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Abstract: The main purpose of this paper is to quantitatively analyze the sensitivity of operating
parameters of the system to the thermodynamic performance of an oxyfuel combustion (OC) power
generation system. Therefore, the thermodynamic model of a 600 MW subcritical OC power generation
system with semi-dry flue gas recirculation was established. Two energy consumption indexes of
the system were selected, process simulation was adopted, and orthogonal design, range analysis,
and variance analysis were used for the first time on the basis of single-factor analysis to conduct
a comprehensive sensitivity analysis and optimization research on the changes of four operating
parameters. The results show that with increasing oxygen purity, the net standard coal consumption
rate first decreases and then increases. With decreasing oxygen concentration, the recirculation rate
of dry flue gas in boiler flue gas (χ1) and an increasing excess oxygen coefficient, the net standard
coal consumption rate increases. The net electrical efficiency was just the opposite. The sensitivity
order of two factors for four indexes is obtained: the excess oxygen coefficient was the main factor
that affects the net standard coal consumption rate and the net electrical efficiency. The influence of
oxygen concentration and oxygen purity was lower than that of excess oxygen coefficient, and χ1 has
almost no effect.

Keywords: energy consumption; operating factors; orthogonal design; oxyfuel combustion;
sensitivity analysis

1. Introduction

Increasing greenhouse gas emissions are one of the main reasons for the frequent occurrence of
global extreme weather. CO2 comprises approximately 80% of those emissions [1]; therefore; reducing
CO2 emissions to cope with global climate change is one of the greatest challenges facing mankind in
energy production today. A promising technology for power generation that reduces CO2 emissions is
oxyfuel combustion (OC) with carbon capture. In this type of power plant; the fuel is burned in an
O2/CO2 atmosphere; producing flue gas consisting mainly of CO2 and H2O [2].

As a near-zero-emission clean coal power generation technology that can directly capture
CO2, OC technology is a commercially feasible technology for large-scale CO2 capture [3]. However,
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large-scale carbon capture coal-fired generating units using OC technology need to use an air separation
unit and CO2 purification and compression unit. The high energy consumption incurred by these
additional types of equipment leads to a decrease in the overall generating efficiency of the units and
an increase in operating costs, which are the main obstacles to their large-scale use [4]. Therefore, it is
necessary to conduct a comprehensive and in-depth analysis of the relevant operational factors that
affect those obstacles. These analyses are important for reducing unit energy consumption, promoting
large-scale use of OC technology, and reducing CO2 capture cost.

Extensive work has been done on operation energy consumption and techno-economic analysis
of OC and CO2 capture units. Han [5] and Jin [6] used an exergy analysis method to analyze the
thermodynamic performance of an air-separation oxygen system and a CO2 capture system. They also
proposed ways to reduce the operating energy consumption of the systems. Tola [7] and Oboirien [8]
did a techno-economic analysis on the operating energy consumption, equipment investment, power
generation cost, and CO2 emission reduction cost of coal-fired generating sets that used OC and a
CO2 capture system. They concluded that the CO2 emission rate was reduced by 10 times after the
power plant was modified with oxyfuel technology, and 27% to 29% of the energy was used to capture
CO2. The energy loss was related to the nature of coal. Fu [9] proposed applying process heat to the
Rankine cycle of regenerative steam to increase the power generation of the steam turbine in an OC
power plant. Yan [10] did a comprehensive sensitivity analysis on a 600MW supercritical steam oxyfuel
combustion power generation system using dry, semidry, and wet flue gas recycling modes. After
evaluating the changes in eight main operating parameters, he concluded that air leakage had the
greatest influence on the output energy of the system and that the most practical flue gas recirculation
mode was the semidry type. Gładysz [11] and Koiwanit [12] adopted the method of total life cycle cost
of coal-fired units before and after the modification of OC equipment investment, power generation
cost, and CO2 emission reduction cost, and put forward a different method of life cycle assessment.
Jin [13], Kong [14], and Han [15], through modeling and process simulation, analyzed and evaluated
OC and CO2 capture generator sets from the perspective of thermal dynamics and thermal economics.
They then proposed the best value of oxygen concentration and an optimization scheme for reducing
system energy consumption. Escudero [16] proposed technology for an oxyfuel coal-fired power plant
that uses a high-concentration oxidizer of over 40% and integrates waste heat into the new steam cycle
to minimize energy consumption. The net efficiency of their power plant was significantly higher
than that of a benchmark oxyfuel plant, and the energy penalty could be reduced from 10.5% to 7.3%.
Gładysz [17] and Ziębik [18] used cumulative exergy loss, local exergy loss, and a thermodynamic
system to devise a perfect degree of cumulative exergy efficiency. They analyzed three techno-economic
indexes such as the OC, the CO2 capture generating set, and the thermodynamic performance of the
system. Lei [19] proposed a new OC process. Its capital investment and the operation costs of the air
separation unit and the circulating fan were lower. The variation of flue gas composition in the flue
gas combustion furnace was small, and when the ratio of air to oxygen was 2 or 3, the economy of the
OC was better. Gao [20] used a Peng–Robinson (PR) equation of state model on the basis of the actual
gas state equation to establish a method using a bias function and a CO2 compressed air separation
unit to calculate the operation energy consumption of a purification unit.

Previous studies have mostly analyzed the influence of one or several single operating factors on
the energy efficiency indicators of an OC power generation system. For example, Jin [13] analyzed
the influence of oxygen concentration on the net efficiency. Kong [14] and Han [15] analyzed the
influence of oxygen purity on net efficiency. Yan [10] undertook a comparative analysis and evaluation
on the influence of such parameters as flue gas recirculation rate, air leakage rate, pressure rise of fans,
flue gas condensation temperature, oxygen concentration, and flue gas circulation model on the net
efficiency. However, in a uniform experiment or simulation platform, the main operation parameters,
such as the oxygen purity in the air separation unit, the oxygen concentration and excess oxygen
coefficient in power generation unit, and the recirculation rate of dry flue gas in boiler flue gas for
quantitative analysis of the operating energy indexes of in-depth research has yet to carry out in-depth
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research. These operating economic indexes include the net standard coal consumption rate and the
net electrical efficiency, among which the net standard coal consumption rate can comprehensively
reflect the overall operating energy consumption level of a power generation system.

Moreover, due to a large number of influencing parameters in the study of thermodynamic
characteristics of an OC power generation system, each parameter has a certain range of variation.
How to consider the interaction between parameters requires a comprehensive analysis of each
parameter’s collocation, so the calculation will be very large. Therefore, the single factor analysis
method with fixed other parameters was mostly used in previous studies. However, this method
cannot determine the optimization order of each factor and the influence of the interaction between
each factor on the system performance.

An orthogonal design method is a design method to study multi-factors and multi-levels.
This method selects representative points from the overall test according to the orthogonality for the
test, which can solve the coupling effect of multi-factors and reduce the number of tests [21,22].

