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Abstract: The energy recovered with regenerative braking system can greatly improve energy
efficiency of range-extended electric vehicle (R-EEV). Nevertheless, maximizing braking energy
recovery while maintaining braking performance remains a challenging issue, and it is also difficult
to reduce the adverse effects of regenerative current on battery capacity loss rate (Qloss,%) to extend
its service life. To solve this problem, a revised regenerative braking control strategy (RRBCS) with
the rate and shape of regenerative braking current considerations is proposed. Firstly, the initial
regenerative braking control strategy (IRBCS) is researched in this paper. Then, the battery capacity
loss model is established by using battery capacity test results. Eventually, RRBCS is obtained based
on IRBCS to optimize and modify the allocation logic of braking work-point. The simulation results
show that compared with IRBCS, the regenerative braking energy is slightly reduced by 16.6% and
Qloss,% is reduced by 79.2%. It means that the RRBCS can reduce Qloss,% at the expense of small
braking energy recovery loss. As expected, RRBCS has a positive effect on prolonging the battery
service life while ensuring braking safety while maximizing recovery energy. This result can be used
to develop regenerative braking control system to improve comprehensive performance levels.

Keywords: range-extended electric vehicle; regenerative braking; optimal slip ratio control; battery
capacity loss model; regenerative braking controller; control strategy optimization

1. Introduction

With increasingly prominent energy and environmental issues, electric vehicles have developed
rapidly in recent years due to their advantages of low pollution-free emission. However, due to the low
energy density of battery, short driving range and long charging time, the marketing of battery electric
vehicles (BEV) is greatly limited [1,2]. Range-extended electric vehicles (R-EEVs) add auxiliary power
units, it can solve the range anxiety from consumers by increasing driving range. In addition, a R-EEV
has a certain commercial competitiveness in the future market [3]. The regenerative braking system
(RBS) provides an effective way to greatly improve overall electrical performance of R-EEVs [4,5].
Thereby, the regenerative braking control strategy (RBCS) is worthwhile research, and is receiving a
good deal of attention.

The existing research has focused on RBCS in order to achieve better capacity of the regenerative
braking energy. Literature [6] has analyzed the braking force distribution strategy and studied the
energy saving potential. Different control strategies are studied to achieve the goals of regeneration
efficiency and braking safety in [7–9]. Similar researches also include Literature [10–13], which
develop braking torque allocating method to achieve improved braking performance and energy
regeneration. In terms of the currently available approaches, it is mainly focused on how to coordinate
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the regenerative braking torque and mechanical friction to maximize the braking energy recovery while
ensuring the braking efficiency. It should be noted that the impact of regenerative braking current
(RCC) on battery health should also be given sufficient attention and research.

The other focus is optimization and the analysis of braking torque distributions strategies under
extreme adhesion conditions or an emergency braking process. A revised control strategy is presented
with the front wheel slip ratio consideration in [14] to prevent a front wheel lock-up and maximize the
regenerative braking efficiency under low tire–road friction conditions. Literature [15] proposed an
efficient RBCS based on the modified nonlinear model predictive control method to ensure braking
safety. In addition, a study team [16] built a high-precision predictive model based on the off-line
optimization data of the combined model to solve the poor real-time problem of the optimization.
The artificial neural network-based control mechanism was utilized to optimize the switching scheme
of the vehicular braking force distribution was proposed [17].

The previous studies have focused more on the braking efficiency and maximization of regenerative
energy, but the impact of RCC on battery service life is not considered sufficiently. It means there is
still much room for optimization of RBCS. Therefore, a revised regenerative braking control strategy
(RRBCS) is proposed in this paper. The strategy based on optimal slip ratio (OSR) to ensure braking
performance while maximizing braking energy recovery and reducing battery capacity loss rate
(Qloss,%). The rest of this paper is organized as follows:

In Section 2, the initial regenerative braking control strategy (IRBCS) is given, and the distribution of
the front and rear slip ratios and allocation logic of the braking work-point are introduced. A simulation
model is built in Section 3, and the tire–road adhesion coefficient recognition module (TACRM) and
double fuzzy logic controller (DFLC) are verified by simulation test. In Section 4, battery capacity
loss module (BCLM) is established. The BCLM uses test results of battery life decay test. Eventually,
RRCBS is proposed. In Section 5, the effectiveness and feasibility of the proposed RRBCS are validated
by test under the world light vehicle test procedure (WLTP). This is followed by the conclusion in the
final section.

2. IRBCS Based on OSR

2.1. Control Principle Overview of IRBCS

The research object is a medium-sized R-EEV. As shown in Figure 1, the R-EEV is driven by the
front axle. The regenerative braking system consists of two systems: hydraulic braking system and
an electric braking system. Four wheels are equipped with regulating valves, so each wheel can be
controlled independently by braking controller.
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The optimal control of braking efficiency and energy recovery cannot be guaranteed with fixed slip
ratio on different tire–road adhesion conditions. Through monitoring and identification of tire–road
adhesion conditions in real time, the OSR is output as the control target value to ensure braking
performance [18,19]. Process of IRBCS based on OSR is shown in Figure 2.
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Road C1 C2 C3 

Dry asphalt 1.28 23.99 0.52 

Wet asphalt 1.197 25.17 0.54 

Figure 2. Process of regenerative braking control strategy based on optimal slip ratio.

