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Abstract: The space-borne manipulator has been playing an important part in docking tasks. Docking
collision can easily lead to instability of both the manipulator and floating base. Aiming at the problem
of soft capture, a novel soft-contact joint with dual working modes is developed, especially to buffer
and unload the spatial collision momentum. Furthermore, considering a series-wound soft-capture
manipulator with multi-joints, a generalized modeling method was established by using the Kane
approach. Both the benefits of soft-contact joint and the effectiveness of dynamics equations are
verified in MATLAB and Adams software by simulations of a two-joint manipulator with eight-DOF.
The comparative simulation results showed the advantages of the proposed soft-contact joint in
reducing instability from spatial impact.

Keywords: soft capture; soft-contact joint; decoupled damper; generalized modeling method

1. Introduction

Target capture is an important part of the on-orbit service mission. Disturbances introduced
by docking collisions may destabilize the manipulator and floating base. Realizing the soft contact
of spatial on-orbit capture is of great significance to avoid basal instability and angular momentum
transient overrun.

At present, the technology of spatially soft capture based on a spatial docking mechanism has
achieved a lot, such as the cone-rod docking system, spatial flying net technology, electromagnetic
docking, etc. [1]. In recent years, the spatial docking mechanism is still a research hotspot of many
scholars. Feng [2] developed a new type of end effector prototype by combining the tendon-sheath
transmission system with steel cable snaring mechanism. Olivieri [3] proposed a new docking
mechanism that provides the basis for the connection and separation of small spacecraft in space.
The Center for Space Research and Activities (CISAS) of the University of Padua developed the
Autonomous Rendezvous Control and Docking Experiment (ARCADE), which is well-tolerated by
non-nominal docking conditions, designed to have the ability of soft contact [4,5]. Liu [6] designed
a variable topology 3-RSR polyhedron docking mechanism and has verified the practicability of the
structure. Zhang [7] discussed the influence of the parameters of the docking mechanism for the
soft contact of micro/small satellites. Li [8] proposed a feasible docking mechanism based on the
noncooperative target docking technology points and verified its effectiveness through simulation
analysis. In order to minimize the collision risk during docking and capturing of the tumbling target,
Liu [9] put forward a noncontact method based on the eddy current effect to transmit the control torque
to the tumbling target.
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The above research on the space docking mechanism mainly focuses on the development of
the capture mechanism end-effect device, as well as the contact mode and contact strategy research,
but the manipulator was not employed as part of the docking mechanism. The manipulator is a
key component of the space-borne arrest mechanism. In this regard, some scholars have studied the
momentum, angular momentum, and the trajectory planning of the space-borne capture mechanism.

Beginning from momentum and angular momentum, Yoshida [10,11] first proposed the concept of
a generalized inertia tensor (Ex-GIT) and virtual mass and used it to minimize the impact. Wee et al. [12]
proposed the gradient projection method, which simultaneously minimizes the impulse generated
by trajectory tracking and post-planning contact. Nenchev and Yoshida [13,14] adopted the reaction
zero-space method to transfer the angular momentum of the post-collision base to the manipulator
from the angle momentum, while using the joint damping control method to reduce the joint velocity
and ensure base posture stability after spatial collision. Cong and Sun [15] proposed "straight arm
grabbing", which is the most ideal state, but it is difficult for planar robots to achieve. Considering the
direction of the tumbling movement along any arm, Oki [16] stabilized the tumbling target satellite by
using time-optimal control of the free-floating robot. Based on the dual-arm sport robot, Guo et al. [17]
calculated the pre-impact configure to minimize the effects of impacts on the robot’s angular momentum
by use of the particle swarm optimizer. Chen et al. [18] put forward a motion-planning method for
space robotic systems keeping the bases inertially fixed while performing on-orbit services, using
a combination of point-to-point planning and a balance-arm. Xu et al. [19] proposed a dual-arm
coordinated “area-oriented capture” (AOC) method to capture a noncooperative tumbling target,
which has larger pose tolerance and takes shorter time for capturing a tumbling target.