At present, the orthogonal design method is often used in the design and parameter optimization
of different power generation systems and cycles. For example, Wang [23] and Liu [24] established
the thermodynamic model of the organic Rankine circulation system, and through the analysis of the
orthogonal design results, the optimal level composition of system parameters to improve the thermal
and economic performance of the system was given. Xi [25] analyzed the experimental system of a
new organic Rankine cycle based on the range analysis method of orthogonal design and obtained the
optimal and the worst constitutions of six indexes. Chiu [26] conducted an experimental study on the
reaction conditions of methanol steam reforming, obtained the influence of each reaction condition
on the MSR process, and obtained the optimal combination of each control factor. Chen [27] and
Terzioğlu [28], respectively, analyzed the performance of the thermoelectric generator by the orthogonal
design method and obtained the influence relationship of material and geometric parameters on
system performance. However, the application of an orthogonal design method to the optimization of
operating parameters in an OC power generation system has not been carried out yet.

The purpose of this study is to take the net standard coal consumption and the net electrical
efficiency of the system as specific energy efficiency indicators, study the sensitivity characteristics of
various single factors under a unified platform, and obtain the results of comprehensive sensitivity
analysis of operating parameters to improve the thermal performance and economic performance of
the OC power generation system through orthogonal design method, range analysis, and variance
analysis for the first time. This study will provide theoretical guidance for the engineering design and
optimization of an OC power generation system.

2. Method

2.1. Model of the Oxyfuel Combustion System

We used Aspen Plus (Aspen Technology, Inc., USA) [29] and EBSILON Professional (STEAG
Gmbh, Germany) [30] software to model an OC power generation system based on the conventional
subcritical coal-fired units currently in operation. Four operating parameters, including oxygen purity,
oxygen concentration, the recirculation rate of dry flue gas in boiler flue gas (χ1), and the excess oxygen
coefficient, were selected as factors. The power station modeled in this study included three units:
OC power generation unit, air separation unit (ASU), and flue gas compression and purification unit
(CPU). Figures 1–3 showed the details of each unit.

2.1.1. OC Power Generation Unit

Currently, 600 MW OC power generation units have not been put into operation. Thus, we selected
a 600 MW subcritical generating unit as the reference unit in this study. The unit had a rated power of
600 MW and a maximum continuous output of 641.6 MW. The boiler model was SG-2023/17.5-M914,
and the design fuel was shenhua wanlichuan bituminous coal. An analysis of the coal is shown in
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Table 1. The turbine model was N600-16.67/538/538. The regenerative system consisted of a three-stage
high-pressure heater, a four-stage low-pressure heater, and a deaerator. The specific process is shown
in Figure 1.

Table 1. Coal analysis.

Car Har Nar Oar Sar Aar Mar LHV (kJ/kg)

52.20 2.47 0.98 8.42 0.73 10.39 24.81 18,852

The subscript “ar” indicates the as-received basis. LHV indicates a low heating value.
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behind the economizer. In this model, semi-dry flue gas recirculation was used. That is, the dry 
cycle was used for the primary gas flow, and the wet cycle was used for the secondary gas flow 
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Figure 1. OC power generation unit. Subunits are as follows: 1. Coal grinder; 2. Chamber of a stove
or furnace; 3. Wall reheater; 4. Screen superheater; 5. Rear panel superheater; 6. High-temperature
superheater; 7. High-temperature reheater; 8. Drum; 9. Low-temperature reheater; 10. Economizer;
11. Secondary flue gas (wet flue gas) recirculating fan; 12. Dust remover; 13. Gas–gas heat exchanger;
14. Primary flue gas (dry flue gas) recirculating fan; 15. Flue-gas desulfurizer; 16. Low-temperature
economizer; 17. Direct contact dehydration unit; 18. High-pressure cylinder; 19. Medium-pressure
cylinder; 20. Low-pressure cylinder; 21. Generator; 22–24. High-pressure heater; 25. Deaerator; 26.
Feed pump; 27. Generator; 28–31. Low-pressure heater; 32. Condenser; 33. Condensate pump; 34.
Shaft sealing heater.

The flow of the modeled OC power generation system was basically the same as that of a reference
conventional combustion generation system. The difference was that the combustion gas in the OC
power generation system was a proportional mixture of circulating flue gas and oxygen, not air. The OC
power generation system could be divided into two types, dry cycle and wet cycle, according to the
temperature and water content of the circulating flue gas. The dry cycle dusted and cooled the flue gas
to remove part of its moisture in the furnace and oxygen to participate in the combustion. The wet
cycle pumped part of the hot flue gas directly into the furnace from behind the economizer. In this
model, semi-dry flue gas recirculation was used. That is, the dry cycle was used for the primary gas
flow, and the wet cycle was used for the secondary gas flow [10,11].

For the OC boiler with primary air as dry flue gas and secondary air as wet flue gas recirculation,
after entering the stable operation stage, VO2 , Vd

r f , and Vw
r f in the flue gas circulation process should

satisfy:
VO2ϕO2 + Vd

r f Od
r f + Vw

r f Ow
r f

VO2 + Vd
r f + Vw

r f

= rO2 (1)

VO2 + Vd
r f + Vw

r f = V f (2)

Vd
r f + Vw

r f = Vr f (3)
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where VO2 is the oxygen flow rate output by ASU, Nm3/h; ϕO2 is the oxygen purity, %. The oxygen
purity is defined as the molar proportion of pure oxygen contained in the oxygen fed into the OC
generating unit from the air separation unit; Vd

r f is the circulating dry flue gas flow rate, Nm3/h; Od
r f

is the oxygen volume content in the recirculating dry flue gas after dehydration and drying by the
dehydration device, %; Vw

r f is the recirculating wet flue gas flow rate, Nm3/h; Ow
r f is the oxygen volume

content in the recirculating wet flue gas without dehydration and drying by the dehydration device, %;
rO2 is the oxygen concentration in all combustion-supporting gases, %. The oxygen concentration is
defined as the molar proportion of oxygen in the auxiliary gas fed into the OC power generation unit;
V f is the actual volume of combustion supporting gas required for the combustion process of the OC
pot, Nm3/h; Vr f is the total circulating flue gas flow rate, Nm3/h.

Two important definitions of a flue gas cycle rate are

χ =
Vd

r f

V f g
(4)

χ1 =
Vd

r f

V f g2
(5)

where χ is the recirculation rate of dry flue gas in the total flue gas, χ1 is the recirculation rate of dry flue
gas in the boiler flue gas. The dry flue gas mentioned here refers to the flue gas after desulfurization
and direct contact dehydration unit. V f g is the total flue gas of the boiler, Nm3/h; V f g1 is the boiler
flue gas flow rate, Nm3/h; V f g2 is the total flue gas volume after gas heat transfer, desulfurization, and
direct contact dehydration, Nm3/h, Vy is the volume flow of flue gas into the CPU.