When braking starts, hydraulic brake control unit judges the battery state of charge (SoC). If SoC
≥0.8, it means battery energy is high, the RBS is not carried out and the wheels are braked by hydraulic
braking system. If SoC<0.8 and Vvehic>0, the RBS start to work and braking torque distributed between
front wheels with regenerative braking torque and rear wheels with hydraulic braking torque provided
by the motor. If the regenerative braking torque can provide sufficient required braking torque, the
front wheel braking torque is all provided by the regenerative braking torque. If the regenerative
braking torque cannot provide sufficient required braking torque, the front wheel braking torque is
provided by the regenerative braking torque and the hydraulic braking torque.

2.2. Tire–Road Adhesion Coefficient Recognition Module (TACRM)

Through TACRM, the tire–road adhesion coefficient (TAC) is estimated in real time and the
real-time optimal slip ratio (sosr (t)) and real-time tire–road adhesion coefficient (µosr (t)) are outputted.
Several mature tire–road models based on empirical and analytical can be selected [13]. A braking force
distribution strategy is proposed in [19] based on the estimation of the tire–road friction coefficient
using a fuzzy logic estimation approach. In this paper, the empirical model ‘Burckhardt tire model’
is selected because of its suitability for tire behavior simulation, as shown in Figure 3a and Table 1.
The equation of the ‘Burckhardt tire model’ is expressed as follows:

µ(s) = C1(1− e−C2s) −C3s (1)
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Table 1. Burckhardt tire mode parameters.

Road C1 C2 C3

Dry asphalt 1.28 23.99 0.52
Wet asphalt 1.197 25.17 0.54
Dry cement 0.857 33.82 0.35

Wet cobblestone 0.4 33.71 0.12
Ice 0.05 306.39 0.001

As shown in Figure 3b, the peak tire–road adhesion coefficient on j-th road (µj(s(t))) can be
calculated by substituting the real-time slip ratio (s(t)). The utilization adhesion coefficient (f(t)) is
calculated as follows:

f (t) =
Fx_adhesion

Fz_vertical
(2)

where Fx_adhesion is the wheel longitudinal adhesion force; Fz_vertical is the wheel vertical force.
When µj(s(t))>f(t), the upper limit value of TAC (µJ_ul(t)) is calculated as follows:

µJ_ul(t) = min[µ j(s(t))] (3)

When µj(s(t))≤f(t), the lower limit value of TAC (µJ_ll(t)) is calculated as follows:

µJ_ll(t) = max[µ j(s(t))] (4)

The upper and lower limit values of OSR (sJ_osr_ul(t), sJ_osr_ll(t)), upper and lower limit value of
real-time tire–road adhesion coefficient (µJ_osr_ul(t), µJ_osr_ll(t)) on the j-th road are obtained using a
look-up table. Then, the distribution proportion coefficient (kr) is defined as follows:

kr =
µJ_osr_ul(t) − f (t)

µJ_osr_ul(t) − µJ_osr_ll(t)
(5)

Real-time optimal slip ratio (sosr(t)) and corresponded adhesion coefficient (µosr(t)) can be obtained
as follows:

sosr(t) = sJ_osr_ul(t) + krsJ_osr_ul(t) − krsJ_osr_ll(t) (6)

µosr(t) = µJ_osr_ul(t) − krµJ_osr_ul(t) + krµJ_osr_ll(t) (7)

2.3. Distribution of Front and Rear Slip Ratio

The braking working point is located on the ideal braking force distribution curve (I curve).
Making the best use of the tire–road adhesion conditions can maximize the braking safety [20]. It is
certain that the Economic Commission of Europe Regulation 13 needs to be considered for the braking
force allocation to ensure braking safety in design process of RBCS. As shown in Figure 4a, the left
intersection of the ECE regulation line (M curve) and the front wheel braking force axis (x-axis) is the
maximum braking force value of working point A, which is also limited by the motor maximum torque
(Tmot_max). It can ensure that all the braking working points obtained in RBCS are above the M curve to
ensure braking safety.

When the braking working point is at point A, the braking strength is defined as the threshold of
the low braking intensity (Za_1), and it is calculated as follows:

Za_l =
WTmax_moti

mgR
(8)

where m is the total mass of vehicle; R is the wheelbase; i is the transmission ratio.
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W is the correction factor with the tire–road adhesion condition consideration, and it is calculated
as follows:

W =


0, 0 ≤ µmax ≤ µw_l
(µmax−µw_l)

(µw_h−µw_l)
, µw_l ≤ µmax ≤ µw_h

1, µw_h ≤ µmax

(9)

where µw_h is the threshold value of the high TAC; µw_l is the threshold value of the low TAC; µmax is
the peak tire–road adhesion coefficient (PTAC).
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When the required braking strength (Zreq) is less than Za_l, the front wheel braking torque is
provided by the regenerative braking torque totally. If the regenerative braking torque provides
insufficient required braking torque, the motor remains at the maximum torque, and the insufficient
braking force would be compensated by the hydraulic braking system until reaching point B on I curve.
As shown in Figure 4a, When the braking working point is at point B, the braking strength is defined
as the threshold of the high braking intensity (Zb_h), which is calculated as follows:

