,
and Ω” is the reduced time for cold period.

This problem is described in more detail in Reference [5].

3.2. Differential Equations

Equations (9) and (10) were rearranged by Hausen [6] to the form

∂Tg

∂ξ
= Tb − Tg, (14)

and
∂Tb
∂η

= Tg − Tb, (15)

where ξ is the dimensionless length, and η is the dimensionless time.

η =
htA

MbCp,b

(
t−

Mg

mgL
y
)
, (16)

and
ξ =

htA
mgCp,gL

y. (17)

When t = P and y = L, each period of regenerator operation is defined in terms of two dimensionless
parameters given by Hausen [6] “reduced period”, Π, and “reduced length”, Λ.

Π =
htA

MbCp,b

(
P−

Mg

mg

)
, (18)

and
Λ =

htA
mgCp,g

. (19)

The effectiveness of regenerator behavior may be measured in terms of the thermal ratios, ηREG.
The thermal ratio for the heating period is η′REG and that for the cooling period is η′′REG. Ideally, the exit
gas temperature in the hot or cold period should be equal to the inlet gas temperature in the opposite
period. The thermal ratios, which are defined below, measure the degree to which this ideal is achieved.

For the heating period,

η′REG =
T′g,o, m − T′g,i

T′g,i − T′′g,i
, (20)

and, for the cooling period,

η′′REG =
T′′g,i − T′′g,o,m

T′g,i − T′′g,i
. (21)
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The term thermal ratio can be misleading in the sense that it is not always a measure of efficiency,
and perhaps the term temperature ratio might be more appropriate.

In fixed-bed regenerators, the exit gas temperatures vary with time. The chronological average
exit temperatures are, therefore, computed (T′g,o, m and T′′g,o,m).

For the symmetric regenerator (Λ = Λ′ = Λ”, Π = Π′ = Π”, and ηREG = η’REG = η”REG), an estimate
of the thermal ratio is given by

ηREG =
Λ

Λ + 2
. (22)

It can be seen that a larger reduced length leads to a greater thermal ratio.
Let us suppose that we have a heat balance, once cyclic equilibrium is attained,

m′gC′p,gP′
(
T′g,i − T′g,o

)
= m′′g C′′p,gP′′

(
T′′g,o − T′′g,i

)
. (23)

Dividing this equation by
(
T′g,i − T′′g,i

)
, we get

m′gC′p,gP′η′REG = m′′g C′′p,gP′′η′′REG. (24)

If m′gC′p,gP′ = m′′g C′′p,gP′′ , the regenerator is said to be balanced and both thermal ratios are equal.
Equation (24) can be converted to the following form:

Π′

Λ′
η′REG =

Π′′

Λ′′
η′′REG. (25)

We can say that, in general, a regenerator is balanced if

Π′

Π′′
=

Λ′

Λ′′
= k. (26)

If k = 1, the regenerator is said to be symmetric. Equation (25) can be modified to the following form:

Π′

Λ′
×

Λ′′

Π′′
= γ. (27)

If γ = 1, the regenerator is balanced.
When m′gC′p,gP′ , m′′g C′′p,gP′′ , this corresponds to the most general case where γ , 1, η′REG , η

′′

REG,
and the regenerator is said to be unbalanced. A summary of these classifications is presented in Table 1.

Table 1. Possible types of regenerators.

Nonsymmetric

Symmetric Balanced Unbalanced

Parameters Λ, Π Λ′, Π′, Λ”, Π” Λ′, Π′, Λ”, Π”

Relationships Λ = Λ′ = Λ”
Π = Π′ = Π” Π′/Π” = Λ′/Λ” = k , 1 Π′/Π” , Λ′/Λ”

Thermal ratios ηREG = η′REG = η”REG ηREG = η′REG ηREG , η
′
REG

γ 1 1 ,1

The previous equations apply if the regenerative heat exchanger is symmetric. Hausen [4]
proposed that the performance of a balanced nonsymmetric regenerator can be accurately estimated
using the symmetric regenerator model employing the harmonic reduced length ΛH and the harmonic
reduced period ΠH in both hot and cold periods.

2
ΛH

=
1

ΠH

(
Π′

Λ′
+

Π′′

Λ′′

)
, (28)
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and
2

ΠH
=

1
Π′

+
1

Π′′
. (29)

This proposal was verified as acceptable by Iliffe [7], and its applicability was extended to
unbalanced regenerators by Razelos [8]. The thermal ratio than can be calculated using Equation (22).

A factor K/K0 describing the effect of nonlinear variations of temperature using a factor is given in
Reference [4].

K
K0

=
ηREG

1− ηREG

2
ΛH

. (30)

A smaller value of K/K0 results in a greater effect of both the nonlinear variations of temperature
and the corresponding truncation error.

3.3. Calculation Methods

Several methods were developed to determine the solution of regenerative heat exchangers.
Some of them are shown in Figure 3. These methods can be divided into two groups: rapid and precise
methods. Rapid methods are intended only for fast and preliminary calculation and do not provide
sufficient accuracy. In addition, only the media outlet temperatures are the result. These methods are
not suitable for the application of real calculations and designs. Rapid methods were created mainly
before the expansion of computers. An example of a rapid method is given in Reference [4].
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Figure 3. Diagram of calculation methods used for the solution of regenerative heat
exchangers [4,7,9–14].

The most suitable methods for the design of these heat exchangers are precise methods which
involve the solution of differential equations, and the result is the variation of the media temperatures
at the outlet over time. These methods can be classified into two groups: open and closed. Each of
these two methods comprises two subgroups, namely, linear and nonlinear methods, according to the
way in which thermophysical properties of the gas and the storage material are calculated.