In the aspect of acquisition mechanism trajectory planning, a robust adaptive controller is used
to design the active controller to suppress the impact caused by spacecraft drift in [20]. Xu [21]
studied the kinematic redundancy of flexible redundant manipulators; Larouche [22] adopted a
motion-prediction control scheme for autonomous acquisition tasks. McCourt [23] investigated the
use of model-based predictive control for the captures of multi-degree-of-freedom objects moving in
a predictable manner. By combining reaction zero-space methods and particle swarm optimization
algorithms, Zhang [24] studied a manipulator trajectory plan by adjusting the pose of the robotic arm
and minimizing the attitude disturbance of the base. However, due to the inevitable existence of model
errors and operational precision, it is impossible to fundamentally avoid the impact and disturbance
caused by the capture process, and it is difficult to suppress the complex vibration after docking.

Recently, the realization of soft contact of spatial docking through novel vibration suppression
approaches has attracted more and more attention. Chu [25] established a variable stiffness actuator and
proposed a self-learning soft-grasp control algorithm to minimize the angular momentum of the base.
Nguyen [26] applied the controllable MR damper [27] to a planar two-DOF manipulator for spatial
capture, but the spatial collision problem is not resolved. In addition, Yu et al. [28] investigated spatial
dynamics and control of a six-DOF space robot with flexible panels and considered the spatial impact
problem, which indicates that flexible panels have a big influence on impact dynamic characteristics.
Bian [29,30] applied an effective shock absorber to unload the nonlinear vibration of the manipulator
based on the principle of internal resonance. However, to our best knowledge, few literatures mention
designing novel joint structures for soft capture.

Motivated by the above observations, this paper attempts to design a novel joint with a decoupled
damper and proposes a generalized modeling method for a serial capture manipulator with multi-stage
damping. The main contributions are listed as follows:

(i) Based on the cross shaft, decoupled damper, and clutch switching, a novel soft-contact joint
with dual working modes is developed, especially to buffer and unload the spatial momentum
from capture.

(ii) A generalized modeling method for the space-borne soft-capture manipulator with multi-joints
was established by using the Kane approach, and the simulation results showed the effectiveness
of the proposed soft-contact joint in reducing instability from docking collision.
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The rest of this paper is organized as follows. In Sections 2 and 3, a soft-contact joint is developed
by adding decoupled dampers. Section 4 gives the dynamic equations by using the Kane approach.
In Section 5, the collision dynamics simulation for a two-joint manipulator with eight-DOF, was
performed by a simulation of MATLAB and Adams software.

2. Joint Function for a Space-Borne Soft-Capture Manipulator

A soft-contact joint structure for a soft-capture manipulator is proposed. The 3D model of the
designed joint is shown in Figure 1. For path planning of a multi-joint manipulator, the cross-shaft
structure, which is driven by motors and gears, can be applied to achieve the orthogonal transmission
of the rotational motion between two axes in a single joint. Furthermore, the dynamical instability
from spatial collision can be reduced by designing dampers, which are decoupled in six-dimensional
directions in space. In this way, the joint has two working modes, namely, rigid transmission
mode and flexible cushioning mode, and the clutch can be utilized as a key component for working
mode switching.

Slider

Figure 1. Three-dimensional model of the soft-contact joint.

The specific functions of the soft-contact joint are as follows:

Transmission capability: i.e., rotation range of each axis can be (=90, + 90) degrees.
Measurement functions: i.e., motions, forces, and controllable variables can be measured.

Closed-loop control: i.e., motion, damping force, and path planning can be controlled.

L .

Buffer and unloading of spatial momentum: i.e., the decoupled dampers are necessary to be
designed in the joint.

5. Dual modes switching: i.e., the motor transmission mode and soft contact mode can be controlled
by clutch according to the on-orbit tasks.

3. Structure Design of the Soft-contact Joint

To achieve the requirements of the above specific functions in Section 2, the joint-driving mechanism
and decoupled dampers are separately designed. The soft-contact joint is 0.23 m in diameter and
0.75 m in length. Considering the size and structure of some key components, the cross-shaft structure
can be adopted to realize orthogonal transmission by motors. The joint structure schemes are shown in
Figures 2 and 3. Linear spring/damper and rotary spring/damper are designed to buffer and unload
the linear and rotational impact separately.

The block diagram of the dual working modes transmission is shown in Figure 4. The motors
and gears are employed as the active driving to achieve the rotation movements of the cross shafts,



Energies 2020, 13, 1530 4 of 26

and path planning for the manipulator could be performed. Additionally, the soft-capture operation
could be realized by using the decoupled dampers through clutch switching.