Zb_h =

√
m2

f + 4Za_lhg/l−m f

2hg/l
(10)

where mf is the front axle mass distribution coefficient; hg is the centroid height.
If Zreq> Zb_h, the front and rear wheel braking force distribution is performed according to the I

curve, that is, the BC segment coincides with the I curve.
The ideal braking force distribution control is realized by controlling the front and rear slip ratio

under braking process [6]. As shown in Figure 4b, the relationship between braking force and the slip
ratio is derived according to the braking dynamics theory. The distribution values of front wheel slip
rate slip ratio (sf) and rear wheel slip rate slip ratio (sr) in three braking stages are described as follows:

(1) OA stage: full regenerative braking

s f = µ−1
f [

Za_l

m f + Zreqhg/l
], sr = 0 (11)

(2) AB stage: hydraulic braking compensation

s f = µ−1
f [

Za_l

m f + Zreqhg/l
], sr = µ−1

r [
Zreq −Za_l

m f −Zreqhg/l
] (12)

(3) BC stage: coordination braking on the I curve

s f = µ−1
f [Zreq], sr = µ−1

r [Zreq] (13)
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2.4. Allocation of Braking Work-Point

The allocation logic of braking work-point is a major part of IRBCS, and it determines the efficiency
of IRBCS. The braking work-point in IRBCS is divided into five types in this paper, as shown in Figure 5.
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Figure 5. Allocation logic of braking work-point in initial regenerative braking control strategy: (a)
area schematic; (b) logic schematic.

As shown in Figure 5a, µµ_h and µµ_l are the high tire–road adhesion threshold value and the
low tire–road adhesion threshold value, respectively. The allocation logic of braking work-point
in IRBCS is as follows: (1) Mild braking (Zreq_l< Za_l): when the PTAC is small(µmax<µµ_l), such as
ice road, the wheel has the risk of locking and slipping in braking process. Therefore, the braking
work-point should follow the I curve on work-point 1 (WC1) to ensure the braking efficiency. If the
PTAC is better (µmax>µµ_l), the braking work-point should follow the “OA” curve on work-point 2
(WC2). The front wheel braking torque is provided by the motor and the rear wheel hydraulic force is
0. (2) Moderate braking (Zb_h>Zreq_m>Za_l), when the PTAC is not high enough (µmax<µµ_h), there is
also a risk of locking slip due to the significant braking strength. Therefore, the braking work-point
should follow the I curve on work-point 3 (WC3) to ensure the braking efficiency. If the PTAC is
high (µmax>µµ_h), the braking work-point should follow the “AB” curve on work-point 4 (WC4) to
achieve good braking efficiency while maximizing braking energy recovery. (3) In the emergency
braking condition (Zreq_h>Zb_h), there is a risk of locking slip due to the significant braking strength.
Therefore, the braking work-point should follow the I curve on work-point 5 (WC5) to ensure the
braking efficiency. The rear wheel braking torque is provided by hydraulic braking system. The motor
provides its maximum regenerative torque applied at the front wheels.

3. Verification and Discussion of IRBCS in Simulation Environment

3.1. Simulation Model of R-EEV

In this section, simulation experiments are performed in MATLAB/Simulink and AVL/Cruise
software (version 2014, AVL List GmbH, Austria) to evaluate the control effect of IRBCS. As shown in
Figure 6, the vehicle dynamics model of R-EEV, including regenerative braking system is established
in Cruise software. The vehicle performance simulation calculations are performed in Cruise software.
The IRBCS control strategy is performed on the Simulink software through the API function software
provided by Cruise. Signals such as traction and braking, battery SoC and Vvehic are transmitted
between Cruise and Simulink. The main parameters used in the simulation are shown in Table 2.
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Table 2. Vehicle main parameters used in simulation.

Parameter Value Parameter Value

Full load weight (kg) 1700 Brake pedal leverage ratio 3.5
Wheelbase (mm) 2865 Diameter of pedal travel simulator (mm) 15

Battery capacity (kWh) 20 Distance from front axle to centroid (mm) 1352
Initial SoC (state of charge) 0.8 Distance from rear axle to centroid (mm) 1513

Centroid height (mm) 500 Diameter of front wheel cylinder (mm) 56.95
Drag area (m2) 1.66 Diameter of rear wheel cylinder (mm) 33.82

Correction coefficient of rotating mass 1.1 Diameter of master cylinder (mm) 18
Mechanical efficiency 0.96 Effective radius of front brake rotor (mm) 0.235

Transmission reduction ratio 4.2 Effective radius of rear brake rotor (mm) 0.227

3.2. Verification of TACRM

The TACRM proposed is verified by simulation test in this section. A co-simulation test is carried
out based on the braking system model of R-EEV in simulation environment. In simulations, the initial
braking speed is set at 80 km/h, and four tire–road conditions were set with PTAC of 0.6, 0.45, 0.2, and
0.1, respectively, as shown in Figure 7. The braking strength increases from 0 to 0.7 quickly to simulate
emergency braking conditions, and it stabilizes at 0.5 until the vehicle speed is 0. The estimated value
of the PTAC will be output in real time through the TACRM. The effectiveness and accuracy of the
TACRM can be seen by comparing with the preset value of PTAC.
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The interpolation calculation method is used to estimate the tire–road adhesion condition in the
four types of tire–roads, and it can effectively and accurately estimate the PTAC in real time.