In the open methods, the gas and solid temperatures are evaluated by solving differential equations
over successive cycles of regenerator operation. The temperature profiles in each cycle and time are the
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result. We know the number of cycles to equilibrium at the end of the calculation. The closed methods
are those in which the steady-state performance is calculated directly without the consideration of
any previous cycles. In general, the closed methods are faster than open methods; however, when
using modern computers, the difference is slight. The closed methods appear to be suitable for solving
a linear problems, but are becoming extremely complicated (and sometimes unstable) in solving
nonlinear problems, i.e., the thermophysical properties of both fluid and solids, including heat transfer
coefficients, can vary spatially and temporally, depending on temperature and/or when mass flow rates
of fluids in one or both periods of regeneration operation may vary with time. Open methods show
great stability even when solving nonlinear problems. In these cases, open methods are preferable.
Another advantage of open methods is their easy modification by including equations for calculating
heat transfer coefficient and pressure drops.

For computer solutions, the open methods proposed by Willmott, given in References [9,10], seem
to be the most suitable. These methods were chosen because they are relatively easy to program,
and they involve the calculation of important parts (i.e., calculation of heat transfer coefficient,
calculation of radiation influence, calculation of pressure losses, geometric characteristics). In addition,
these methods enable including the effect of changes in the thermophysical properties of media flowing
through the packed bed in time (nonlinear model) and are more stable.

3.4. Selected Mathematical Model

The selected Willmott open method can be further divided into a linear, quasi-linear, and nonlinear
model. The difference between these models is in the calculation of the thermophysical properties of
gas and bed.

The linear model calculates the thermophysical properties of the gas and bed based on the
reference temperature, i.e., the properties are constant at each packed bed point and at every moment.
The calculation is fast, but it may not be accurate enough in some cases, especially when the temperature
changes significantly. The fluid properties are calculated at a reference temperature.

Tg,re f =
T′g,i + T′′g,i

2
. (31)

The quasi-linear model was described in Reference [13]. This model uses a different reference
temperature for hot and cold media.

T′g,re f =
T′g,i + T′g,o

2
; T′′g,re f =

T′′g,i + T′′g,o

2
. (32)

The outlet temperatures are replaced by the newly calculated ones, and the reference temperatures
are recalculated after each period or cycle. Based on these temperatures, all thermophysical properties
of fluids, packed bed material, and related values are recalculated.

The nonlinear model considers the change in gas and bed properties at the place and time as
a function of temperature. The heat transfer coefficient is then calculated from these properties at
every moment and place. This is important for the most realistic simulation of high-temperature
regenerators. The calculation is much more accurate but time-consuming. However, this is not a
considerable problem with up-to-date computers.

Reference [9] proposed a method for solving Equations (14) and (15) so that it could be used
for the solution on computers. This method uses a trapezoidal method for the numerical solution
of differential equations. This method of calculating the regenerator is known as the Willmott open
method. The simplifications introduced to the derivation and calculation of these differential equations
are as follows, according to Reference [9]:
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1. The effect of the reversals can be neglected, that is, the rapid gas temperature transients which
are associated with the residual gas in the regenerator being replaced by the gas flowing in the
opposite direction at the reversal can be ignored.

2. The entrance gas temperatures in both periods remain constant.
3. The mass flow rates of the heating and cooling gases do not vary throughout each period.
4. Heat transfer between gas and solid can be represented in terms of an overall heat transfer

coefficient relating gas temperature to mean solid temperature. Furthermore, the rate of heat
transfer in the packed bed at any height is represented by the time variation of the mean
solid temperature.

5. The heat capacity of the gas in the channels of the packed bed at any instant is small relative to
the heat capacity of the solid and, therefore, can be neglected.

6. The heat transfer coefficients and the thermal properties of the heat storing mass and the gas do
not vary throughout a period and are identical at all parts of the regenerator in that period.

7. Longitudinal thermal conductivity is neglected.

Boundary conditions
There are determined two boundary conditions.

1. The inlet temperatures for both hot and cold cycles are constant.
2. The surface temperatures along the length of the regenerator at the end of the hot/cold period

are the same as those at the beginning of the following cold/hot period. Since the gases flow in
opposite directions in successive cycles, the boundary conditions are expressed by the equations

T′b(y, 0) = T′′b (L− y, P′′ ),

T′′b (y, 0) = T′b(L− y, P′).

For the first cycle, the temperature along the bed is set arbitrarily, e.g., to ambient temperature.
In the following cycles, the mentioned condition is already applied.

Using the trapezoidal numerical method, which provides excellent properties of numerical
stability, the differential equations move to the following forms:

Tg r+1,S = Tg r,s +
∆ξ
2

(∂Tg

∂ξ

)
r+1,S

+

(
∂Tg

∂ξ

)
r,S

, (33)

and

Tb r,S+1 = Tb r,s +
∆η
2

(∂Tb
∂η

)
r+1,S

+

(
∂Tb
∂η

)
r,S

, (34)

where r refers to distance (r = 0..m) and S refers to the time (S = 0..P). Thus, the distance step is L/m and
the time step is mostly 1 s.

3.4.1. Linear Model

In the case of the linear model, these equations can be further adjusted to form

Tg r+1,S = A1Tg r,S + A2
(
Tb r+1,S + Tb r,S

)
, (35)

and
Tb r,S+1 = B1Tb r,S + B2

(
Tg r,S+1 + Tg r,S

)
, (36)

where

A1 =
1− α
1 + α

, A2 =
α

1 + α
, B1 =

1− β
1 + β

, B2 =
β

1 + β
,

α =
1
2

∆ξ =
Λ
2m

, β =
1
2

∆η =
Π
2P

.
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In these equations, Λ is the reduced length, Π is the reduced time, m is the number of sections,
and P is the cycle time.

