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Abstract: The paper describes the sensitivity analysis of a wireless power transfer link involving an
implanted antenna within the surrounding biological environment. The approach combines a 3D
electromagnetic modeling and a surrogate model (based polynomial chaos expansion). The analysis
takes into account geometrical parameters of the implanted antenna and physical properties of the
biological tissue. It allows researchers to identify at low cost the main parameters affecting the
efficiency of the transmission link.
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1. Introduction

Implantable Medical Devices (IMDs) have been popularly studied recently. As the modern health
care system evolves, IMDs are used frequently in order to continuously monitor personal health
conditions. IMDs has the potential to be light and small and able to serve various applications. However,
the huge difficulty for the utilization of IMDs is their charging since no wire could be connected
to an in-body IMD. Highly integrated radio-frequency (RF) circuits and developments of wireless
inductive links have a significant impact on IMDs [1–3]. Miniaturized antennas provide wireless
communication capability to transmit signals through organs or tissues towards a receiver outside the
body and/or receive commands to adjust the implant settings. They also allow continuous monitoring
and therapeutic treatment without constraints to the patient’s mobility. Medical implants have the
advantages of being light and small. These antennas can obtain real-time information in biomedical
telemetry and transmit physiological data to the external antenna. For different purposes, they are used
for body-centric communication [4], glucose monitoring [5], and other body parts of telemetry [6–8].
Since the charging process is always noninvasive, obtaining an optimal electromagnetic link is
challenging, necessitating, among others, designation of several design parameters like operational
frequency, implanted device shape, and maximum power deposited on the tissues while implant
size needs to be minimal to avoid tissue damage and increase patient safety. For biomedical uses,
several frequency bands are authorized: Medical Device Radiocommunication (MedRadio) Service
band (401–406 MHz), and the Industrial, Scientific, and Medical (ISM) bands (433.1–434.8 MHz,
868–868.6 MHz, 902.8–928 MHz and 2.4–2.5 GHz). Also, a Radio Frequency (RF) medical energy
transmission system normally consists of two parts: an antenna for receiving energy from external
power source and a rectifying circuit for converting AC power to DC power [9–12].

As one of the three common methods for wireless power transfer in large scale, microwave
radiation has its own advantages by operating in the farfield range: smaller and more robust to physical
positioning or disorientations than two other transmission methods, and perfectly fit the requirements
for an IMD. Therefore, many researches have been published with their own designs or analyses in this
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domain: H. Zhang et al. have designed an antenna embedded into muscle phantom at 2.4 GHz [13];
A. Kiourti et al. have also proposed and tested their design which is implanted into head model at
400 MHz [14]; the research team of A. Mohamed has studied another miniaturized antenna that is
simulated in a skin box as well [15].

In [16], a miniaturized circular antenna was designed to support both energy and information
transmission. The antenna is embedded into a three-layer cylindrical model of arm and its performance
is evaluated. It has dual resonant frequency which covers MedRadio (401–406 MHz) and ISM bands
(902–928 MHz). The wireless transmission link was analyzed and allowed to determine the amount
of power that could be received from an external antenna at maximum authorized input power.
However, it was observed that the performance of the implanted antenna and the characteristics of the
transmission link are highly dependent on many parameters defining the electromagnetic problem.
Geometrical parameters considered in the study like implantation depth, orientation of the antenna,
and distance between exciting source and embedded antenna strongly affect the overall efficiency
of the system. Also, physical parameters relevant to materials used for the miniaturized system or
relevant to the environment (biological tissues) impact the global efficiency.

Indeed, 3D computational models can be applied for solving the global electromagnetic problem
involving implanted antenna and the environment. Such full wave computational approaches give
reliable results about the resulting efficiency of the transmission link, taking into account inhomogeneous
materials and fine details of the implanted system. Nevertheless, any modification in the problem needs
to run again the 3D simulation and in case of parametric or sensitivity analysis this may lead to heavy
computational burden. In such a situation, the introduction of stochastic tools allows researchers to
deal with the variability of all the parameters describing the electromagnetic problem. Such approaches
were shown to be very efficient in the framework of the determination of specific rate absorption (SAR)
in biological tissues due to mobile phones at microwaves frequencies [17–19] and more recently to
electromagnetic compatibility problems [20].