3.3. OSR Control Method By DFLC

The braking force distribution of the front and rear wheels is different. The membership function
of the fuzzy controller and the formulation of the fuzzy rules are also different, which will affect the
target slip ratio control result. Considering the difference of braking torque between front and rear
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wheels, the DFLC for front and rear wheels is designed to ensure OSR tracking control target values
effectively, which is different from the fuzzy controllers in [9,13,21–25]. The requirement slip ratio
(sreq(t)) can be obtained from the requirement braking strength calculation and real-time OSR (sosr(t))
can be outputted. The determination process of the real-time OSR control target (scsr(t)) of the control
system is as follows: If sreq(t) <sosr(t), scsr(t) = sreq(t). Otherwise, scsr(t) = sosr(t). As shown in Figure 8,
the double fuzzy logic controller is designed in this section.
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The Mamdani method is used to perform the fuzzy logic calculation in this paper. Triangular
shapes are selected for the membership functions of the inputs and outputs and five fuzzy sets are
selected. As shown in Figure 9, in the fuzzy logic controller of front wheels, two inputs are the
difference between the real slip ratio and the target slip ratio (ef(t)) and slip ratio change rate (s′f(t)).
ef(t) ∈ (−0.05, 0.05), s′f(t) ∈ (−0.2, 0.2). The input universe is divided into 5 membership functions,
which are negative large (NB), negative small (NS), zero (ZO), positive small (PS), positive large (PB).
The outputs are the regenerative braking force adjustment value (∆Tf _e(t)) and the hydraulic braking
force adjustment value (∆Tf_m (t)). ∆Tf_m (t) ∈ (−500, 500), ∆Tf _e(t) ∈ (−500, 500). The output universe is
divided into 7 membership functions, which are negative large (NB), negative medium (NM), negative
small (NS), zero (ZO), positive small (PS), positive medium (PM), and positive large (PB).

The fuzzy rules are the key part of the fuzzy controller. Taking the front wheel fuzzy controller
as an example, its design principles are as follows: (1) When ef (t)<0: If s′f (t)>0, it means that sact(t)
has approached scsr(t), and ∆Tf should be PS or ZO. If s′f (t) = 0, it means that sact(t) is relatively small
relative to scsr(t). There is no risk of slipping during braking due to the slip ratio is small, ∆Tf should
be PS or PM. if s′f (t)>0, it means that sact(t) has deviated greatly from scsr(t). In order to eliminate the
target deviation as soon as possible, ∆Tf is PB. (2) When ef (t) = 0: if s′f (t) ≤0, it means that sact(t) is
closer to scsr(t), ∆Tf should be PS or ZO. If s′f (t)>0, it means that sact(t) becomes larger, and the front
wheel has the risk of slipping. ∆Tf should be NS or NM. (3) When ef (t)>0: If s′f (t)>0, it means that
sact(t) has deviated seriously from scsr(t), and the wheel has the risk of slipping. ∆Tf should be NB
or NM to reduce the slip ratio as soon as possible. If s′f (t) = 0, it means that sact(t) s relatively large
relative to scsr(t). ∆Tf should be NM or NS. If s′f (t)>0, it means that sact(t) is closer to scsr(t). ∆Tf should
be NS or ZO. The fuzzy control rules base of front wheel fuzzy controller is shown in Table 3.
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Figure 9. Membership functions and output surface of the front wheel fuzzy controller: (a) ef (t); (b) s′f
(t); (c) ∆Tf _e(t); (d) ∆Tf_m (t); (e) ∆Tf _e(t); (f) ∆Tf_m (t).

Table 3. The fuzzy control rules base of front wheel fuzzy controller.

s′f (t) NB NS ZO PS PB

ef (t)

NB PB PM PS ZO ZO
NS PB PS ZO ZO NS
ZO PM PS ZO NS NM
PS PS ZO NS NM NB
PB ZO ZO NM NB NB

As shown in Figure 10, in the fuzzy controller of rear wheels, two inputs are the difference between
the real slip ratio and the target slip ratio (er(t)) and slip ratio change rate (s′r(t)). er(t) ∈ (−0.05, 0.05),
s′r(t) ∈ (−0.2, 0.2). The output is the hydraulic braking force adjustment value of rear wheel ∆Tr_m(t).
∆Tr_m (t) ∈ (−500, 500). The selection and definition of the membership function are different with the
front wheel fuzzy controller obviously. The possibility of sudden changes in rear wheel braking torque
and the risk of overshoot fluctuations should be considered. The principles are roughly the same in
the formulation of fuzzy rules. Compared with the front wheel controller, the selection of fuzzy rules
should be softer.
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Figure 10. Membership functions and output surface of the rear wheel fuzzy controller: (a) er (t); (b) s′r
(t); (c) ∆Tr _m(t); (d) ∆Tr_m (t).

The fuzzy control rules base of rear wheel fuzzy controller after repeated design adjustments is
shown in Table 4.
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Table 4. The fuzzy control rules base of rear wheel fuzzy controller.

s′r (t) NB NS ZO PS PB

er (t)

NB PM PM PS ZO ZO
NS PM PS ZO ZO NS
ZO PS ZO ZO NS NM
PS PS ZO NS NM NM
PB ZO ZO NS NM NB

Defuzzification is an important step in fuzzy inference system. There are many methods of
defuzzification. The most common used methods are the maximum membership method, the center of
gravity method, and the weighted average method. The weighted average method is selected in fuzzy
controller for defuzzification, which is widely used in industrial control. The off-line calculation method
is adopted to ensure the control accuracy and calculation speed, and the corresponding relationship
between the observed value and the actual control value can be calculated using following equation:

X =

n∑
i=1

ωi ·Xi

n∑
i=1

ωi

(14)

where X is the final value; n is the number of elements, ωi is the membership.