Motor-driven

Mechanical transmission

Decoupled P
dampers
g Rotary Damper
Joint
Central controller
Servo
controller

Embedded controller‘

Figure 2. Structural block diagram of the soft-contact joint.

_e_/\(u L/ 2/
1. Inner casing 2. Outer casing 6. Sliding housing 7. Cross shaft
10. Motor gear-1 11. Clutch-1 12. Motor-1 13. Gear-1
14. Gear-2 15. Sliding inner casing  16. Slide rail-1 17. Slider-1
18. Steady 19. Slider-3 20. Slider-2 21. Slide-2
22. Slide rail-3 23. Rotary damper-Y 24. Encoder-Y 27. Clutch-Y
28. Torsion spring-Y 29. Motor base 30. Gear-3 31. Torque sensor-Y
33. Gear-4 34. Motor gear-2 36. Linear damper 37. Displacement sensor
38. Linear spring 40. Slider-4 41. Slide rail-4 42. Motor-2
43. Clutch-2 45. Clutch-X 46. Rotary spring -X 47. Rotary damper-X
49. Encoder-X 50. Rotary shaft-Z 51. Rotary damper-Z 52. Encoder-Z
53. Rotary spring-Z 55. Brake 56. Torque sensor-X Others are connecting plates and brackets

Figure 3. Overall structure of the soft-contact joint.

The designed joint can work in dual modes. On the one hand, the spatial path-planning motion,
especially for a manipulator connected by multi-joints and links, while each joint is driven by a
two-DOF cross-shaft structure. On the other hand, utilizing the decoupled dampers, the joint can
buffer the six-dimensional momentum introduced by spatial contact. The theoretical results of the
former mode are very mature, so this article will not cover them but mainly show some contributions
about the latter mode.
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Considering the reasonable arrangement of the joint internal space, in the Cartesian coordinate
system, it is necessary to design decoupled dampers only in the X/Y/Z-angle and Z-line directions of the
joint; i.e., there are four DOFs totally to buffer and unload the impact. The dynamical principle block
diagram is shown in Figure 5a. The momentum of the X/Y/Z-angle direction can be unloaded by the
three rotary dampers and the linear momentum of the Z-line direction can be unloaded by the linear
damper. In addition, Figure 5b shows the representative force (moment) diagram of two consecutive
joints, and one can see that the axial force Fy 1) along the X-line direction can be converted into the
rotational moments M around the Oy axis and My .1y around the Ok.1yk-1 axis. Similarly, the axial
force Fy 41y along the Y-line direction can be converted into the rotational moments M, around the
Ogx axis and My .1y around the Og_1xy.1 axis. Based on this principle, the collision linear momentum
along the X-line direction and Y-line direction can be indirectly stabilized by rotating dampers existing
in other joints.

Separation
Connection Clutch
] |- —————— - - oo [
| awe ‘ |
A tch Link
i drive || | p‘p i |
\ 4
i 4 | | 1 angle, : :
' ‘ ! P !
Soft contact | | . Control J osterior
Cioint | System i ‘
A ‘ join | | ! ‘ T !
i ‘ ‘angle | i v i
| | 1 |
f Motor
TR oo o Mo
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L — Drive transmission be=m=mes !
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S <
Connection Clutch
Figure 4. Block diagram of the dual working modes transmission.
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Figure 5. Cont.
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X
A M.y — the rotational moment around the Oy ;x| axis
Mrk . .
’ FX (k41 M1y — the rotational moment around the Oy y;.; axis
et
» w‘ \\‘,\\ Ok =) 2, M., — the rotational moment around the Ojx; axis
< A
1%’ 7 D
vx /v ’ M ‘/Q' ﬁ.‘\\“X M, — the rotational moment around the Oy axis
vk
@ Vi F1y — the axial force along the X-line direction
¢M F4+1y — the axial force along the Y-line direction
y(k=1)
V.
,Qx\‘r
(b)

Figure 5. Block diagram of the soft-contact principle. (a) Block diagram of the buffer and unloading of
spatial collision. (b) The representative force (moment) diagram of two consecutive joints.