This paper shows that a surrogate model based on polynomial chaos expansion (PCE) provides
a powerful tool for optimizing the performances of the transmission link and perform a sensitivity
analysis at low cost. In particular, such PCE gives straightforward results regarding Sobol’s indices
highlighting the most significant geometrical parameters in the study.

2. Implanted Antenna Scenario and Transmission Link

In fact, many factors could affect the power transmission efficiency, especially with the presence
of an extremely lossy material like human tissue. But these factors are not often studied by researchers
nowadays. In this paper, a parametric uncertainty study on a biomedical wireless power transmission
link is performed. As presented in Figure 1, a four-layer human arm model (bone, muscle, fat, skin) is
designed and used in this electromagnetic simulation. Comparing the previous works [13–15], the
four-layer model that is used in this paper is more realistic without taking much more time to calculate.

In this model, a miniaturized circular antenna is embedded into the muscle layer and the
implantation depth is calculated from the muscle-fat interface to the antenna center. The implanted
antenna is embedded along the direction of the muscle fiber in order not to hamper the arm’s movement.
Table 1 shows the electrical properties of different human tissue at 915 MHz. The length of this human
arm model is set to the minimum sufficient value with which the results are not affected in order to
save the calculation time.

The embedded antenna with all relative parameters are presented in Figure 2. The antenna has a
circular substrate (thickness = 0.64mm) and a superstrate of the same size and thickness, which are
all made of material Rogers RO3210 (εr = 10.2, tanδ = 0.003). A radiating patch situates between the
two layers. Two arctic slots are cut from the metallic patch for the appearance of the two resonant
frequencies (400 MHz at MedRadio band and 915 MHz at ISM band respectively). A ground plane
positions below the substrate and is connected with the radiating patch by a via (radius = 0.15 mm) at
point W for miniaturization. A coaxial cable standardized to 50 Ω is used for feeding the antenna at
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point F. All the necessary parameters are marked in Figure 2 and detailed in Table 2. Due to multiple
standards on the transmission power limit [21,22], this wireless power transmission system operates at
the ISM bands (902.8–928 MHz) and the antenna is used for receiving power from another outside
antenna at this frequency.Energies 2019, 12, x FOR PEER REVIEW 3 of 10 
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A metallic wave reflector is placed behind the human tissue model in order to enhance the
implanted antenna’s power reception. The half-cylindrical reflector (open angle = 180◦, thickness = 1.2
mm) is placed behind skin surface (see Figure 1) at the opposite to the patch antenna side. Reflector is
made of copper and has a thickness larger than the penetration depth. It is cylindrical and the radius is
chosen according to the following formula:

f =
d
4

cot
(
θ0

2

)
(1)

where f is the reflector’s focal distance, d is the reflector’s width and θ0 is half value of the reflector’s
open angle.

In this paper, several different variables are analyzed. The thickness of the muscle and fat and the
radius of the bone are all variable in order to simulate different cases of the wearing patient. Also, the
implantation depth and the reflector to skin distance are also variable in order to simulate some other
uncertainties such as patient’s movement or wearing clothes. All these variables and calculation are
chosen according to multiple concerns for utilization in real life. Finally, the gain of the antenna inside
the human arm model at 915 MHz is the output parameter.

In order to eliminate the mismatch loss impact from the output results, the reflection coefficients
are calculated. As shown in Figure 3, the antenna always has a resonant frequency at 915 MHz and the
corresponding S11 is around −16 dB which indicates that it is matched with the input impedance.
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For all the samples that are used in Section 4, the reflection coefficient S11 is always ensured to be
less than −10 dB in order to avoid the mismatch loss.

3. Polynomial Chaos Expansion (PCE)

Polynomial chaos expansion methods are non-intrusive methods and use 3D solvers as black
boxes. Let M be a mathematical model that from N input values (parameters) x = (x1, x2, . . . , xN)

generates the output (observable) y given by:

y = M(x), (2)

The input values maybe affected by some random variations or uncertainties. Assuming that
the components of the input random vector X are independent, it can be shown that if the random
response of the physical phenomena Y has a finite variance, then it can be expressed as an infinite
modal expansion, denoted polynomial chaos:
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Y =
∑
α

yαΨα(X) (3)

where α is a multi-index, yα are the coefficients, Ψα are basis functions, multivariate orthonormal
polynomials. These polynomials are built using tensor products:

Ψα(x) =
N∏

i=1

Ψ(i)
αi
(xi) (4)

where α denotes the N-uplet (α1, α2, . . . ,αN) divided by subheadings.
These univariate polynomials are a family of orthonormal polynomials with respect to the margin

probability density functions (pdf) given by:

E
(
Ψ

(i)
k (Xi),Ψ

(i)
j (Xi)

)
= δ jk (5)

where δjk is the Kronecker symbol.
If fXi(xi) is the marginal pdf of the random input variable Xi, then from the independence of the

input variables then the pdf of X is given by:

fX(x) =
N∏

i=1

fXi(xi) (6)

In case of uniform or Gaussian input distributions, the corresponding polynomial basis are the
Legendre and Hermite polynomials families, respectively. The PCE coefficients can be estimated by
using spectral projections or via the use of least-square regressions. The “projection” approach takes
advantage of the orthogonality of the chaos polynomials [23].

Surrogate Model Based on PCE

A truncation of the Polynomial Chaos Expansion provides a surrogate model at low cost avoids
if the evaluation of the coefficients is performed using least-square regressions. Let us consider an
approximate model M̃ of the exact model M. The corresponding random output is given by a truncated
sum of P polynomials expressed as:

Ỹ =
P − 1∑
k=0

akΨk(X) (7)

The unknown coefficients of the truncation can be estimated through least square regression while
minimizing a root mean square error. If we denote y the output vector collecting n values in the vector

y =
(
y(1), y(2), . . . , y(n)

)
corresponding to the n inputs x(i) (i = 1, . . . ,n) given by x(i) =

(
x(i)1 , x(i)2 , . . . , x(n)N

)
,

then the estimated unknown coefficients derived from a regression approach are given by:

ã =
{
ΨTΨ

} − 1
ΨT y (8)

where Ψ is the matrix whose coefficients are Ψ i
k = Ψk

(
x(i)

)
.

The Latin Hypercube Sampling approach, known as LHS, is often used for planning the design
of experiments. The validation of the truncated model can be checked using Bootstrap or LOO
(Leave-One-Out) validation error. This last approach is a natural definition. If we consider n input
values x(i) giving n output y(i) = M

(
x(i)

)
, one sample point x( j) can be removed and a new surrogate

model MPC\i can be built on the basis of n − 1 sample values. Then a comparison between the predicted
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output value with this surrogate model and the value y( j) can reflects the accuracy of the approach.
This leads to the LOO criterion defined as:

LOO =
1
n

n∑
i=1

(
M(xi) − MPC\i

(
x(i)

))2
/Var[M] (9)

Depending on the targeted accuracy, new samples can be added. From the computational efficacy
point of view, it is important to select the most important polynomials. Then, a further reduction of the
basis size can be performed using an adaptive technique, the so-called LARS algorithm (Least angle
regression method) [24]. This algorithm identifies the polynomials having the most impact on the
output response and on the sensibility indices.

For a sensitivity analysis the “Sobol” decomposition [25] is well known. Quantitative estimates of
the output sensitivity both to each input individually and to each of possible combinations as well, are
straightforward; thanks to the orthonormality of the polynomial chaos basis, the global variance D̃ and
the partial variances D̃i1,...is can be expressed with the coefficients of the expansion:

D̃ = Var
(
Ỹ
)
=

P − 1∑
k=1

a2
k (10)

D̃i1,...is =
∑

α∈τi1,...,is

a2
α (11)

where τi1,...,is is the set of α tuples such that only the indices i1, . . . , is are nonzero:

τi1,...,is =
{
α , αk > 0, ∀ k = 1, . . . , N k ∈ (i1, . . . , is)

}
(12)

The indices can be analytically extracted from the PCE [23] and are defined as:

Si1,...,is =
D̃i1,...is

D̃
(13)

4. Numerical Results and Discussion

All the calculations in this chapter are performed by the UQLab module in Matlab [26]. The sample
data points are obtained from simulations by CST Studio Suite [27]. In general, one group with 5
variables (radius of bone B, reflector to skin distance R, thickness of fat F, thickness of muscle M,
and implantation depth I) 243 samples in total are analyzed. The chosen observable output in the
electromagnetic problem is the gain of the antenna. The ranges for each variable are presented in the
following Table 3. In these variable ranges, the S11 value is almost immune to changes and stays at
around −16 dB.

Table 3. The ranges for the 5 analyzed variables.