We used EBSILON Professional software to establish models for a conventional power plant
and the OC power generation system. In the single-factor analysis of OC conditions, the simulation
parameters were set as follows:

• The coal used was the same as that of conventional coal-fired units.
• The combustion process of the boiler was under 0.097 MPa of pressure.
• The oxygen temperature after preheating was 351 ◦C: the same as the air temperature of the

conventional combustion power generation system after preheating.
• The inlet oxygen temperature of the gas-gas heat exchanger was set at 45 ◦C.
• The pulverized coal burnout rate was 98%.
• To ensure the coal burnout rate, the excess oxygen coefficient was 1.10.
• The air leakage coefficient of the system was 3%.
• The oxygen purity (ϕO2 ) was set at 96%; the nitrogen content was 0.8%, the argon content was 3.2%.
• The oxygen concentration (rO2 ) was set to 33%.
• χ1 was 55%.

The proportion of primary and secondary gas mixture, the oxygen concentration, and the oxygen
supply (the difference between the total oxygen demand and the oxygen in the circulating flue gas)
were all set and calculated by the controller in EBSILON. The simulation results and design values
of the conventional unit and the oxyfuel unit are shown in Table 2. Table 2 shows that the difference
between the design value of the conventional unit and the simulation value of the conventional unit
was very small, thus verifying the accuracy of the model.

Cryogenic oxygen production is the only commercial large-scale oxygen production method,
which can be divided into external compression and internal compression. According to the applied
pressure level, oxygen production level, and technical perfection, this study selected five sets of
air separation units with a single machine capable of 6 × 104 Nm3/h for external compression flow.
After simplifying the process, Aspen Plus software was applied to establish the air separation unit
model of the OC generator set based on the PR state equation of real gas.
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In the process of oxygen production, the air separation unit separates the compressed air into
oxygen with purity ϕO2 and nitrogen with purity ϕN2 through the rectification device. The actual
separation work required in the separation process is as follows:

Ws =
RT0
ηe

{
nO2 [

ϕO2
100 ln

ϕO2
100−ϕO2

+ ln(1−
ϕO2
100 )]+

nN2 [
ϕN2
100 ln

ϕN2
100−ϕN2

+ ln(1−
ϕN2
100 )]−

(
ϕm,O2

100 ln
ϕm,O2

100 +
ϕm,N2

100 ln
ϕm,N2

100 )
} (6)

where Ws is actual separation work required in the separation process, J; the T0 is the environment
temperature, K; R is the gas constant, J/(mol·K); ϕm,O2 and ϕm,N2 are, respectively, the volume fractions
of oxygen and nitrogen in the air, %; nO2 is the amount of oxygen with the purity ϕO2 obtained after
the separation of one mole of air, mol; nN2 is the amount of nitrogen with the purity of ϕN2 obta ined
after the separation of one mole of air.

Before entering the rectification system for separation, the air needs to be compressed by the
multistage compressor to improve the exergy value, so as to achieve the actual separation work Ws

required by the separation process. Therefore, at the outlet of the multistage compressor, the flow
pressure p required by the air is:

p = p0 exp
(

Ws

T0R

)
(7)

where p0 is inlet air pressure of the multistage compressor, MPa.

2.1.2. Air Separation Unit

The operating energy consumption of the air separation unit can be calculated by the electrical
power EASU required to produce oxygen with the purity of ϕO2 and a flow rate of VO2 .

EASU =

Σ
(
ϕg,l

n∑
i

W0
i,(g,l)

)(
ϕO2 + ϕN2 − 100

)
VO2

22.4ηcom
(
ϕg,O2 + ϕN2 − 100

) (8)

where ϕg,l is the volume fraction of l gas contained in the air, %; n is the multistage compressor series;
W0

i,(g,l)
is the theoretical compression work required for the adiabatic compression of l gas in the air by

the first stage of the multistage compressor, kJ/mol; ηcom is the efficiency of the multistage compressor.
The specific model and process are shown in Figure 2. The setting of simulation parameters:

• The air volume composition is nitrogen 78.12%, oxygen 20.95%, and argon 0.93% (atmospheric
condition is 101.325 kPa, 0 ◦C).

• The efficiency of the air compressor is set at 85%.
• Molecular sieve switching loss and instrument loss are calculated at 1% according to

Linde's experience.
• The oxygen content of the product is 98% O2 and 2% N2.
• The recycled gas of molecular sieve is 20% of the processed air, the heating temperature is 120 ◦C

and the regeneration time is a quarter of the switching period [14].
• Two-stage air compression and two-stage intercooler are used in the air separation unit.
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Table 2. Comparison of the main parameters of the generator set and simulation values under
various atmospheres.

Project Unit
The Design Value of

the Conventional
System

Simulation Value of
the Conventional

System

Simulation Value of
OC Power Generation

System

Rated evaporation t/h 1760.00 1760.00 1760.00
Superheated steam pressure MPa 17.29 17.29 17.29

Superheated steam
temperature

◦C 541.00 541.00 541.00

Reheat steam flow rate t/h 1482.00 1,482.00 1482.00
Reheat steam inlet pressure MPa 3.46 3.46 3.46

Reheat steam inlet
temperature

◦C 315.00 315.00 315.00

Reheat steam outlet pressure MPa 3.28 3.28 3.28
Reheat steam outlet

temperature
◦C 541.00 540.82 541.00

Feedwater pressure MPa 18.70 18.70 18.70
Feed temperature ◦C 272.00 271.97 271.97
Rated evaporation t/h 1760.00 1760.00 1760.00

Furnace outlet flue gas
temperature

◦C 1,134.00 1,135.18 1,157.59

Air preheater outlet hot air
temperature

◦C 351.00 351.00 -

Gas–gas heat exchanger
outlet hot flue gas

temperature

◦C - - 351.00

Flue gas temperature ◦C 127.00 125.57 169.41
Flue gas volume flow rate Nm3/h 1,692,447.20 1,692,447.20 307,517.40

Coal consumption quantity t/h 270.42 270.42 264.73
Power generation MW 600.00 600.14 600.19

The net plant efficiency % 39.31 39.31 29.74
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Figure 2. Air separation unit (ASU). Subunits are as follows: 1. Air purification device; 2, 4. Air
compressor; 3, 5. Interstage cooler; 6. Air cooling tower; 7. Water cooling tower; 8, 9. Molecular sieve;
10. Electric heater; 11. Expander; 12. Main heat exchanger; 13. Distillation column; 14. Supercooler.

The above simulation parameters were selected according to the parameters of the air separation
unit in [14]. The comparison between the simulated values obtained and those in the literature [14]
is shown in Table 3. Table 3 shows that the error between the simulated value in this study and the
simulated value in the literature is small, and the energy consumption per unit of oxygen production
is approximately 0.36 (kW·h) / m3, which is basically consistent with the actual production result.
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Thus, verifying the accuracy of the model. Meanwhile, it can be seen that the compression energy
consumption of the air separation unit accounts for approximately 97% of the total energy consumption
of the entire air separation unit, the energy consumption of the air separation unit mainly comes from
air compression.