4. Generalized Model of Manipulator

As shown in Figure 6a, O;xjy;z; (i=1,2,3,..., N + 1) is the ith joint’s coordinate system, where N
is a natural number. Three linear dampers are respectively equipped along the O;x;, O;y;, and O;z;
coordinate axes. In addition, three rotary dampers are respectively equipped around the O;x;, O;y;,
and O;z; coordinate axes. One can see that linear damper and rotary damper can suppress impact and
vibration in the linear and rotating directions, separately. As a result, the new-style joint with six-DOF
can make the stabilization of impact momentum in the spatially six-dimensional directions.

—The elastic forces along the Ox;, Oy,
and Ogz; coordinate axes, respectively.

F!,F',F' —The damping forces along the Ox;, Oy;,
and Ogz; coordinate axes, respectively.

M .M ,M,—The elastic moments around the O,
Oy, and Oz; coordinate axes, respectively.

M ,M; ,M;—The damping moments around the O,
Oy, and O;z; coordinate axes, respectively.

(a)
amper
Sprin
X A
X3
X1 2
Base
5 1
/ 21 Z>
Yi V2 V3 5
0 z
Yy
(b)

Figure 6. Novel joint and generalized model of the manipulator. (a) Joint structure with six-dimensional
damping. (b) Generalized model of the manipulator with multi-stage damping.
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If the N joints are connected in a series by the N links, a generalized model of manipulator with
6N-DOF multistage damping can be obtained. Figure 6b gives the sketch model, where Oy, is the
inertial coordinate system. Hence an N-joint manipulator with a free-floating base is equivalent to a
base-fixed system with (6N + 6) DOFs. Using the Kane approach to model this series-wound system,
the generalized differential equations are as follows.

4.1. Transformation Matrix

As shown in Figure 6b, establish the inertial frame Oxyz and body-fixed coordinate system
Orxxyizk (k=1,2,3,..., N + 1) at the side of the kth segment. Due to the introduction of springs and
dampers inside the joint, the manipulator evolves into a multi-flexible system with elastic deformation
in six directions at each joint. In the dynamic equation, all deformation variables need to be solved, so
it is difficult to describe these variables in a single coordinate system, but it can be easily expressed
in each body-fixed coordinate system. At the same time, considering the huge number of variables
and the pose transformation of each body-fixed coordinate system, it is not feasible to denote them
with vectors, but the elements of each vector can be uniformly expressed. Define the relatively linear
velocity vi_l and angular velocity w’,i‘l between the (k — 1)th and kth segments as the generalized
velocity y; and relative displacement s’i_l and angle 9’;_1 as generalized displacement x;, where the
superscript (k — 1) and subscript k stand for the numbers of the body-fixed coordinate system about
the (k — 1)th and kth segments separately.

o1 1=3(k=1)+m
=1 M
ool 1=3N+3+3(k-1)+m
k—1 —
= 051 1=3(k=1)+m
sl 1 =3N+3+3(k-1)+m

km

)

where m =1, 2, and 3 corresponds to the three axes of x, y, and z in each body-fixed coordinate system,
respectively.

The relative angles 9’;1_1, 6’;2_ L 9,’;;1 between the kth and (k — 1)th segments are adopted to describe
the relative transformation matrix (Equation(2)) of Oxxyyz; relative to Og_1Xk—1 Yk—12k-1-

k— k— k— k—
At =Rot(x, 05") - Rot(y, 051) - Rot(z, 0}5) )
1 0 0 cos GE L' 0 sin 6’;51
where Rot(x,0571) = | 0 cosOt —sinOf! |, Rot(y, 051) = 0 1 0 , and
0 sin 611:1_1 cos 6’,;1_1 —sin 6’]; L' 0 cos 6’]; 1
cos 9’;51 —sin 97;5 Lo
Rot(z, Ggl) = sin 97125 1 cos Gg o
0 0 1

The absolute transformation matrix of Ogxyyyz relative to the inertial system Oxyz is
R _ AR 20 4l k-1
AP =Ay-AL-A, Ay 3)

where Ag:E, an identity matrix, and the superscript “R” stands for the inertial frame Oxyz in Figure 6b.