3.4. Simulation Analysis of IRBCS

Based on the simulation model of the regenerative braking system, the braking performance was
tested to verify the effectiveness of IRBCS and detect the control effect of the DFLC on the target slip
ratio. In simulations, three different roads are set up, namely dry asphalt surface (µmax_h = 0.8), dry
cement surface (µmax_m = 0.6) and wet cobblestone surface (µmax_l = 0.35). The initial braking speed
is set at 80 km/h. The braking strength increases from 0 to 0.2 and then increases to 0.7 to simulate
emergency braking conditions, and it stabilizes at 0.5 until the Vvehic = 0. Two evaluation indexes are
used to evaluate the energy recovery performance of IRBCS. Evaluation parameter of regenerative
braking efficiency (ηb) and energy recovery ratio (Cb_cyc) can be calculated using following equation:

ηb =
F f _e

Ftotal
× 100% (15)

Cb_cyc =
Eregen_o f f − Eregen_on

Eregen_o f f
× 100% (16)

where Ff_e is the regenerative braking force; Ftotal is the total demand force; Eregen_on is the energy
consumed with RBS under the single braking test; Eregen_off is the energy consumed without RBS under
the single braking test.

Cb_cyc can be expressed as the contribution rate of regenerative braking to the reduction of energy
consumption. In order to make the simulation more realistic, the research uses the use of real-like
sensor signals affected by errors. During the simulation process, the effects of errors are simulated by
adding noise signals.

3.4.1. High Tire–Road Adhesion Condition

As shown in the Figure 11a, IRBCS tries to stop the car and the actual braking strength (Zact)
can reach the required braking strength (Zreq). The battery SoC increases from 0.4 to 0.4053, and
Cb-cyc is about 61.325%. The speed and slip ratio of front and rear wheel with IRBCS are shown in
Figure 11b,c, respectively.
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Figure 11. Simulation result of the RBCS under high tire–road adhesion condition (µmax = 0.8):
(a) braking strength, TAC and SoC; (b) front wheel slip rate and speed; (c) rear wheel slip rate and
speed; (d) braking torque.

We can see that the IRBCS keeps the slip ratio at the optimal value. The actual slip ratio sact(t)
responses in time with no overshooting, and the fluctuation is small. It means that the DFLC designed
in IRBCS can achieve good follow-up of the OSR. The actual vehicle speed overlaps with the desired
vehicle speed. The difference between the vehicle speed and the wheel speed is very small. Figure 11d
shows that the regenerative braking efficiency and the variations of the braking torque include hydraulic
braking torque and regenerative braking torque, the hydraulic braking torque and regenerative braking
torque can cooperate well under IRBCS. Initially, the braking torque is all provided by the regenerative
braking system and ηb is 1 from 0s to 2.4s to increase regenerative braking energy. When the braking
demand is increased with braking torque demand value exceeding the maximum motor torque Tmot_max,
the hydraulic braking torque participates in the braking process and ηb∈[0.65, 0.81]; it shows that a
large regenerative braking efficiency can still be achieved.

3.4.2. Medium Tire–Road Adhesion Condition

Similar analysis with the previous Section 3.4.1 is as follows: Zact can reach the required braking
strength well on medium PTAC, the SoC is increased from 0.4 to 0.4049, and Cb-cyc is about 56.677%.
IRBCS keeps the slip ratio at the optimal value, as shown in Figure 12b,c. Figure 12d shows that
variations of the braking torque limiting the follow-up of the target braking intensity when Zreq>0.6
after 3–3.8 s with µmax_h reaching the upper limitation. The target slip ratio is equal to the ground best
and provides the maximum braking strength. During the braking process, ηb is in the range of 0.58 to
1; it shows that a large regenerative braking efficiency can still be achieved.

3.4.3. Low Tire–road Adhesion Condition

As shown in the Figure 13a, Zact can reach the required braking strength well on low adhesion
coefficient condition, the SoC is increased from 0.4 to 0.4031, and Cb-cyc is about 32.841%. IRBCS keeps
the slip ratio at the optimal value, as shown in Figure 13b,c. Figure 13d shows that variations of
the braking torque limiting the follow-up of the target braking intensity when Zreq>0.35 after 2.2 s
with µmax_l reaching the upper limitation. The control target slip ratio is equal to the ground best
and provides the maximum braking strength. During the braking process, ηb is always 1. Under the
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premise of ensuring the braking efficiency, the braking energy is recovered to the greatest extent, and
the control system has excellent performance.Energies 2019, 12, x FOR PEER REVIEW 12 of 21 
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Figure 13. Simulation result of the RBCS under low tire–road adhesion condition (µmax = 0.35):
(a) braking strength, TAC and SoC; (b) front wheel slip rate and speed; (c) rear wheel slip rate and
speed; (d) braking torque.