These equations are the main equations needed to calculate the regenerative heat exchanger.
For the proper solution of these equations, the bed needs to be divided into a suitable number of
sections, in which the temperature calculations are gradually performed. The calculation is then a
combination of the above and other supplementary equations. The calculation is solved by an iterative
procedure for the given time over the entire length of the bed. This procedure is then repeated for all
times and all periods (cooling and heating) until equilibrium is reached, i.e., for consecutive cooling
cycles, abs (Φ(n) −Φ(n − 1)) must be less than the value given by the user. Then, the cycle (n + 1) is the
equilibrium cycle.

Φ(n) =
T′g,o, m − T′g,i

T′g,i − T′′g,i
. (37)

This is not an exhaustive description of the solution of differential Equations (33) and (34) using a
trapezoidal rule for a linear model. See Reference [9] for more information how to apply this method
to the computer. This basic computational model was developed in GNU Octave software and then
applied to several examples differing in reduced period value and reduced length. Subsequently,
the influence of these reduced quantities on the calculation was evaluated.

Case 1—taken from Reference [9]
The input data of the calculation are given in Table 2. The task was to calculate the outlet

temperature of the hot and cold medium for the different number of sections m. If we divide the
regeneration bed into a small number of sections, the outlet temperature does not correspond to reality
(see the results).

Table 2. Input data for calculation.

Hot Cold

Tg,i 1000 0 ◦C
Λ 6 3.5 -
Π 6 3.5 -
P 12 6 s

K/K0 0.73 -

The results of the calculation are shown in graphical form in Figure 4.

Energies 2020, 13, x FOR PEER REVIEW 11 of 29 

 

Λ 6 3.5 - 

Π 6 3.5 - 

P 12 6 s 

K/K0 0.73 - 

The results of the calculation are shown in graphical form in Figure 4. 

 

(a) 

 

(b) 

Figure 4. Influence of number sections on outlet temperature obtained by the basic calculation model: 

(a) for the heating period; (b) for the cooling period. 

These calculations showed that the accuracy of the outlet temperature is dependent on the 

number of sections on which the regenerator (packed bed) is divided. In this case, the limit number 

of sections is 10. However, this is not true in all cases. From further calculations, it was possible to 

prove that, with a higher value of reduced length, the required number of sections on which the 

packed bed must be divided decreases; however, at the same time, the number of cycles needed to 

reach the equilibrium increases. On the other hand, as the reduced period increases, the number of 

sections (steps) increases, but the number of cycles necessary to establish equilibrium decreases. I 

suggest having a minimum of 50 sections. This is no problem for computers. 

3.4.2. Nonlinear Model 

The linear model considers only the constant properties of fluids. This means faster calculation; 

however, in some cases, the results may differ significantly from reality. Such a procedure is only 

suitable for preliminary calculations. More accurate results are obtained when changing the 

properties of fluid with a change in temperature. This model is called the nonlinear model. 

In the case of the nonlinear model, Equations (33) and (34) can be further adjusted to form 

𝑇𝑔 𝑟+1,𝑆 = 𝐴1,𝑟,𝑆𝑇𝑔 𝑟,𝑆 + 𝐴2,𝑟+1,𝑆𝑇𝑏 𝑟+1,𝑆 + 𝐴3,𝑟,𝑆𝑇𝑏 𝑟,𝑆, 
(38) 

and 

𝑇𝑏 𝑟,𝑆+1 = 𝐵1,𝑟,𝑆𝑇𝑏 𝑟,𝑆 + 𝐵2,𝑟,𝑆+1𝑇𝑔 𝑟,𝑆+1 + 𝐵3,𝑟,𝑆𝑇𝑔 𝑟,𝑆, 
(39) 

where 

𝐴1,𝑟,𝑆 =
1 − 𝛼𝑟,𝑆

1 + 𝛼𝑟+1,𝑆

, 𝐴2 =
𝛼𝑟+1,𝑆

1 + 𝛼𝑟+1,𝑆

, 𝐴3,𝑟,𝑆 =
𝛼𝑟,𝑆

1 + 𝛼𝑟+1,𝑆

 ,  

𝐵1,𝑟,𝑆 =
1 − 𝛽𝑟,𝑆

1 + 𝛽𝑟,𝑆+1

, 𝐵2,𝑟,𝑆+1 =
𝛽𝑟,𝑆+1

1 + 𝛽𝑟,𝑆+1

, 𝐵3,𝑟,𝑆 =
𝛽𝑟,𝑆

1 + 𝛽𝑟,𝑆+1

, (1) 

𝛼 =
1

2
Δ𝜉 =

𝛬
2𝑚

, 𝛽 =
1

2
Δ𝜂 =

𝛱
2𝑃

. (2) 

These constants are calculated in every point and time with changing temperature. This is not 

an exhaustive description of the solution of differential Equations (33) and (34) using a trapezoidal 

Figure 4. Influence of number sections on outlet temperature obtained by the basic calculation model:
(a) for the heating period; (b) for the cooling period.

These calculations showed that the accuracy of the outlet temperature is dependent on the number
of sections on which the regenerator (packed bed) is divided. In this case, the limit number of sections
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is 10. However, this is not true in all cases. From further calculations, it was possible to prove that,
with a higher value of reduced length, the required number of sections on which the packed bed must
be divided decreases; however, at the same time, the number of cycles needed to reach the equilibrium
increases. On the other hand, as the reduced period increases, the number of sections (steps) increases,
but the number of cycles necessary to establish equilibrium decreases. I suggest having a minimum of
50 sections. This is no problem for computers.