As can be seen from Equation (2), in the process of theoretical modeling, we assume that
the manipulator is firstly rotated by 97721_ ! around the X-axis of the generalized coordinate system
Of—1Xk-1Yk-12x-1, then rotated by 6’15 ! around the Y-axis of the generalized coordinate, and finally,
rotated by Ggl to the Z-axis of the generalized coordinate. The generalized angular velocity is defined
in the initially generalized coordinate Oy_1X;_1Yx-12x-1, SO the relationship between the generalized
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angular velocity a)’,z_l and the derivative of the generalized angular displacement 6’;1_1, Qllg L Ggl is

as follows:

ai!) (6 2, X
o B k-1 k= k-1 k-1
oSt |=| o [+Rot(x,05")| 6, |+Rot(x,05") Rot(y, 05)- 0 @)
k2, k=
“k3 0 0 O
Hence, the kinematics equation can be derived and expressed as follows:
5! k k k k k k
91};1_l 1 cos Gkgl sin Qkil -sin ngl —cos le_l -sin ka_l a)kl_l
0 |= —3 0 cos O 1 -cos 01 sinOF - cos 05! w’]g 1 (5)
k-1 cos 6k2 0 —sin 6F1 cos OF-1 w7l
O3 k1 k1 k3
k-1 k-1
(I I
Y% 1= Gl Sk ©)
k-1 gk-1
k3 k3
4.2. Partial Angular Velocity and Partial Linear Velocity
Angular velocity of the kth segment in the inertial frame can be expressed as:
k .
ka = Agw(1]+Alfw%+ e +A,l§_1 wﬁ_l = ZAf_lwi._l (7)
i=1

According to the definition of partial angular velocity,

9 R

Sk 1=3(i-1)+m

.

(Wil =9 5 , (8)
avi*kl [=3N+3(i-1)+m

im

Substitute Equation (7) into Equation (8) to derive the partial angular velocity, and a total matrix
can be used to save the partial angular velocity of the kth segment relative to y;.

[Wkl]3><(6N+6)=(Ag A} AR, O ) ©)

wherel=1,2,3,... ,6N + 6.
Position vector of the centroid of the kth segment in the inertial frame can be formulated by

k-1
PR =Pro+ AL s+ ) AR (di+sl,) + AL n (10)
i=1

where:

Pro—Pposition vector of O1x1y1z1 in the inertial frame,
d;—position vector of the ith segment in O;x;y;z;, and
rr—vector of the centroid of the kth segment in Oyxyyzk.

Taking the derivative of Equation (10) with respect to time, the velocity of the centroid of the kth
segment in the inertial system is derived as follows:

e

-1

0 R , R R
o =AF-s1+ ) A - (di+st,) +A; Sip] + Ay (11)

Il
—_

i
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According to the definition of partial velocity,

P R
S 1=3(i-1)4m
't
[Oklaa =9 ok (12)
s 1=3N+3(i-1)+m

im

wherei=1,2,3,...,N + 1. Substituting Equation (11) into Equation (12), the partial velocity of the kth
segment relative to y; is as follows:

k-1 .
'Zl wj XAF : (dl + S§+1) + Wy XA}? - Ty (l < 3k)
=

[Vl =3 0 (Bk<I<3N+3) (13)
Wi (1-3N-3) (BN +3<I<3N+3k+3)
0 (BN+3k+3<I<6N+6)

4.3. Equivalent Active Force and Equivalent Inertia Force

Figure 7 shows the stress analysis for the kth segment. The active forces in the left side are elastic
deformation forces (i.e., Fi, and My,) and damping forces (i.e., sz and lez) of decoupled dampers in
six directions. While, in the right side, the active forces are elastic deformation forces (i.e., Fy,, and M)
and damping forces (i.e., ng and ley). Gravity can be ignored due to the tiny centripetal acceleration
in the space environment.

d d
F, kz(x)F kz(x) F, ky(X)Fky(X>
d
% Mkz(x) lez(x) MkY(X)Mky(X)
M__M M M

kz(2)* "™ kz(z) ¥(2)" ky(z)
d
F Fd k Fky(Z) Fky(l)

kz(z)™ kz(z)

d
d ';A M M
MkZ(y)M kz(y) ky(y)"" ky(y)
d d
FkZ(y) FkZ(y) Fky(y) Fky(y)

Figure 7. Stress analysis for the kth segment.