In summary: as the braking control intervenes, the wheel speed decreases smoothly, and the slip
ratio maintains the ideal value while in deceleration process. As shown in Figures 11–13, the wheels
actual slip ratio can achieve a good tracking of the target slip ratio on various TAC conditions. It means
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that the IRBCS can prevent the wheel from locking to ensure braking safety. By using the proposed
IRBCS, the accumulated Cb_cyc on the three types of roads are 61.325%, 56.677%, 32.841%, respectively.
Thereby, tire–road adhesion is fully utilized and the regenerative braking performance of R-EEV is
assured, testifying the effectiveness and adaption of the developed control strategy.

4. Revised Regenerative Braking Control Strategy (RRBCS)

4.1. Battery Capacity Loss Model (BCLM)

Relevant research shows that the better charging capacity and the better health state of the
battery can be obtained by controlling the charging current profiles [26]. In this paper, the Li-ion
cylindrical batteries with model M18650 have been selected to study the impact of charging profiles on
battery performance. The battery storage systems were subjected to repeat operations of charging and
discharging profiles, and the rate and shape of RCC indubitably affected the charging time and the
aging rate of a battery. In this section, we reveal the relationship and establish the coupling relationship
model between the battery current (I(t)) and the battery capacity loss rate (Qloss,%). The battery model
and the measurements of battery capacity fading are proposed in [26–28]. Under a comprehensive
driving cycle, the BCLM can be established as follows:

Qloss,% = α×Ncyc ×DOD×Ahcell (17)

α = B1 × exp(B2Cn) = B1 × exp(B2
I(t)

Ahcell
) (18)

Qloss,% =

∫ Tcyc

0
B1 × B2×I′(t) × exp(B2

I(t)
Ahcell

) ×Ncyc ×DODdt (19)

where α is the capacity attenuation coefficient; DOD is the depth of discharge; Ahcell is the cumulative
capacity of the battery; B1 and B2 are fitting parameters, which can be calculated through the least
square method; Cn is the charging rate; I(t) is the battery current; Tcyc is the total cycle time.

It is difficult to evaluate the impact of discharge profiles on battery performance, because most
discharge conditions are multifarious based on the load itself [26], and it is necessary to correct the
original equation of BCLM with rate and current shape characteristic index. In order to evaluate the
capacity fading of the cells during their service life, multi-stage constant current–constant voltage with
a negative pulse (MCC-CVNP) is selected to simulate the battery current shape during operation, and
the reference performance test was carried out regularly (every 1700 cycles). As shown in Figure 14,
six cases have been selected in this paper to investigate the impact of the battery current curve on the
lithium-ion battery:
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Where ∆Id is the decrement of discharging current; ∆Ich is the decrement of charging current. 
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Case 1 (CC-CVNP): constant current discharging at current rate Id for Td and constant current
charging at current rate Ich for Tch, followed by rest time Ts were applied.
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Cases 2–6 (CC-CVNP): initial constant current discharging at current rate I *d for Td and initial
constant current charging at current rate I *ch for Tch, followed by rest time Ts were applied. Each pulse
decreases in sequence of ∆Id.

Under the same discharge rate Cn, the parameters of six cases are designed as follows:

(Td + Tch + Ts) ×Ahcell ×Cn =
∫ Td

0 Id(t)dt−
∫ Tch

0 Ich(t)dt

=
n∑

i=0
(
∫ T∗d

0 (I∗d(t) − i× ∆Id) −
n∑

i=0
(
∫ T∗ch

0 (I∗ch(t) − i× ∆Ich)
(20)

where ∆Id is the decrement of discharging current; ∆Ich is the decrement of charging current.
As shown in Figure 14b, each pulse decreases in sequence of ∆Id. The reduced current value

becomes equal difference series size relationship, which increases in sequence (∆Id, 2∆Id, 3∆Id . . . ).
The relationship between ∆Id, ∆Ich, I *d, and I *ch needs to satisfy the Equation (20) to ensure that
maintain the same charging rate under the shape of pulse current.

Sc
2 is defined to characterize the fluctuation of current shape under cycle condition and is

calculated as follows:

S2
c =

∫ Tcyc

0
(I(t) −CnAhcell)

2dt (21)

The related research results reveal that the dynamic discharging–charging profile has a significant
impact on reducing the capacity fade of the lithium-ion battery cells compared with the static profile [26].
Therefore, case 1 is selected as reference scheme because of their minimum Sc

2 in this paper, and ks2 is
defined as follows:

ks2 =
Q∗loss,%

Qloss,%
(22)

To characterize the fluctuation of current shape under cycle condition, Swc
2(t) can be calculated

as follows:
S2

wc = (I(t) − Iwc)
2
× ∆t (23)

Commercial lithium-ion M18650 cells has been used to study the battery capacity loss rate Qloss,%.
Table 5 shows the electrical parameters of battery cells.

Table 5. Electrical parameters of battery cells.

Electrical Parameters Value Electrical Parameters Value

Typical capacity (Ah) 3.65 End-of-charge voltage (V) 4.20±0.05
Minimum capacity (Ah) 3.60 End-of-discharge voltage (V) 3.00

Nominal voltage (V) 3.7 Energy density (Wh/kg) 150

Six cases of the applied charging process are shown in Table 6.

Table 6. Six cases of the applied discharging process of Cn = 0.5C.