3.4.2. Nonlinear Model

The linear model considers only the constant properties of fluids. This means faster calculation;
however, in some cases, the results may differ significantly from reality. Such a procedure is only
suitable for preliminary calculations. More accurate results are obtained when changing the properties
of fluid with a change in temperature. This model is called the nonlinear model.

In the case of the nonlinear model, Equations (33) and (34) can be further adjusted to form

Tg r+1,S = A1,r,STg r,S + A2,r+1,STb r+1,S + A3,r,STb r,S, (38)

and
Tb r,S+1 = B1,r,STb r,S + B2,r,S+1Tg r,S+1 + B3,r,STg r,S, (39)

where

A1,r,S =
1− αr,S

1 + αr+1,S
, A2 =

αr+1,S

1 + αr+1,S
, A3,r,S =

αr,S

1 + αr+1,S
,

B1,r,S =
1− βr,S

1 + βr,S+1
, B2,r,S+1 =

βr,S+1

1 + βr,S+1
, B3,r,S =

βr,S

1 + βr,S+1
,

α =
1
2

∆ξ =
Λ
2m

, β =
1
2

∆η =
Π
2P

.

These constants are calculated in every point and time with changing temperature. This is not an
exhaustive description of the solution of differential Equations (33) and (34) using a trapezoidal rule for
a nonlinear model. See Reference [10] for more information how to apply this method to the computer.

4. Pressure Drops

A very important value in designing a regenerative heat exchanger or, generally, a device using a
packed or structured material layer is the amount of pressure drop of the flowing gas. The general
equation for its calculation is mostly defined as

∆p = λk
L
dp

c2
×
(1− ε)
ε3 × ρ, (40)

where c is the velocity of gas based on the empty cross-section of the bed (m·s−1), and λk is the friction
factor, most often given in the form

λk =
k1

Rem
+

k2

Reb
m

, (41)

where k1 and k2 are constants, and b is the exponent. Rem is the modified Reynolds number given by
Ergun as follows:

Rem =
dpρc

η(1− ε)
=

Re
(1− ε)

. (42)

Pressure drop in the packed bed is commonly calculated using the Ergun equation [2].

λk =
−∆P dp

Lρc2
ε3

(1− ε)
=

150
Rem

+ 1.75. (43)
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According to Reference [15], this equation very often over-predicts the respective value, and it is
better to use special equation tailored to specific storage materials which are based on experimental data.

Ergun also defined the friction coefficient in the shape

λv =
−∆P d2

p

µLc
ε3

(1− ε)2 = λk
Re

1− ε
= λkRem. (44)

Sometimes, friction coefficient proposed in Reference [16] is used.

λp =
−∆P dp

Lρc2 = λk
(1− ε)
ε3 = λv

(1− ε)2

ε3 Re
. (45)

The Reynolds number is often also given in a modified form, which is defined by the equation

Rel =
dpρc

6η(1− ε)
=

Re
6(1− ε)

. (46)

There are many correlations for calculating the friction coefficient. The best known is the Ergun
equation mentioned above, but it overestimates pressure drop for a bed of randomly arranged smooth
spheres for Rem > 700.

Based on an extensive comparison of the computational equations for determining the pressure
drop through the packed bed performed in Reference [17], the computational equations listed in Table 3
were selected.

Table 3. Suitable equations for calculating of friction coefficient for the packed bed of spheres.

Autor(s) Equation Range of Validity

Erdim [17] λv = 160 + 2.81Re0.904
m 2 < Rem < 3600

Fahien and Schriver [18]

λk = q f1L
Rem

+ (1− q)
(

f2 +
f1T

Rem

)
q = exp

(
−
ε2(1−ε)

12.6 Rem

)
f1L = 136

(1−ε)0.38

f1T = 29
(1−ε)1.45ε2

f2 = 1.87ε0.75

(1−ε)0.26

NA
it can be consider

0.2 < Rel < 700

KTA [19] λk =
160
Rem

+ 3
Re0.1

Erg
1 < Rem < 100, 000

Harrison, Brunner and Hecker [20]

λk =
119.8A

Rem
+ 4.63B

Re
1
6
Erg

A =
(
1 + π

dp

6(1−ε)D

)2
B = 1−

π2dp

24D

0.32 < Re < 7700

Carman [21] λk =
180
Rem

+ 2.871
Re0.1

m
0.01 < Rel < 10, 000

Brauer [22] λk =
160
Rem

+ 3.1
Re−0.1

m
0.01 < ReErg < 20, 000

Eisfeld and Schnitlein [23]

λk =
K1M2

Rem
+ M

BW

M = 1 +
2dp

3(1−ε)D BW =

[
k1

(
dp
D

)2
+ k2

]
K1 = 154 k1 = 1.15 k2 = 0.87

0.01 < Re < 17, 635

Ergun [2] λk =
150
Rem

+ 1.75 0.2 < Rel < 700

Hicks [24] λk =
6.8

Re0.2
m

300 < Rem < 60, 000
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There are several other computational equations. These are mentioned, for example,
in Reference [15], which deals with the effect of particle shape, size distribution, packing arrangement,
and roughness of particles on pressure drop.

The Eisfeld and Schnitlein equation (see Table 3) using the constants K1 = 190, k1 = 2.00, and k2 = 0.77
can be used for the cylindrical shapes of the particles. For other particles, the constants K1 = 155,
k1 = 1.42, and k2 = 0.83 can be used.