According to the transforming matrix, the elastic deformation forces in both sides of the kth
segment are as follows:

T . .
(FkZ/ Mer Fky/ Mky)R = dlag(AkR/ All;{r AkR/ AE) : dlag(Klr KZ/ K3/ K4)

. k oAk k=1 k-1 &k ok
diag(Ay_;, Ay, EE)- (7, 6,7, s, 50, )T

(14)

where:

F;,—the elastic force on the left side,

M. ,—the elastic torque on the left side,

F ky—the elastic force on the right side,

Mjy—the elastic torque on the right side,

K1—the elastic coefficient matrix of the left linear damper,
Ky—the elastic coefficient matrix of the left rotary damper,
K3—the elastic coefficient matrix of the right linear damper, and
Ks—the elastic coefficient matrix of the right rotary damper.

The equivalent active force Fy. and active torque M. of each centroid can be described as:



Energies 2020, 13, 1530 10 of 26

(i) The base (k = 1, means the Ist segment).
There is no joint on the left side of the free-floating base, and only the right side is affected by joint
1. Expression is as follows:
{ Fi. = Fyy (15)

M. = Mly +A£{ sl XFly
(ii) The middle segments (1 <k <N + 1).

My = My, + Muy, + My, +AII§ X 1 X (=Fpy — P](jz + Pky)
where sz = _P(k-l)y/ Mkz = _M(k-l)y'
(iii). The last segment (k = N + 1).
F(N-‘rl)C =F (N+1)z + F?N+1 (17)
R
Mni1)e = M(Nt1)z +M(N+l) +M+AY ) X i) X (Fni1)y, + Flg ), +F)

where

F—instantaneous impact force at the end of manipulator, and
M—instantaneous impact torque at the end of manipulator.

Next, the equivalent inertia force F; . and the equivalent inertia torque M _ of the kth segment are
derived:

{ R (18)

M};C = —Ik(i)k - Wi X (Ik . (,Uk)
where

my—mass of the kth segment, Iy—inertia tensor of the kth segment,
wr—angular acceleration of the kth segment,

axc—acceleration of the centroid of the kth segment, and
wi—angular velocity of the kth segment.

4.4. Dynamic Equations

For a tandem mechanism with the (N + 1) segments, the Kane dynamic equations can be written

as: N+1 N+1
F+F = Z (Fie " o + My - pg) + Z (Fi.-on+M;_ - wy) =0 (19)
k=1 k=1

wherel=1,2,3,...,6N + 6.

Substituting the partial angular velocity, partial linear velocity, equivalent active force (torque),
and equivalent inertia force (torque) into Equation (19) and combining dynamic Equation (5), the (6N +
6) dimensional nonlinear differential equations of the manipulator with multistage damping can be

expressed as:
. -1
[yn](6N+6)x1 - [alﬂ](6N+6)x(6N+6) ’ [fl](6N+6)><1 (20)

where

n=1,2,3,...,6N +6;

6N+6 N+1 N4 ' Nel .
fi=F- L U ;M Oy + L wkl'Ik'wkn “Yn— Lz wkl-[wkx(Ik-wk)}
n= l k=1 k=1 k=
N+1

Z ’U <My gy + Z w 'Ik'wkq
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5. Instance Simulation

In this section, as shown in Figure 8a, a floating-base equipped with a two-joint manipulator,
which has eight DOFs for compliance, is studied employing both MATLAB and Adams software. It is
noteworthy that the derivational dynamic Equations (20) established in Section 4 play an important part
in the fast numerical simulation in MATLAB, and therefore, the comparison with the Adams simulation
results could be helpful for the effectiveness of Equations (20). Two kinds of typical target collisions are
purposefully designed, namely, single-dimensional collision and spatially six-dimensional collision.
The former simulation is mainly to prove that the designed soft-contact joint has the ability to buffer
and unload the collision force from any spatial direction. The latter simulation is mainly to verify that
multiple tandem joints have the obvious adaptability to protect the base from spatial impact.

Base

Soft-contact joint

W

Manipulator arm
Manipulator arm

Lincar spring

4

o
w

(a) (b)
Figure 8. Conceptual model of simulation. (a) Structure diagram for MATLAB. (b) Adams model.