Table 3. Air separation unit simulation results.

Project Unit Simulation Value in
this Present Study

Simulation Value of
Reference [14]

Treated air volume kmol/h 12,766.70 12,735.60
Loss of air kmol/h 127.67 127.40

Regenerated air capacity kmol/h 2527.81 2,547.10
Amount of oxygen kmol/h 2678.60 2677.00

Air compressor energy
consumption kW 20,958.40 21,230.00

Pump energy consumption kW 216.07 260.00
Molecular sieve energy

consumption kW 432.13 516.00

Total energy consumption kW 21,606.60 22,006.00
Energy consumption per unit of

oxygen production kWh/Nm3 0.360 0.367

2.1.3. Compressed and Purification Unit of Gas

Flue gas compression and purification is a process that condenses, purifies, and compresses flue
gas until it contains a higher purity of CO2 to meet the requirements of large-scale CO2 transportation.
The specific process is that first the CO2 in the flue gas is dehydrated and separated after multistage
compression and multistage condensation. Then the flue gas enters the triethylene glycol (TEG)
dehydration process for deep dehydration, and finally enters the purification system to separate
the entire compressed flue gas flash. After purification, the flue gas is pressurized and heated by a
centrifugal pump and heater and transported by a pipe after conforming with the typical conditions of
large-scale CO2 transportation. Typical parameters of pipeline transportation are a temperature of
20 ◦C; a pressure of 11.0 MPa, a volume fraction (ψ) of CO2 of greater than 95%, ψ (O2, Ar, N2) of less
than 4%, and ψ (H2O) of less than 50 ppm. A flow diagram of the gas compression and purification
unit is shown in Figure 3 [14].

Energies 2020, 13, 998 9 of 24 

2.1.3. Compressed and Purification Unit of Gas 

Flue gas compression and purification is a process that condenses, purifies, and compresses 
flue gas until it contains a higher purity of CO2 to meet the requirements of large-scale CO2 
transportation. The specific process is that first the CO2 in the flue gas is dehydrated and separated 
after multistage compression and multistage condensation. Then the flue gas enters the triethylene 
glycol (TEG) dehydration process for deep dehydration, and finally enters the purification system 
to separate the entire compressed flue gas flash. After purification, the flue gas is pressurized and 
heated by a centrifugal pump and heater and transported by a pipe after conforming with the 
typical conditions of large-scale CO2 transportation. Typical parameters of pipeline transportation 
are a temperature of 20 °C; a pressure of 11.0 MPa, a volume fraction (ψ) of CO2 of greater than 95%, 
ψ (O2, Ar, N2) of less than 4%, and ψ (H2O) of less than 50 ppm. A flow diagram of the gas 
compression and purification unit is shown in Figure 3 [14]. 

 
Figure 3. Flue gas compression and purification unit (CPU). Subunits are as follows: 1, 4, 7. Flue gas 
compressor; 2, 5, 8. Interstage cooler; 3, 6, 9. Interstage dehydrator; 10. Triethylene glycol absorber; 
11. Heat exchanger; 12. Triethylene glycol regeneration tower; 13. Heat exchanger; 14. Condenser; 15. 
Heat exchanger; 16. Condenser; 17. Compressor; 18. Heat exchanger; 19. Compressor; 20. Heat 
exchanger; 21.Liquid CO2 booster pump. 

The operating energy consumption of the flue gas compression and purification unit can be 
calculated by the electrical power 𝐸஼௉௎ required to compress the flue gas with a flow rate of 𝑉௬ 
and the highly pure CO2 in the flue gas. 

According to the calculation model of compression work 0W  of the actual gas theory, the 
calculation model of operation energy consumption of CO2 compression and purification unit can 
be obtained as: 

2 2
2 2

0 0
0,( ) , ,
,

( ) ( )

22.4 22.4

n n

y e i y e y q CO q CO
p CO COi q

CPU
com p

W V W V W V
E

ϕ

η η

− −Σ +
= +

 
 (9) 

where y eϕ −  is the portion of e gas contained in the flue gas; 0
,( )i y eW −  is the theoretical compression 

work required for adiabatic compression of e gas in the smoke by the nth stage of the multistage 
compressor, kJ/mol; yV  is the gas flow rate into the multi-stage compressor, m3/s; 

2

0
,q COW  is the 

theoretical compression work required for adiabatic compression of CO2 by the q-class multi-stage 
compressor, kJ/mol; 

2,q COV  is the qth stage CO2 flow rate into the multi-stage compressor, m /s; 

Figure 3. Flue gas compression and purification unit (CPU). Subunits are as follows: 1, 4, 7. Flue gas
compressor; 2, 5, 8. Interstage cooler; 3, 6, 9. Interstage dehydrator; 10. Triethylene glycol absorber;
11. Heat exchanger; 12. Triethylene glycol regeneration tower; 13. Heat exchanger; 14. Condenser;
15. Heat exchanger; 16. Condenser; 17. Compressor; 18. Heat exchanger; 19. Compressor; 20. Heat
exchanger; 21.Liquid CO2 booster pump.
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The operating energy consumption of the flue gas compression and purification unit can be
calculated by the electrical power ECPU required to compress the flue gas with a flow rate of Vy and
the highly pure CO2 in the flue gas.

According to the calculation model of compression work W0 of the actual gas theory, the calculation
model of operation energy consumption of CO2 compression and purification unit can be obtained as:

ECPU =

Σ(ϕy−e
n∑
i

W0
i,(y−e)

)Vy +
n∑
q
(W0

q,CO2
Vq,CO2)

22.4ηcom
+

W0
p,CO2

VCO2

22.4ηp
(9)

where ϕy−e is the portion of e gas contained in the flue gas; W0
i,(y−e)

is the theoretical compression
work required for adiabatic compression of e gas in the smoke by the nth stage of the multistage
compressor, kJ/mol; Vy is the gas flow rate into the multi-stage compressor, m3/s; W0

q,CO2
is the

theoretical compression work required for adiabatic compression of CO2 by the q-class multi-stage
compressor, kJ/mol; Vq,CO2 is the qth stage CO2 flow rate into the multi-stage compressor, m /s; ηcom

is the efficiency of multi-stage compressor; W0
p,CO2

is the theoretical compression work required for
the adiabatic compression of liquid CO2 by the booster pump, kJ/mol; VCO2 is the CO2 flow into the
booster pump, m3/s; ηp is the efficiency of booster pump.