For non-spherical particles, Reference [25] proposed altering the constants in the Ergun equation
by means of the particle sphericity ψ. For cylindrical particles, the friction factor is altered to

λk =
150

ψ3/2Rem
+

1.75
ψ4/3

. (47)

This equation is based on experimental data for Rem < 400.
Singh et al. [26] presented a correlation for pressure drop through beds of differently shaped

particles in the form

λk =
ε3

(1− ε)
4.466Re−0.2ψ0.696ε−2.945e11.85(logψ)2

. (48)

This is not an exhaustive list of all available computational equations to determine the friction
coefficient as the medium flows through the packed bed. Other equations can be obtained in
References [15,17].

For calculating the pressure drop across a layer consisting of a set of straight channels, e.g.,
honeycomb, the formulas for calculating pressure drop in a straight channel can be used.

∆p = λ
c

2ε
h
dh
ρ, (49)

where the friction factor can be calculated using the Swamee–Jain equation [27].

λ =
0.25[

log
( e

dh
3.7 + 5.74

Re0.9

)]2 , (50)

where e is the effective roughness height (m), and dh is the hydraulic diameter (m).
An important value is the pressure drop of the sieve on which the bed is placed. This pressure

drop must also be determined and included in the total pressure drop.

5. Voidage Calculation

The pressure drop is strongly influenced by the mean voidage in the packed bed. In industrial
practice, a large number of different non-spherical shaped particles are used, which form the bed
and have different voidage. The most cited and experimentally verified effect on voidage is the ratio
of regenerator diameter to equivalent particle diameter. This effect is most significant for a ratio of
diameters less than 10 (see Figure 5). If the bed consists of non-spherical particles, their diameter is
expressed by the equivalent diameter dp. In the randomly packed bed, other than spherical particles,
the influence of particle orientation affects the local distribution of the voidage, which affects the mean
voidage. This means that different medium voidage can be achieved with each filling of the packing.
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Among the most used empirical formulas for calculating the voidage are those from
References [28–32]. These equations tend to be awkward and have too many parameters. Due to
the complexity of using the mentioned equations, simpler but sufficiently accurate equations were
developed to calculate the voidage. Some of them are listed below.

The equation designed by Zou and Yu [33] and recommended by Di Felice and Gibilaro [34] is in
the form

ε = εb + 0.01
[
exp

(
10.686
D/dp

)
− 1

]
, (51)

for
dp
D ≤ 0.256.
By analyzing experimental data, Zou and Yu suggested a coefficient of εb = 0.4, while Reference [35]

suggested that εb = 0.373, a value derived from their own data (subscript b means a bulk region).
Benyahia et al. [36] developed the following equations based on the measured data:
For spherical particles (1.5 ≤ D/dp ≤ 50),

ε = 0.390 +
1.740(

D/dp + 1.140
)2 . (52)

For solid cylinders (1.7 ≤ D/dp ≤ 26.3),

ε = 0.373 +
1.703(

D/dp + 0.611
)2 . (53)

For hollow cylinders (1.9 ≤ D/dp ≤ 14.5),

ε = 0.465 +
2.030(

D/dp + 1.033
)2 . (54)

Pro general particles (1.5 ≤ D/dp ≤ 50; 0.42 < ψ < 1.0),

ε =

(
0.1504 +

0.2024
ψ

)
+

1.0814(
D/dp + 0.1226

)2 . (55)
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The course of the voidage versus the D/dp ratio is shown in Figure 5. It can be seen that, up to value
10, the voidage strongly depends on this ratio. From this value, the voidage is approximately constant.

6. Heat Transfer Calculation

Determination of the heat transfer coefficient of the gas flowing through the packed bed is the
most sensitive point of the calculation. Even if we set the correct number of sections and consider the
variable properties of the fluids and the packed bed material, if we determine the wrong heat transfer
coefficient, we get poor results.

The heat transfer coefficient mostly includes the effect of both convection and radiation for
both streams. Heat transfer coefficient depends predominantly on the type of storage material.
The respective equations for convective heat transfer were published, e.g., in Reference [37], while
those for radiative heat transfer were discussed, e.g., in Reference [38].

The heat flux density q between the gas and the packed bed material can be expressed as follows:

q = qc + qr = ht
(
Tg − Tb

)
, (56)

where qc is the convective heat flux density (W·m−2), qr is the radiative heat flux density (W·m−2),
and the total heat transfer coefficient is defined as

ht = hc + hr. (57)

The influence of the conductive transfer is negligible compared to the others. As mentioned
previously, the convective component must be, in some cases, replaced by the effective heat transfer
coefficient hlum.

ht = hlum + hr. (58)

6.1. Convective Heat Transfer Coefficient

The choice of the heat transfer coefficient is a crucial factor. Many computational equations can
be found to calculate the heat transfer coefficient in the literature. However, they can give different
results. It is necessary to choose a computational equation that was verified for the particles that form
the packed bed.

The equation for a randomly packed bed (Equation (59)), which was verified on experimental
data, was recommended in Reference [39].

Nu =
hcdp

λg
= 2 + 1.8Re1/2Pr1/3, (59)

for Pr = 0.7–0.8, Re > 100. Here, λg is the thermal conductivity (W·m−1
·K−1), Re is the Reynolds number

(-), and Pr is the Prandtl number (-).
The heat transfer coefficient in the packed bed of spheres can be calculated according to

Reference [40] using the following equation:

Nu =
hcdp

λg
= 0.584Re0.7Pr1/3, (60)

for Re = 500–50,000. This equation was also recommended in Reference [41]. A significant wall effect
was observed at ratios of bed diameter to particle diameter less than 20. Above that ratio, this equation
is valid.