In the Adams environment, as shown in Figure 8b, the two-joint floating base/manipulator with
eight-DOF consists of two soft-contact joints, each of which has three DOFs of rotation and one linear
DOF along the central axis of the link. The Z-line stiffness and damping values of the joints are set by
the linear springs, the X-angle, Y-angle, and Z-ang]le stiffness, and the damping values of the joints are
set by rotary springs. The cross shafts can move back and forth along the central axis of the link.

5.1. Single-Dimensional Collision

The developed soft-contact joint is expected to have the capability of both buffering and unloading
momentum in any direction. In this section, as shown in Figure 9, six unidirectional collision forces,
i.e., (a) Fx, namely, the X-line force, (b) Mx, namely, the X-angle moment, (c) Fy, namely, the Y-line
force, (d) My, namely, the Y-angle moment, (e) Fz, namely, the Z-line force, and (f) Mz, namely, the
Z-angle moment, are sequentially applied at the end of the space-borne manipulator, respectively.
The unloading and buffering effects can be judged by measuring the spring deformations in the joints.

Soft-contact joint  (a)F,
//’\ AN (b)M

X

Base (e)F.

()M,

(O)F, (dM,
Figure 9. Schematic diagram of six unidirectional collision forces.

Specific simulation parameters are as follows. The values of the single-direction force or torque
existing at the end of manipulator are 50 N or 50 N-m, and the duration is 0.01 s. Mass of base is 200 kg.
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Inertia moments of the base are I, = I, = 53.3 kg - m? and I, = 66.7 kg - m2. Mass of each segment is
8 kg. Inertia moments of each segment are I, = I, = 5 kg - m? and I, = 2.5 kg - m?. Elastic coefficients of
the damper are fyx = fwy = fwz =40 N-m- rad~! and fz=40N- m~!, and each damping coefficient is
1.0 N'sm~! or 5.0 N's-rad~!. The simulation step is 0.01 second.

As shown in Figure 10, the MATLAB and Adams simulation results are comparatively carried
out. The vibration displacements of each compliance DOF in every joint under the single-dimensional
collision are given respectively. It can be seen that, when the end of the manipulator is only subjected
to X-line or Y-angle collision, only Y-angle deformations of the joints are produced, and when the
end of the manipulator is only subjected to Y-line or X-angle collision, only X-angle deformations of
the joints are produced. When the end of the manipulator is only subjected to the Z-angle collision,
only Z-angle deformations of the joints are produced, and when the end of the manipulator is only
subjected to a single Z-line collision, only Z-line deformations of the joints are produced. Moreover, all
joint movements can converge under the action of damping, and the soft-contact principle proposed in
Figure 5 can be verified.

5.2. Spatially Six-Dimensional Collision

In this section, as shown in Figure 11, the dynamic simulations of a space-borne manipulator
subjected to a six-dimensional collision are performed. The attitude curves of the floating base under
three modes, i.e., rigidity, spring without damping, and spring with damping, are shown, respectively.
In addition, the force/torque curves of the floating base under two modes, i.e., spring without damping
and spring with damping, are obtained specially. This simulation can be helpful to propose a beneficial
method for stabilizing the base attitude by using decentralized damping.

Specific simulation parameters are as follows. Instantaneous impact force/torque existing at the
end of manipulator are F = (Fx, Fy, Fz) = (50, 50, 50) N and M = (Mx, My, Mz) = (50, 50,50) N - m, and
the duration is 0.01 s. Mass of base is 200 kg. Inertia moments of the base are I, = I;, =53.3 kg - m? and
L. = 66.7 kg - m?. Mass of each segment is 8 kg. Inertia moments of each segment are I, = I, =5 kg - m?
and I, = 2.5 kg - m?. Elastic coefficients of the damper are fix = fwy = fwz=40N-m- rad~! and f, = 40
N - m~!. The damping coefficients loaded in the soft-contact joint are based on the adjustment range of
the damper, which is 0-5 N-sm™!}(N's-rad '), and the decoupled damping coefficients are shown in
Table 1.

The joint deformations after X-line collision
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The joint deformations after Y-line collision
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The joint deformations after Z-angle conllision
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Figure 10. Vibration displacements of joints in a single-direction collision. (a) Vibration displacements
in a single X-line collision. (b) Vibration displacements in a single X-angle collision. (c) Vibration
displacements in a single Y-line collision. (d) Vibration displacements in a single Y-angle collision.
(e) Vibration displacements in a single Z-line collision. (f) Vibration displacements in a single
Z-angle collision.