2.2. Calculation Model of Energy Consumption of the Oxyfuel System

A calculation model of the net standard coal consumption rate of the OC power generation
system is

L f cy =
Wd
W f
× 100 (10)

b f =
Bb
W f

(11)

bg =
b f

1−
L f cy
100

(12)

η =
3600(W f −Wd)

B ·Q
(13)

EP = 1−
ηOC

ηre f
(14)

where Wd is the power consumption of the plant, kW; W f is the power generation, kW; L f cy is the
auxiliary power ratio, %; B is the coal consumption, kg/h; Bb is the standard coal consumption, kg/h; b f
is the gross coal consumption rate, g/kWh; and bg is the net standard coal consumption rate, g/kWh. η is
the net electrical efficiency; EP is the energy penalty due to carbon capture in an OC power generation
system, %; Q is the low heating value of coal, kJ/kg; ηoc is the net electrical efficiency of the OC power
generation system; ηre f is the net electrical efficiencies of the reference plant.

3. Results and Discussion

The net standard coal consumption rate and the net electrical efficiency of an OC power generation
system were the important energy consumption indicators in its operation. In this study, flow
models of the entire conventional and OC power generation systems were made. On the basis of
the literature [10,14,15,19], as influencing factors, we selected four key operating parameters: oxygen
purity (ϕO2 ), oxygen concentration (rO2 ), recirculation rate of dry flue gas in boiler flue gas (χ1), and the
excess oxygen coefficient (αO2). The single-factor and multifactor orthogonal influences of the above
four operating parameters on the net standard coal consumption rate and the net electrical efficiency
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were analyzed. Other factors in the process of analysis, whether variable or immutable, were taken as
input to known conditions.

3.1. Operating Factors Influencing Energy Consumption of an Oxyfuel Combustion System

3.1.1. Oxygen purity (ϕO2 )

Figure 4 shows that with the increased oxygen purity (ϕO2), the oxygen flow rate into the boiler
for combustion and the flue gas volume into the CPU all decreased. Energy consumption per unit of
oxygen production and the air separation system increased.

It can be explained as follows: With the increase of ϕO2 , the actual separation work Ws required
by the air separation process and the flow pressure required by the compressed air will both increase,
resulting in the corresponding increase in the oxygen mono consumption; other things being equal, the
oxygen flow rate VO2 (Figure 1) decreases as the oxygen purity increases. Although the oxygen flow
decreased somewhat, it was not enough to offset the effects of increased energy consumption per unit
of oxygen production, so the energy consumption of ASU increased with the increase of oxygen purity.
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Figure 4. Energy consumption per unit of oxygen production, volume flow of flue gas into CPU,
oxygen volume flow rate, the energy consumption of air separation for various ϕO2 .

As the oxygen purity increases, the oxygen flows into the boiler for combustion to decrease. Under
the premise of constant oxygen concentration, the amount of circulating flue gas (Vrf, see Equation (3))
increases correspondingly to supplement the influence brought by the decrease of oxygen quantity,
which leads to the increase of power consumption of the circulating fan. At the same time, the total
amount of flue gas (Vfg, see Figure 1) increases due to the increase of circulating flue gas flow (Vrf, see
Equation (3)). The increase of Vfg leads to the decrease of flue gas temperature difference under the
condition of the same heat transfer, which leads to the rise of flue gas temperature. However, due to the
rising of the flue gas temperature, the heat loss of the flue gas was increased, resulting in the decrease
of boiler efficiency and the increase of boiler coal consumption, but the range is not large. Due to the
increase of Vrf, although Vfg increases, it will still lead to a decrease in flue gas flow (Vy, see Figure 1).
As Vy decreases, the amount of flue gas entering the CPU unit decreases. According to Equation (9), Vy

decreases and ECPU decreases, so the energy consumption of the flue gas compression unit decreases.
Figure 5 shows that the energy consumption of the ASU increases with the increase of oxygen

purity, and the increased range becomes larger when the purity is higher than 96%. The energy
consumption of CPU decreases with the increase of oxygen purity, but the decrease is small. The power
consumption of the circulating fan also increases correspondingly. The superposition of the above
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effects causes the total energy consumption of the system to decrease first and then increase with the
increase of oxygen purity, which was the minimum when the oxygen purity was 96%.

Figure 6 shows that with the increase of oxygen purity, the system’s power supply and the net
electrical efficiency first increased and then decreased, and reached the maximum when the oxygen
purity was 96%. The net standard coal consumption rate and the energy penalty due to carbon capture
in an OC power generation system (EP) decrease first and then increase, and were minimized when
the purity was 96%.Energies 2020, 13, x FOR PEER REVIEW 12 of 24 
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Figure 6. System power supply, the net electrical efficiency, the energy penalty due to carbon capture
in an OC power generation system (EP), and the net standard coal consumption rate of the system for
various ϕO2 .

3.1.2. Oxygen Concentrations (rO2 )

Figure 7 shows that the temperature of high-temperature flue gas entering the flue gas preheater
decreased with the increase in oxygen concentration, and the temperature of primary flue gas requiring
preheating was 351 ◦C. When the oxygen concentration reached 33.4%, the flue gas temperature
was equal to that of the required preheating primary flue gas. Therefore, we selected the range
of oxygen concentrations like 21% to 33%. It can be explained as follows: with the increase of
oxygen concentration, the decrease of flue gas volume (Vrf, see Equation (3)) leads to the increase
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of flue gas temperature difference when the heat transfer in the furnace is constant, so the flue gas
temperature decreases.Energies 2020, 13, x FOR PEER REVIEW 13 of 24 
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Figure 8. Energy consumption of air separation, compression and purification of flue gas, system 

total energy consumption, and the system standard coal consumption for various 𝑟𝑂2
. 

Figure 7. The relation between the temperature of flue gas in the primary cycle and the temperature of
flue gas entering the gas-gas heat exchanger for various rO2 .

Figure 8 shows that energy consumption of ASU, energy consumption of CPU, the total energy
consumption of the system, and the system standard coal consumption all decrease with the increase
of oxygen concentration.
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Figure 8. Energy consumption of air separation, compression and purification of flue gas, system 
total energy consumption, and the system standard coal consumption for various 𝑟ைమ. 

Figure 8. Energy consumption of air separation, compression and purification of flue gas, system total
energy consumption, and the system standard coal consumption for various rO2 .

It can be explained as follows: with the increase of oxygen concentration, the coal burnout rate
increases, resulting in the reduction of oxygen required for combustion (VO2 , see Figure 1), resulting in
the reduction of energy consumption of the ASU; after the oxygen concentration rises, the amount of
other gases into the air decreases, thus reducing the amount of circulating flue gas (Vrf, see Equation (3))
and the power consumption of the circulating fan. At the same time, the flue gas volume of the system
(Vy, see Figure 1) is also reduced, thus reducing the energy consumption of the CPU. Above all, the total
energy consumption of the system decreases, and the power supply of the system increases. However,
due to the constant total heat release, the decrease of flue gas volume (Vfg, see Figure 1) leads to the
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increase of flue gas temperature difference, so the flue gas temperature decreases. The flue gas volume
(Vfg1, see Figure 1) and the flue gas temperature of the system was reduced, so the heat loss of the
system flue is reduced, the thermal efficiency of the boiler is increased, and the coal consumption of
the system is reduced.