An equation for a packed bed formed with spheres was recommended in Reference [42].

Nu =
hcdp

λg
= 1.09Re0.68Pr1/3, (61)
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for Re = 200–10,400.
Another suitable equation was mentioned in Reference [40].

Nu =
hcdp

λg
= εRePr1/3

(
0.0108 +

0.929
Re0,58 − 0.483

)
. (62)

This equation takes into account the voidage, ε, and it is valid for a Reynolds number of 20–10,000.
The equation for flow in a packed bed can also be used [43].

Nu =
hcdp

λg
=

(
0.5Re0.5 + 0.2Re2/3

)
Pr1/3, (63)

for 20 < Re < 100,000.
As mentioned in Reference [44], the heat transfer performances in a packed bed are usually

formulated by traditional correlation as follows:

Nu =
hcdp

λg
= a1 + a2Pr1/3Ren

(
dp

dh
ε

)n

, (64)

where a1, a2, and n are model constants. The values of these constants given by Reference [44] are
a1 = 2.0, a2 = 1.1, and n = 0.6. Values of these constant for different packed cells were mentioned in
Reference [45].

An experimental study was carried out to investigate the heat transfer of packed bed solar energy
storage system having large-sized elements of storage material of different shapes [26].

Nu =
hcdp

λg
= 0.437Re0.75ψ3.35ε−1.62e29.03(logψ)2

. (65)

The heat transfer in the structured packed bed formed by straight channels can be determined
using the following basic equation:

Nu =
hcdp

λg
= 0.023Re4/5Pr1/3. (66)

6.2. Radiative Heat Transfer Coefficient

In certain high-temperature applications, the heat exchanger is heated up by a flue gas containing
significant proportions of CO2 and H2O vapor. In these circumstances, the radiation heat transfer must
be considered.

The heat flux density due to gas–solid radiation is given by

qr =
εb + 1

2
σ
[
εgT4

g − αgT4
b

]
, (67)

where εg and αg are the emissivity and mean absorptivity of gases (-), respectively, εb is the emissivity
of bed material (-), and σ is Stefan Boltzmann’s constant, 5.67 × 10−8 (W·m−2

·K−1). The fraction of εb+1
2

is sometimes called the emissivity correction factor.
The values of emissivity and absorptivity are proportional to the percentage of carbon dioxide and

water vapor in the gas and to the beam length. Both are functions of the gas temperature. These values
can be obtained from Hottel’s charts [46] or using the methods given in the literature.

qr = hr
(
Tg − Tb

)
. (68)
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According to Reference [47], it is possible to calculate the radiative heat transfer hr using the
equation mentioned in Reference [48].

hr ≈ 4σεbT3
b . (69)

More specifically, however, the emissivity and gas absorption can be determined based on the
mean beam length (m), Lb, in a given space and on the partial pressures of the respective radiant gas
components. Several methods can be found in the literature.

The mean beam length Lb is determined from a known equation for the case when Lb > 1 m,

Lb =
3.6V

P
, (70)

and, for the case when Lb < 1 m,

Lb =
3.4V

P
, (71)

where V is the mean channel volume (m3), and P is the mean inner surface of the channel in the packed
bed (m2).

The emissivity of gas can be calculated using the equation from Reference [49].

εg =
[
εCO2 +

(
εH2OCH2O

)]
(1−CSO), (72)

where εCO2 is the emissivity of carbon dioxide (-), εH2O is the uncorrected emissivity of water vapor
(-), CH2O is Beer’s law correction factor for water vapor (-), and CSO is the spectral overlap correction
factor (-).

The emissivity of carbon dioxide (εCO2) is a function of temperature and the product (pCO2L),
where pCO2 is the partial pressure of carbon dioxide in the gases (Pa) and Lb is the mean beam length
(m). Thus,

εCO2 = f
(
pCO2Lb, Tg

)
. (73)

The emissivity of water vapor (εH2O) is a function of temperature and (pH2OLb), where pH2O is the
partial pressure of water vapor (Pa) and Lb is the mean beam length (m). Thus,

εH2O = f
(
pH2OLb, Tg

)
. (74)

Mean absorptivity of gas (αg) is estimated using the equation from Reference [49].

αg =
(
αCO2 + αH2O

)
(1−CSO) =

εCO2

(
Tg

Tb

)0.65+ [
εH2OCH2O

(
Tg

Tb

)n], (75)

where n = 0.5 for Tb < 500 ◦C, n = 0.4 for Tb > 900 ◦C, and n = 0.45 for 500 ◦C < Tb < 900 ◦C.
The emissivity of carbon dioxide (εCO2) and water vapor (εH2O), and the absorptivity of gases can

be computed using methods available from the literature [50–53].

6.3. Heat Losses

If the wall of the regenerator is not sufficiently insulated, the heat losses through the wall of the
equipment should also be included in the calculation.