Cn = 1C Id
(A)

Td
(s)

Ich
(A)

Tch
(s)

I *d
(A)

I *ch
(A)

∆Id
(A)

∆Ich
(A)

Ts
(s) fp

Case 1 28 12 14 2 − − − − 0.5 21
Case 2 − 12 − 2 30 15 0.2 0.1 0.5 21
Case 3 − 12 − 2 32 16 0.4 0.2 0.5 21
Case 4 − 12 − 2 34 17 0.6 0.3 0.5 21
Case 5 − 12 − 2 36 18 0.8 0.4 0.5 21
Case 6 − 12 − 2 38 19 1.0 0.5 0.5 21

The same test procedure can be performed in the case of Cn = 1.0C, Cn = 2.0C and Cn = 3.0C.
The relationship of correction factor ks2(t) and Swc

2(t) can be computed and concluded as shown in
Figure 15.
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Equation (23) can be calculated as follows:

ks2 = 1.0419 + 0.0363 ln(S2
wc) (25)

Finally, according to the above analysis of the relationship between ks2 and Swc
2, the BCLM with

current curve shape considerations under the cycle condition is obtained as follows:

Qloss,% =
∫ Tcyc

0 B1 × B2×I′(t) × exp(B2
I(t)

Ahcell
) × ks2(t) ×Ncyc ×DODdt

=
∫ Tcyc

0 0.495457×I′(t) × exp(0.3785 I(t)
Ahcell

) × [1.0419 + 0.0363 ln(S2
wc)]dt

(26)

4.2. Regenerative Braking Work-Point Switching

The goal of R-EEV’s regenerative braking control strategy is to ensure comprehensive regenerative
braking performance and the OSR-based RRCCS is proposed. The shape and rate of the RCC characterize
the details of the battery being charged and discharged during vehicle operation, which can be seen
in the battery SoC. In order to control the shape and rate of the battery RCC and reduce the adverse
effect of RCC on battery life. The operating point switching mechanism in RRBCS is to conservatively
adjust the operating point by referring to the battery SoC characteristics. Through the “conservative
braking mode”, the actual SoC will be close to the pre-set value to make full use of the power of the
battery pack, while protecting the battery health. As shown in Figure 16, the switching of the braking
working point is adjusted in real time according to the vehicle state. WC1 is switched to WC2, and WC4
is switched to WC3.

The reference index for braking work-point switching logic is calculated as follows:

kSoC = (SoC(k+1)
− SoC(k))∆t−1 (27)

kcr = ζ0k0 = ζ0(SoC(k+1)
0 − SoC(k)

0 )∆t−1 (28)

where kSoC is the SoC change rate; kcr is the change rate discrimination value; SoC (k) and SoC0
(k) are

the battery real time SoC and the SoC controls target value at the k instant; SoC (k + 1)) and SoC0
(k+1) are

the battery real time SoC and the SoC controls target value at the k+1 instant; k0 and k0_CD are the SoC
control target change rate and preset value in charge depletion, and the k0_CS is the SoC preset value in
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charge sustaining with the value assigned is 0. ζ0 is a correction coefficient and the value assigned to
the study is 0.5.
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The details are explained as follows: (1) In charge depletion (CD), when the SoC>0, if the ksoc is
positive and greater than the discrimination value kcr, it means that the SoC has a greater increasing
trend and the possibility of deviation from the SoC0, "conservative braking mode" should be adopted.
(2) If kSoC is negative and |kSoC| <|kcr|, it means that the SoC has a trend of approaching the SoC0, but
the “fallback” is slow. At this time, a “conservative braking mode” should be adopted. (3) In charge
sustaining (CS), when SoC> 0, it means that the difference between SoC and SoC0 is too large. There is
a risk of increasing the deviation of the recovered braking energy at this time; thus, the “conservative
braking method” should be adopted.

5. Comparison and Analysis of Three Control Strategies

The world light vehicle test procedure (WLTP) is close to actual driving behavior. In this paper,
the WLTP driving cycle is adopted to carry out the tests for studying the comprehensive braking
performance of R-EEV. Under the WLTP driving cycle, the vehicle braking intensity Zreq ∈ [0, 0.15], it
means that the regenerative braking work-point is WC1 or WC2. In addition, no braking work condition
is defined as the work-point 0 (WC0).

Control strategy 1 (the best-braking-performance strategy) is adopted to guarantee the best
braking performance. The regenerative braking work-point is always WC1 in Control strategy 1.
Control strategy 2 (the maximum-regeneration-efficiency strategy) is the IRBCS proposed mentioned
before. The regenerative braking work-point is WC2 in Control strategy 2 to maximize the use of the
regenerative braking torque and achieve the maximum regeneration efficiency theoretically. Control
strategy 3 (the switchable-work-point strategy) is RRBCS through adding "conservative condition"
based on IRBCS. The regenerative braking work-point can be switched from WC2 to WC1 in Control
strategy 3 to balance the recovery energy and battery capacity loss rate. Comparative simulations are
carried out among three control strategies, as shown in Figure 17. It should be noted that the braking
energy recovery will be limited by the motor maximum torque. The motor torque is assumed to provide
sufficient required braking torque, and the braking energy is recovered at all braking strengths in
theory. This braking recovery is defined as the theoretical maximum regenerative braking to illustrate
the contribution of the developed strategy to energy recovery.