Figure 9 shows that with the increase of oxygen concentration, the system power supply and the
net electrical efficiency of the system increase, the net standard coal consumption rate and the energy
penalty due to carbon capture in an OC power generation system (EP) reduce. It can be explained as
follows: the external power supply of the system remains unchanged, while the power consumption of
the plant decreases, so the external power output increases; At the same time, as the coal consumption
decreases, the net standard coal consumption rate decreases, the net electrical efficiency increases, and
the EP decreases.
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Figure 10. Trend chart of flue gas quality, CO2 content in flue gas, total CO2 mass in flue gas, and CO2 
capture mass for various 𝜒ଵ. 
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Figure 9. System power supply, the net electrical efficiency, the energy penalty due to carbon capture
in an OC power generation system (EP), and the net standard coal consumption rate of the system for
various rO2 .

3.1.3. The recirculation Rate of Dry Flue Gas in Boiler Flue Gas (χ1)

χ1 is the recirculation rate of dry flue gas in the boiler flue gas. Figure 10 shows that with the
increase in χ1, the total amount of flue gas discharged decreased. However, as the CO2 content in
the flue gas increased, the total CO2 in the flue gas increased. Therefore, if the capture rate remained
unchanged, the amount of CO2 that must be collected and compressed increased.
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Figure 11 shows that with the increase of χ1, the energy consumption of the ASU, the energy
consumption of the CPU and the total energy consumption of the system decrease, while the standard
coal consumption of the system increases.
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Figure 11. System standard coal consumption, the energy consumption of air separation, 

compression and purification of flue gas, and system total energy consumption for various (𝜒1). 
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Figure 11. System standard coal consumption, the energy consumption of air separation, compression
and purification of flue gas, and system total energy consumption for various (χ1).

It can be explained as follows: with the increase of χ1, the higher oxygen content of the primary
flue gas after dehydration reduces the amount of oxygen supplied (VO2 , see Figure 1). The energy
consumption of the ASU was also reduced as the amount of oxygen supplied reduced. However, due
to the increase in χ1, the amount of secondary flue gas circulation (Vw

r f , see Figure 1) decreases, and

because the oxygen content of primary flue gas (Vd
r f , see Figure 1) after dehydration is higher, when

the oxygen concentration remains unchanged, the amount of secondary flue gas reduction will be
higher than the amount of primary flue gas increment, so the total flue gas circulation rate will be
reduced, and the power consumption of circulating fan will be correspondingly reduced. However,
due to the increase of the primary flue gas circulation, the flue gas output (Vfg2, see Figure 1) of the
system increases. With the increase of Vfg2, when the discharge heat of flue gas was unchanged, the
temperature difference of flue gas decreased, so the flue gas temperature rises. As a result, the heat
loss of flue gas increased, the boiler efficiency decreased, and the boiler coal consumption increased.
At the same time, the energy consumption of gas compression and purification was reduced due to the
increase of primary gas circulation and the decrease of (Vfg4, see Figure 1). The above effects added up
to reduce the total energy consumption of the system.

Figure 12 shows that with the increase in χ1, the power supply of the OC power generation system
and the net electrical efficiency showed an increasing trend, whereas the net coal consumption of the
system and the energy penalty due to carbon capture in an OC power generation system (EP) showed
a decreasing trend.

It can be explained as follows: with the increase of χ1, the energy consumption of the ASU and the
energy consumption of the CPU all reduced. The boiler coal consumption increased with the increase
of χ1, but the increased range was small. These effects added up to the above results.
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Figure 13. Energy consumption of air separation, the energy consumption of flue gas compression 

and purification, the total energy consumption, and system standard coal consumption for various 
2O . 
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Figure 12. The net standard coal consumption rate, the net electrical efficiency, the energy penalty due
to carbon capture in an OC power generation system (EP), and the power supply of the system for
various χ1.

3.1.4. Excess Oxygen Coefficient (αO2 )

Figure 13 shows that with the increase of αO2 , energy consumption of the air separation system, gas
compression system, total energy consumption, and standard coal consumption of the system increase.
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It can be explained as follows: with the increase of excess oxygen coefficient, the amount of
oxygen supplied (VO2 , see Figure 1) increases, and when the single consumption of oxygen production
remains unchanged, the energy consumption of the air separation system increases. Moreover, due to
the increase of oxygen supply, the amount of flue gas (Vfg, see Figure 1) increases, so the amount of
circulating flue gas (Vrf, see Equation (3)) and the amount of flue gas (Vy, see Figure 1) also increase
correspondingly. The increase of Vrf leads to the increase of power consumption of the circulating
fan, and the increase of Vy leads to an increase of CPU energy consumption. When Vfg increased,
the temperature difference of flue gas decreased when the heat transfer of flue gas was constant, so
the flue gas temperature increased. Above all, the total energy consumption of the system increased.
At the same time, the increase of flue gas volume led to an increase in, heat loss and coal consumption.

Figure 14 shows that with the increase of the excess oxygen coefficient, the system power supply,
and the net electrical efficiency decreased, and the net standard coal consumption rate and the energy
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penalty due to carbon capture in an OC power generation system (EP) increased. The power generation
of the system remained unchanged, while the total energy consumption of the system increased, so the
external output power decreased; at the same time, due to the increase of coal consumption, the net
standard coal consumption rate increased, the net electrical efficiency decreased, and the net electrical
efficiency drop increased.
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Based on the above results, it can be seen that when the oxygen purity (ϕO2 ) increased, the oxygen
concentration (rO2) decreased, the recirculation rate of dry flue gas in boiler flue gas (χ1) decreased
and the excess oxygen coefficient (αO2 ) increased, the power supply standard coal consumption of the
OC power generation system increased and the net power efficiency of the system decreased. When
oxygen purity, oxygen concentration, the recirculation rate of dry flue gas in boiler flue gas, and excess
oxygen coefficient were 96%, 33%, 55%, and 1.05, respectively, the net standard coal consumption rate
of system was minimum, and the net electrical efficiency of the system was maximum.

3.2. Orthogonal Analysis of the Influence of Operating Factors on Energy Consumption of the Oxyfuel
Combustion System

The orthogonal analysis test method can consider the individual effect of each key parameter
on system performance. It can also consider the influence of the interaction between factors on
system performance.

3.2.1. Orthogonal Experimental Design

On the basis of the results of the single-factor study above, we selected four parameters as factors:
oxygen purity (ϕO2), oxygen concentration (rO2), the recirculation rate of dry flue gas in boiler flue
gas (χ1), and the excess oxygen coefficient (αO2). We then used five levels of each factor to design
the orthogonal test. The L25 (56) orthogonal table was used, with four factors accounting for one
column each. The remaining two columns were left blank for error analysis. See Table 4 for the specific
experimental design.
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Table 4. Factors and levels of the orthogonal test.