Parameter
Name Bone Radius B Reflector to Skin

Distance R Fat Thickness F Muscle
Thickness M

Implantation
Depth I

Range (mm) 20–40 0–20 1–20 25–40 10–20

4.1. LOO Error

As a global indicator for the method accuracy, the LOO error of the first group of variables is
shown in Figure 4.

As seen in Figure 4, the LOO error decreases effectively as more samples are included into the
database. When 200 sample point are taken into account, the LOO error is 1.2 × 10−7. This validates
the reliability of the established PCE model and ensure the correctness of the following results.
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4.2. Sobol Indices

Sobol Index is a value that varies from 0 to 1 which indicates the sensitivity of the output against
each parameter. More the index is close to 1, more influence this parameter has on the result. With the
value of Sobol indices, it is easy to figure out the parameter that should be paid more attention and
which one less attention. Each Sobol index of the output Gain = M (bone radius B, reflector distance R,
fat thickness F, muscle thickness M, implantation depth I) is defined as

SobolIndex =
Var[E[Gain

∣∣∣P]]
Var[Gain]

(14)

where P is one of the variables (B, R, F, M, I) that affect the output.
The Sobol indices are easy to evaluate with a surrogate PCE model by using Matlab. Figure 5

shows the first order Sobol Index relevant to the different uncertainty parameters.
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As shown in Figure 5, the implantation depth is the most important factor among the five different
parameters. It is worth pointing out that the implantation depth refers to the distance between the
muscle-fat interface and the antenna center. This conclusion could be deduced even with only 30
samples. Therefore, the implantation depth should always be considered during the design and
analyze for a wireless power transmission system.

4.3. Data Prediction

Another tremendous advantage of using PCE metamodel is that it could predict data points by
using only limited numbers of sample points. This could reduce largely the calculation time, especially
when the calculation model is complicated or a great number of calculations are needed. In Section 4.1,
the LOO error value shows that the estimation model could be established with at least 30 samples
(LOO error less than 1%�). Here, an estimation model is built basing on 60 samples in order to be
more accurate. In Table 4, some random data points (except for the 60 that build the estimation model)
are estimated by using the PCE model and compared with the values that calculated by CST Studio.
The absolute errors and relative errors are calculated and presented in Table 4. The test sample vector
is (bone radius B, reflector distance R, fat thickness F, muscle thickness M, implantation depth I).

Table 4. Estimation error at random points.

Test Samples
(B, R, F, M, I) (mm) Simulated Gain (dB) Estimated Gain (dB) Absolute Error (dB) Relative Error (%)

(10; 30; 10.5; 37.5; 15) −29.7364 −29.4675 0.268919 0.9043
(10; 36.67; 10.5; 37.5; 15) −29.0338 −28.6122 0.421595 1.4521
(3.3; 30; 10.5; 27.5; 11.67) −27.8142 −27.5534 0.260767 0.9375
(10; 23.33; 10.5; 37.5; 15) −28.7928 −29.253 0.460239 1.5985
(16.67; 0; 10.5; 32.5; 15) −28.2000 −28.6401 0.440114 1.5607

As presented in Table 4, the five randomly chosen points are well estimated with an average
relative error around 1.3%. Therefore, this surrogate model established by 60 samples could be used to
estimate the real simulation results with an error tolerance less than 2%.

5. Conclusions

This paper presents a methodology based on a surrogate model (PCE method) to improve the
microwave transmission link calculation in a biomedical application involving an implanted antenna.
Firstly, the transmission scenario and the embedded antenna design are presented. Then the PCE
method and the construction of a surrogate model based on PCE are discussed in details. With this
method, the surrogate model of the transmission link is established. The trustworthiness of the model
is firstly validated by LOO error and the impact of the different variables on the results is compared by
calculating the Sobol indices of these variables. The result of finding that the implantation depth is the
most important factor is also theoretically reasonable since the muscle tissue has a higher permittivity
and thus leads to more loss. Finally, a surrogate model that is based on limited number of samples
is used to estimate the results of other variable combinations. The average relative error could be
easily controlled within 2% by using less than 1/4 of all samples, which proves the possibility of saving
largely the calculation time by using this method when the model is relatively complex and a great
number of calculation is needed. Such approach is an engineering oriented tool which may improve
the design of wireless power transfers in a biomedical scenario.
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