These are defined as follows:
Qw = hoAw

(
Tw − Tin f

)
, (76)

where Aw is the wall area (m2), Tw is the wall temperature (◦C), Tinf is the ambient temperature (◦C),
and ho is the outside convective heat transfer coefficient (W·m−2

·K−1).
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For vertical cylinders, the convective heat transfer coefficient ho is calculated from a correlation of
Churchill and Chu [54] for plane surfaces as

Nu =
hoH
λo

=

0.825 +
0.387Ra

1
6[

1 + (0.492/Pr)9/16
]8/27


2

, (77)

where H is the height of the regenerator (m), and Ra is the Rayleigh number given as follows:

Ra =
gβ(Tw − T∞)H3

αν
. (78)

where H is the height of the regenerator (m), g is the gravity acceleration (m·s−2), β = 1
T f

= 2
Tw+Tin f

is the

thermal expansion coefficient (K−1), α is the thermal diffusivity (m2
·s−1), and ν is the kinematic viscosity

of gas (m2
·s−1) as defined in the temperature of Tf. Validity of the correlation is in the range 10−1 < Ra

< 1012. This correlation can be used provided the curvature effect is not too significant. This represents
the limit where boundary layer thickness is small relative to cylinder diameter D. The correlations for
vertical plane walls can be used when D/L ≥ 35/Gr0.25 where Gr is the Grashof number.

7. Software Implementation of the Model

Since no software was found on the market to design regenerative heat exchangers, it had to be
created. The abovementioned Willmott methods for the linear and nonlinear model, together with
mentioned equations for determination of heat transfer and pressure drop, were used in creating the
computational software. To make the software user-friendly, the JAVA environment was used to build
the software. The created calculation software (see Figure 6) enables effectively solving these types
of heat exchangers, and it provides results in the form of text output and graphical dependencies of
temperatures and pressure drops along the packed bed and over time. The software enables a user to
print input data, text results, and various graphical dependencies. It is also possible to save these data
and charts in various graphic file formats and copy dependencies in text form to Excel.
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In order to perform the calculation, the user must specify the geometric characteristics of the
packed bed, the media properties, the time of hot and cold period, the number of sections into which
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the packed bed is divided, and so on. Furthermore, the method of calculation and suitable equations
for calculating heat transfer and pressure drop are selected.

The code of the created software has thousands of lines and it consists of many classes (for various
methods, heat transfer, pressure drop, display results, saving, etc.); therefore, it is not possible to show
all the code here. As mentioned in the article, the trapezoidal method is used to solve differential
equations. A small part of the code for solving differential Equations (33) and (34) for the hot period is
shown in the gray rectangle below.
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and then insert their constants into the software. The next step would be to add the possibility of
using the regenerative heat exchanger for flue gas cleaning. This means the software would be able to
divide the packed bed into a part where heat accumulation or heat output occurs and a part where the
chemical reactions (catalytic bed) take place.

The developed software was used to solve the regenerative heat exchanger. It should be noted the
software is still being developed and improved.

Case Study

The task was to utilize the heat from the gas stream at an inlet temperature of 727 ◦C and to
heat up the gas at an inlet temperature of 27 ◦C with the accumulated heat. Flow rates, hot and cold
periods, and media properties are given in Table 4. A regenerative heat exchanger with a packed
bed diameter of 0.2 m and a height of 1 m should be used. The geometry of the regenerator and
properties of the packed bed are given in Table 5. The Willmott linear method was used for calculating
the heat exchanger.

Table 4. Properties of hot and cold fluid.

Hot Gas Cold Gas

Mass flowrate 79.2 79.2 kg·h−1

Input temperature 727 27 ◦C
Period 600 600 s

Density 0.51 0.51 kg·m−3

Dynamic viscosity 364 × 10−7 364 × 10−7 Pa·s
Heat capacity 1060 1060 J·kg−1

·K−1

Thermal conductivity 0.046 0.046 W·m−1
·K−1

Table 5. The geometry of the regenerator and properties of the packed bed.

Bed Diameter 0.2 m

Bed height 1 m
Number of sections 100 -
Type of packed bed Ceramic balls -

Ball diameter 0.03 m
Voidage 0.38 -
Density 3970 kg·m−3

Heat capacity 765 J·kg−1
·K−1

Therma conductivity 15.8 W·m−1
·K−1

Thermal diffusivity 0.463 × 10−6 m2
·s−1

It should be noted that the cooling period means that the bed is cooling down and the heating
period means that the bed is heating up.

Convergence is attained when the pseudo-thermal ratios given by Equation (37) in two subsequent
cycles are numerically equal, with a difference of less than 1 × 10−6. According to the calculation
results, the equilibrium was reached after 18 cycles, and the calculation time was 48 milliseconds. It is
obvious that the calculation is fast. The main results are shown in Table 6, and graphical dependencies
of temperatures and pressures are shown in the figures below. These are only basic graphical outputs
provided by the software. Similarly, the output text protocol contains much more data than shown in
Table 6.
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Table 6. Basic results of the calculation.

Cold Gas Hot Gas

Input temperature 27.0 727.0 ◦C
Out. temp. at the start of the period 702.7 51.4 ◦C
Out. temp. at the end of the period 576.2 178.2 ◦C

Heat transfer coefficient 92.7 92.7 W·m−2·K−1

Velocity of gas 3.6 3.6 m·s−1

Efficiency of regenerator 87.8 %
Heat transfer area 3.9 m2

Mass of packed bed 77.3 kg
Mena pressure drop 3141 3573 Pa

The basic graphical output is the course of the gas temperatures and the packed bed at the outlet as
a function of time (see Figure 7). It can be seen the temperature of the cold medium at the outlet is the
highest at the beginning of the period. Gradually, the stored heat decreases and the outlet temperature
of the cold gas falls. The opposite situation occurs with hot gas. The hot gas transfers most heat at the
start of the period and, gradually, the ability of the bed to absorb energy decreases and the hot gas
outlet temperature increases.Energies 2020, 13, x FOR PEER REVIEW 23 of 29 
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Figure 7. Dependences of temperatures on the time.