Level
Factors

ϕO2 A (%) rO2 B (%) χ1 C (%) αO2 D

1 95.0 25.0 35.0 1.05
2 96.0 27.0 40.0 1.10
3 97.0 29.0 45.0 1.15
4 98.0 31.0 50.0 1.20
5 99.0 33.0 55.0 1.25

3.2.2. Orthogonal Test Scheme and Experimental Results

The orthogonal test scheme and results are shown in Table 5.

Table 5. Orthogonal test scheme and results.

Trial
No.

ϕO2

A (%)
rO2

B (%) χ1 C (%) αO2

D Error 1 Error 2
Net Standard Coal
Consumption Rate

(g/kWh)

Net Electrical
Efficiency (%)

1 95.0 25.0 35.0 1.05 1 1 419.33 29.29
2 95.0 27.0 40.0 1.10 2 2 423.93 28.98
3 95.0 29.0 45.0 1.15 3 3 427.66 28.72
4 95.0 31.0 50.0 1.20 4 4 430.68 28.52
5 95.0 33.0 55.0 1.25 5 5 434.13 28.30
6 96.0 25.0 40.0 1.15 4 5 437.61 28.07
7 96.0 27.0 45.0 1.20 5 1 441.01 27.85
8 96.0 29.0 50.0 1.25 1 2 442.31 27.77
9 96.0 31.0 55.0 1.05 2 3 409.75 29.98
10 96.0 33.0 35.0 1.10 3 4 415.97 29.53
11 97.0 25.0 45.0 1.25 2 4 459.89 26.71
12 97.0 27.0 50.0 1.05 3 5 416.82 29.47
13 97.0 29.0 55.0 1.10 4 1 419.88 29.26
14 97.0 31.0 35.0 1.15 5 2 427.73 28.72
15 97.0 33.0 40.0 1.20 1 3 431.75 28.45
16 98.0 25.0 50.0 1.10 5 3 432.62 28.39
17 98.0 27.0 55.0 1.15 1 4 429.21 28.62
18 98.0 29.0 35.0 1.20 2 5 446.94 27.48
19 98.0 31.0 40.0 1.25 3 1 450.29 27.28
20 98.0 33.0 45.0 1.05 4 3 413.69 29.69
21 99.0 25.0 55.0 1.20 3 2 466.87 26.31
22 99.0 27.0 35.0 1.25 4 3 471.37 26.06
23 99.0 29.0 40.0 1.05 5 4 423.68 28.99
24 99.0 31.0 45.0 1.10 1 5 428.42 28.67
25 99.0 33.0 50.0 1.15 2 1 432.13 28.43

3.2.3. Orthogonal Test Range Analysis

On the basis of the test designed by the orthogonal table, we calculated the index value of each
test and judged the sensitivity of each factor to the index according to the test result:

ki j =
1
S

Ki j (15)

where Kij is the sum of the test results with the horizontal sign i on the column j, ki j is the factor in
the j column and the mean value of orthogonal test results at horizontal i, and S is the number of
occurrences of horizontal i on the j column.

The evaluation criterion for the factor sensitivity of the range analysis method is Rj. Rj is the
difference between the ki j maximum and minimum values of the statistical parameters calculated at
each level of the factor. The formula is as follows:

R j = max
(
ki j

)
−min

(
ki j

)
(16)
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The range reflects the relative influence of each factor on the test index. The influence degree of
factors can be directly judged from R. The greater the range R, the greater the influence of the factor
level on the net standard coal consumption rate of the OC power generation system.

Tables 6 and 7, and Figure 15 show that in the orthogonal test analysis of the net standard coal
consumption rate of OC power generation system, the factors with the largest and smallest range
differences are D (αO2) and C (χ1), respectively. The influence of each operating factor on the net
standard coal consumption rate and the net electrical efficiency of the OC power generation system is
as follows: D (αO2 ) > B (rO2 ) ≈ A (ϕO2 ) > C (χ1).

Table 6. Range analysis results of the net standard coal consumption rate orthogonal test (the unit is
g/kW·h).

Experiment A B C D

K1j 427.143 443.265 436.267 416.654
K2j 429.329 436.467 433.450 424.163
K3j 431.216 432.093 434.134 430.867
K4j 434.550 429.373 430.912 443.448
K5j 444.492 425.532 431.966 451.598
Rj 17.349 17.733 5.355 34.944

Table 7. Range analysis results of the net electrical efficiency orthogonal test (the unit is %).

Experiment A B C D

K1j 28.76 27.75 28.22 29.48
K2j 28.64 28.20 28.35 28.97
K3j 28.52 28.44 28.33 28.51
K4j 28.29 28.63 28.52 27.72
K5j 27.69 28.88 28.49 27.22
Rj 1.07 1.13 0.30 2.26
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Figure 15. Range analysis of the net standard coal consumption rate and the net electrical efficiency
corresponding to the four factors.

3.2.4. Analysis of Variance by Orthogonal Test

According to the calculation results of orthogonal design, the specific calculation equations of
variance analysis [21,31] are:

Ki j =
r
N

Ki j (17)
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y =
1
N

n∑
i=1

yi (18)

S j =
N
r

n∑
i=1

(Ki j − y)2 (19)

f j = r− 1 (20)

S j =
S j

f j
(21)

where r is the level number of factors, N is the number of simulation calculations, Kij is the simulation
result of factor j at the i level, yi is the ith simulation result, y is the average of n calculated results, Ki j
is the average value of calculated results at the i level of factor j, Sj is the sum of deviation squares of
any case, fj is the degrees of freedom, and S j is the mean square sum.

The variance analysis of the orthogonal experiment separates the variance that belongs to the
category of experimental error from the sum of square variances caused by experimental factors.
We used the sum of the squares of deviation and error of each factor to construct the test statistics and
conducted an F-test to judge whether the effect of each factor was significant or not. The analysis of
variance (ANOVA) can make up for the shortcomings of range analysis, determine whether each factor
is significant to the test index and the magnitude of significance, and evaluate the error [21,22,31].
According to the calculation results of orthogonal design, the specific calculation equation of variance
analysis is as follows:

The sum of the squares of deviations caused by the jth factor column is

S j =
r
t

r∑
i=1

K2
i j−

1
t

 r∑
i=1

Ki j

2

(22)

where t is the test number of the j factor at the i level.
The sum of the squares of the deviations of all the empty columns in the interactive orthogonal table

is called the sum of the squares of the random errors of the experiment, denoted as Se. The deviation
means square and Vj of each factor, the random error mean square, and Ve is:

V j = S j/ f j (23)

Ve = Se/ fe (24)

where fj is the degree of freedom, fj = r−1, and fe is the sum of the degrees of freedom of each
blank column.

Therefore, the corresponding statistic F j of each factor is:

F j =
V j

Ve
∼ F

(
f j, fe

)
(25)

The symbol”∼” indicates that Fj is compared with F
(

f j, fe
)
. The significance level of the F-test was

0.10, 0.05, and 0.01 [22,31].
Tables 8 and 9 show that the excess oxygen coefficient has a particularly significant influence on

the net standard coal consumption rate and the net electrical efficiency for the OC power generation
system (confidence P = 99%). The oxygen concentration and oxygen purity have a significant influence
(confidence P = 95%). The recirculation rate of dry flue gas in boiler flue gas does not have a significant
influence (confidence P = 90%).
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Table 8. Analysis results of the net standard coal consumption rate orthogonal test difference.