As depicted in Figure 17a, the vehicle speed can be in good agreement with the target speed under
the control strategy 1 and the control strategy 2. It indicated that the IRBCS proposed in this paper
can effectively ensure braking efficiency and braking safety. Figure 17b shows that the regenerative
braking efficiency of strategy 1 has decreased from 100% to about 56.7%, and the regenerative braking
efficiency of strategy 2 has always been 100%. As shown in Figure 17c,d, after a WLTP driving cycle,
battery SoC drops from the initial value of 0.8 to 0.671 and 0.683, respectively. The energy recovery ratio
Cb-cyc of strategy 1 is above 13.6%. In particular, the energy recovery ratio Cb-cyc even reaches 24.8% for
strategy 2, which is a relatively high level. In addition, there are about 37% of the regenerative braking
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work-points switched from Wc2 to Wc1 in strategy 3 during the driving cycle; it means that some of the
braking recovery energy will not be fully utilized, as shown in Figure 18.
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Through the SoC comparison of the three strategies, it is not hard to discover that the IRBCS
(strategy 2) and RRBCS (strategy 3) possess a more superior economy and reduces electricity
consumption as much as possible.

Compared with Control strategy 2, the change of energy recovery ratio ∆Cb_cyc and the change of
battery capacity loss rate ∆Qloss,% are calculated as follows:

∆Cb_cyc =
Ci

b_cyc −C2
b_cyc

C2
b_cyc −C1

b_cyc

× 100% (29)

∆Qloss,% =
Qi

loss,% −Q2
loss,%

Q2
loss,% −Q1

loss,%

× 100% (30)

where Ci
b_cyc is the energy recovery ratio Cb_cyc of control strategy i (I = 1, 2, 3); Qi

loss,% is the battery
capacity loss rate Qloss,% of control strategy i (i = 1, 2, 3).

The comparison results of regenerative braking performance among the three strategies are listed
in Table 7.

Table 7. Comparative results regenerative braking performance with three control strategies.

Control Strategy Cb_cyc (%) ηb (%) Qloss,% (%) ∆Cb_cyc (%) ∆Qloss,% (%)

Strategy 1 8.5 49.59 0.00176 −100 −100
Strategy 2 24.8 84.43 0.00325 0 0
Strategy 3 22.1 76.51 0.00207 −16.6 −79.2

As depicted in Figure 21, regenerative braking efficiency ηb under three control strategies are
49.59%, 84.43% and 76.51%, respectively. The energy recovery ratio Cb_cyc under three control strategies
are 8.5%, 24.8% and 22.1%, respectively.

The Cb_cyc slightly reduced by 16.6% and the Qloss,% reduced by 79.2%. It infers that the strategy 3
can improve battery life to a certain extent with less loss of braking energy recovery. This means that
strategy 3 balances the regenerative braking energy and the battery capacity attenuation as much as
possible. The mitigation effect of the strategy 3 on the battery capacity loss should be more clearly
presented, especially during the entire battery life. Therefore, the results of Qloss,% after 1000–10,000
times under WLTP driving cycles are shown in Table 8.
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Table 8. Comparative results of Qloss,% on three control strategies.

Cycles 1000 2000 5000 10000

Strategy 1 1.77 3.89 10.27 19.64
Strategy 2 3.29 7.24 19.08 36.52
Strategy 3 2.25 4.95 13.05 24.97

As shown in Table 8, the battery Qloss,% gradually increases with the number of WLTP driving cycles.
After 10,000 WLTP driving cycles, Qloss,% under control strategy 1 is 19.64%. By comparison, Qloss,%
under control strategy 2 and control strategy 3 are 36.52% and 24.97%, respectively. It can indicate that
the proposed control strategy 3 avoids the negative impact of the large braking feedback of strategy 2
on battery life and inherits the battery friendliness of control strategy 1. Therefore, the proposed control
strategy 3, namely the switchable-work-point strategy, has better comprehensive braking performance,
which can provide a feasible reference for regenerative braking control strategy development.

6. Conclusions

In this paper, a RRBCS with the rate and shape of battery current consideration is proposed to
balance the comprehensive regenerative braking performance and battery service life. The test results
validate the effectiveness and feasibility of the proposed control strategy. Firstly, The IRBCS based
on OSR is introduced, and the aim anti-lock control braking torque based on OSR is provided to
improve braking performance while maximizing braking energy recovery. It has been shown that,
as expected, IRBCS can achieve good follow-up control of the target slip ratio by DFLC. During the
control process, the actual slip ratio responds quickly without overshooting. At the same time, under
the three types of tire–road adhesion conditions, IRBCS can maximize the braking energy regenerative
efficiency while guaranteeing good braking efficiency with the energy regenerative ratio is 82.46%,
86.43% and 100%, respectively. Moreover, three different braking energy recovery strategies, namely
the best-braking-performance strategy (Control strategy 1), the maximum-regeneration-efficiency
strategy (Control strategy 2, IRBCS), and the switchable-work-point strategy (Control strategy 3,
RRCBS) are implemented and analyzed during WLTP driving cycle. The experimental results indicate
the effectiveness and adaptability of the RRBCS. About 37% of work-points are switched from Wc2 to
WC1 under strategy 3, with regenerative brake efficiency slightly reduced by 16.6% and the decline in
the battery’s capacity reduced by 79.2%, it infers that the RRBCS can reduce Qloss,% to extend its service
life significantly with less loss of braking energy recovery. The research methods and conclusions
proposed in this paper can provide a powerful reference for regenerative braking control strategy
design of R-EEVs.
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