Figure 8 shows the temperature variations of the packed bed material along with its height for the
hot and cold periods at steady state. It can be seen that the packed bed has the highest temperature
in the first sections. With an increase in the height of the packed bed, the temperature decreases
significantly. This is the reason why both media flow gradually in opposite directions.
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Figure 9a,b illustrates that the temperature profiles of the gaseous phase along the bed gradually
change with time. In this calculation, they were obtained after a simulation of 18 cycles from the initial
condition. Moreover, these figures predict the temperature variations at the same location of the bed
but different time of the period.Energies 2020, 13, x FOR PEER REVIEW 24 of 29 
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for the heating period.

The pressure drop variations for the hot and cold periods over time is shown in Figure 10.
When calculating the pressure drop, the variable physical properties of the gases as a function of
temperature were considered. The pressure drop increases with the temperature, while the gas volume
increases with temperature and, hence, medium velocity increases. The pressure drop increases during
the heating process and decreases during the cooling process with time. Thus, the pressure drop
variations correspond to the temperatures shown in Figures 7 and 9.
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The text and graphical results shown in the paper are not complete results provided with the
software. They represent only a selection of the main results.

8. Summary

Our task was to create software for calculating regenerative heat exchangers with a fixed bed
at the request of an engineering office in the Czech Republic. Research revealed there are several
computational methods that differ in accuracy and computational stability. It was shown that the open
computational methods proposed by Willmott seem to be the most suitable for use on a computer.
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Although these methods are several years old, they were not suitable because of their complexity at
the time of their creation. In subsequent years, the methods were simplified in order to facilitate and
accelerate the calculation. This is because, for the exact solution of these types of exchangers, it is
necessary to solve the system of differential equations. With the development of computers, however,
the situation changed, and these methods are again up to date. The advantage of these methods is their
stability and possibility to adjust them by adding suitable calculation formulas for the determination
of heat transfer and pressure drop.

The impulse to create this paper was also to broaden the awareness of regenerative heat exchangers,
to provide designers with an overview of suitable calculation methods and, thus, to extend the interest
and use of these types of heat exchangers. This is the reason why not only calculation methods, but also
equations for determining the heat transfer coefficient of convection and radiation and equations for
predicting pressure drops are mentioned in the paper. Potential candidates for the calculations of these
devices are given as an overview of suitable calculation methods and equations, and one does not
need to extensively search for them in the available literature.

Funding: This research has been supported by the project No. CZ.02.1.01/0.0/0.0/16_026/0008413 “Strategic
partnership for environmental technologies and energy production”, which has been co-funded by the Czech
Ministry of Education, Youth and Sports within the EU Operational Programme Research, Development
and Education.

Acknowledgments: The authors gratefully acknowledge the financial support provided by the EU project
Strategic Partnership for Environmental Technologies and Energy Production, funded as project No.
CZ.02.1.01/0.0/0.0/16_026/0008413 by the Czech Republic Operational Program Research, Development, and
Education, Priority Axis 1: Strengthening capacity for high-quality research.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

Greek symbols
a absolute specific surface (m−1)
ar relative specific surface (m−1)
Ap particle surface area or heat transfer surface area (m2)
As surface area of a sphere that has the same volume as the particle (m2)
Aw wall area (m2)
b exponent in the Equation (41) (-)
c velocity of gas based on the empty cross-section of the bed (m·s−1)
Cp heat capacity (J·kg−1·K−1)
CH2O Beer’s law correction factor for water vapor (-)
CSO spectral overlap correction factor (-)
D diameter of packed bed or regenerator (m)
dh hydraulic diameter of packed bed (m)
dV diameter of a sphere that has the same volume as the particle (m)
dp particle diameter which has the same surface-to-volume ratio as the given particle (m)
e effective roughness height (m)
g gravity acceleration (m·s−2)
hc convective heat transfer coefficient (W·m−2

·K−1)
hlum lumped heat transfer coefficient (W·m−2

·K−1)
ho outside convective heat transfer coefficient (W·m−2

·K−1)
hr radiative heat transfer coefficient (W·m−2

·K−1)
ht total heat transfer coefficient (W·m−2

·K−1)
k1 k2 constants in the Equation (41) (-)
K/K0 ratio specified in the Equation (30) (-)
L height of regenerator (m)
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Lb mean beam length (m)
m number of section (-)
Mb mass of packed bed (kg)
mg mass flow rate of gas (kg·s−1)
Mg mass of gas resident in the regenerator (kg)
n number of cycles (-)
Nu Nusselt number (-)
P length of period (s)
P mean inner surface of the channel in the packed bed in Equations (70) and (71) (m2)
pCO2 partial pressure of carbon dioxide in the gases (Pa)
pH2O partial pressure of water vapor (Pa)
Pr Prandtl number (-)
q total heat flux density (W·m−2)
qc convective heat flux density (W·m−2)
qr radiative heat flux density (W·m−2)
r refers to the distance (m)
rh hydraulic radius (m)
Ra Rayleigh number (-)
Re Rem Rel Reynolds number (-)
S refers to the time (s)
t time (s)
Tb mean temperature of packed bed (◦C)
Tg temperature of the gas flowing through the bed (◦C)
Tw wall temperature (◦C)
Tinf ambient temperature (◦C)
V mean channel volume in Equations (70) and (71) (m3)
Vb total volume of the packed bed (m3)
Vp volume of the material of the packed bed (m3)
Vm free volume of the packed bed (m3)
Superscripts
′ refers to heating period
” refers to cooling period
Substricpts

b packed bed
g gas
H harmonic
i input
m mean value or modified (for Reynolds number)
o output
r refers to distance
ref reference value
S refers to time
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