Factors Deviation Sum
of Squares

Degrees of
Freedom

Mean Sum of
Squares F-Ratio Significance

Oxygen purity 924.16 4 231.04 9.25 FF
Oxygen concentrations 932.69 4 233.17 9.33 FF

χ1 84.98 4 21.25 0.85
Excess oxygen coefficient 4021.35 4 1005.34 40.23 FFF

Error 99.94 4 24.99

Table 9. Analysis results of the net electrical efficiency orthogonal test difference.

Factors Deviation Sum
of Squares

Degrees of
Freedom

Mean Sum of
Squares F-Ratio Significance

Oxygen purity 3.498 4 0.875 11.738 FF
Oxygen concentrations 3.703 4 0.926 12.426 FF

χ1 0.301 4 0.075 1.010
Excess oxygen coefficient 16.672 4 4.168 55.946 FFF

Error 0.298 4 0.075 -

Note: F0.01(4,4) = 16.00, F0.05(4,4) = 6.39, and F0.10(4,4) = 4.11 [22].

It is generally believed that when F is greater than F0.01, the influence of factors is particularly
significant, denoted as “FFF.” When F0.01 ≥ F > F0.05, the influence of factors is significant, denoted
as “FF.” When F0.05 ≥ F > F0.10, the factors have a certain influence, denoted as “F.” When F0.10 > F,
the influence of factors is not significant and is denoted as “ .”

4. Conclusions

Many previous studies are available for OC power generation systems under different working
conditions. However, few studies try to reveal the rules about how the working parameters influence the
operating energy indexes in a uniform experiment or simulation platform, especially in a quantitative
way. In the present study, we aimed to analyze the sensitivity of system parameters to the operating
energy indexes of the OC power generation systems quantitatively, the orthogonal design method was
adopted, and the sensitivity of four system parameters to the two indices of OC power generation
systems was evaluated. We came to the following conclusions:

1. With an increase of oxygen purity, the increase of actual separation work required by air separation
leads to the sharp increase in energy consumption of ASU. However, with the increase of oxygen
purity, the reduction of boiler flue gas reduced the energy of the CPU. The superposition result
of these two effects is as follows: with the increase of oxygen purity, the net standard coal
consumption rate of the OC power generation system first decreased and then increased, while
the net electrical efficiency of the OC power generation system first increased and then decreased.
With the increase of oxygen concentration, the burnout rate of pulverized coal increased, leading
to the decrease of combustion oxygen demand and flue gas in the OC power generation system.
The result is that with the increase of oxygen concentration, the net coal consumption of the OC
power generation system decreases, while the net electrical efficiency of the OC power generation
system increases. The increase in χ1 increases the share of flue gas with high oxygen content
for combustion, thus reducing the oxygen supply of air separation and flue gas. As a result,
with the increase of χ1, the net standard coal consumption rate of the OC power generation
system presents a downward trend, while the net electrical efficiency of the OC power generation
system presents a rising trend. With the increase of the excess oxygen coefficient, the combustion
oxygen flow rate and the flue gas volume of the boiler increase, leading to an increase in energy
consumption of ASU and CPU. The result is that with the increase of excess oxygen coefficient,
the net standard coal consumption rate increases and the net electrical efficiency decreases.

2. When oxygen purity, oxygen concentration, recirculation rate of dry flue gas in boiler flue gas,
and excess oxygen coefficient are 96%, 33%, 55%, and 1.05, respectively, the net standard coal
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consumption rate of system reaches the lowest, and the net electrical efficiency of the system
reaches the highest.

3. The orders of the four factors’ sensitivity to the two indices are also obtained. The influence of
each operating factor on the net standard coal consumption rate and the net electrical efficiency
of the OC unit was as follows: excess oxygen coefficient > oxygen concentration ≈ oxygen purity
> recirculation rate of dry flue gas in boiler flue gas Among the operating factors, the excess
oxygen coefficient had a particularly significant influence on the net electrical efficiency and
the net standard coal consumption rate of the power supply for OC power generation system.
The influence of oxygen concentration and oxygen purity was significant. The influences of the
recirculation rate of dry flue gas in boiler flue gas were not significant.
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28. Terzioğlu, H. Analysis of effect factors on thermoelectric generator using Taguchi method. Measurement 2020,
149, 106992. [CrossRef]

29. Aspen Plus, Aspentech. Available online: http://www.aspentech.com, (accessed on 10 December 2014).
30. EBSILON professional, STEAG Gmbh. Available online: https://www.steag-systemtechnologies.com/en/

products/ebsilon-professional (accessed on 12 December 2017).
31. Montgomery, D.C. Design and analysis of experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 67–75.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.energy.2013.12.032
http://dx.doi.org/10.1016/j.energy.2015.03.023
http://dx.doi.org/10.1016/j.enconman.2015.03.088
http://dx.doi.org/10.1016/j.ijggc.2014.07.001
http://dx.doi.org/10.1016/j.enconman.2015.04.031
http://dx.doi.org/10.1016/j.applthermaleng.2016.04.116
http://dx.doi.org/10.2478/aoter-2014-0020
http://dx.doi.org/10.1016/j.enconman.2014.01.026
http://dx.doi.org/10.1016/j.applthermaleng.2014.06.048
http://dx.doi.org/10.1016/j.energy.2019.01.072
http://dx.doi.org/10.1016/j.egypro.2017.03.525
http://dx.doi.org/10.1016/j.apenergy.2015.08.025
http://dx.doi.org/10.1016/j.measurement.2019.106992
http://www.aspentech.com,
https://www.steag-systemtechnologies.com/en/products/ebsilon-professional
https://www.steag-systemtechnologies.com/en/products/ebsilon-professional
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Model of the Oxyfuel Combustion System 
	OC Power Generation Unit 
	Air Separation Unit 
	Compressed and Purification Unit of Gas 

	Calculation Model of Energy Consumption of the Oxyfuel System 

	Results and Discussion 
	Operating Factors Influencing Energy Consumption of an Oxyfuel Combustion System 
	Oxygen purity (O2 ) 
	Oxygen Concentrations (rO2 ) 
	The recirculation Rate of Dry Flue Gas in Boiler Flue Gas (1 ) 
	Excess Oxygen Coefficient (O2 ) 

	Orthogonal Analysis of the Influence of Operating Factors on Energy Consumption of the Oxyfuel Combustion System 
	Orthogonal Experimental Design 
	Orthogonal Test Scheme and Experimental Results 
	Orthogonal Test Range Analysis 
	Analysis of Variance by Orthogonal Test 


	Conclusions 
	References