Base |

MZ
F, M,

Figure 11. Schematic diagram of six unidirectional collision forces.

As shown in Figures 12 and 13, the simulation results of the manipulator with the soft-contact joint
are carried out. “Spring without damping” means that the decoupled damping coefficients are zero,
“spring with damping.1” and “spring with damping.2” mean that the decoupled damping coefficients
are the ones shown in Table 1, and “rigidity” means that all the joints are rigid.
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Table 1. Value of representative the damping coefficient.

Item Parameter
1# 1.0 N-sm~1(N-s-rad 1)
2# 5.0 N-sm~}(N-s-rad 1)

As shown in Figure 12, it can be seen that the joint deformations calculated by Adams is basically
consistent with the simulation results of MATLAB. It can be seen that the velocity and angular velocity
of the floating base are abruptly changed when subjected to a spatially six-dimensional collision in
rigidity mode, and then the gradual changes occur. Under the mode of spring without damping,
abrupt changes in the linear velocity and angular velocity of the floating base can be avoided, but
there is existing long-term undesirable oscillation. Under the mode of spring with damping, not only
the abrupt changes of the velocity and angular velocity of the floating base can be avoided, but the
convergence velocity of the amplitude increases with the damping value increasing. For example, the
linear velocity and angular velocity of the floating base can be stabilized within 20 seconds under the
condition of damping 2#. On the contrary, it takes much more time (i.e., more than 50 seconds) to
stabilize under the condition of damping 1#. It can be deduced that the spatial collision momentum
is absorbed by decoupled dampers, and a part of the kinetic energy of the captured target can be
converted into the internal energy of the damper. By setting different damping coefficients, the
convergence time of the vibration can be adjusted.
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Figure 12. The curves of linear and angular velocity of the base. (a) X-line velocity. (b) X-angle velocity.
(c) Y-line velocity. (d) Y-angle velocity. (e) Z-line velocity. (f) Z-angle velocity.

Under the rigid-collision conditions, the impact force/torque on the base is equal to the force/torque
at the end of the manipulator. This means the peak value is 50 N/N-m, and the durations are only
0.01 second. Through the comparative analysis from Figure 13, it can be seen that, under the mode
of spring without damping, the contact force/moments of the floating base are small, and then, the
oscillation continues. When the damping is introduced, the instantaneous moment/force of the floating
base can rapidly convergence, with the damping value increasing. It can be found that the developed
soft-contact joint not only can buffer the instantaneous force/torque introduced by docking collision
but can unload the force/torque by decoupled dampers.
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Figure 13. The curves of the torques and the force of the base. (a) X-angle torque. (b) Y-angle torque.
(c) Z-angle torque. (d) Z-line force.
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It can be seen from Figures 14 and 15 that the joint deformations calculated by the Adams
simulation is basically consistent with the simulation results of MATLAB. In the Adams environment,
the centroids of the manipulator arms and the base are slightly offset due to the existence of the model
joint connector, so it is slightly different from the MATLAB theoretical model, but it can be acceptable
that there are subtle differences in the calculation results under MATLAB and Adams. Moreover,
all joint movements can converge under the action of damping, and this can provide the foundation
for the attitude control design of the floating base. From the above simulation results, the developed
soft-contact joint is helpful to avoid the instability of the base and convenient for the attitude control of
the floating base.
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Figure 14. Vibration displacements of joint 1. (a) X-angle vibration displacement. (b) Y-angle vibration
displacement. (c) Z-angle vibration displacement. (d) Z-line vibration displacement.
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Figure 15. Vibration displacements of joint 2. (a) X-angle vibration displacement. (b) Y-angle vibration
displacement. (c) Z-angle vibration displacement. (d) Z-line vibration displacement.

6. Conclusions

A novel soft-contact joint with decoupled dampers was developed to buffer and unload the
compact momentum from spatial collisions. Considering a series-wound soft-capture manipulator
with multi-joints, the generalized dynamics equations are established by using the Kane approach.
Both the benefits of soft-contact joints and the effectiveness of the dynamic equations are verified
in MATLAB and Adams software by the simulation of a two-joint manipulator. The comparative
simulation results show that the transient impulse momentum with a large magnitude can be converted
into sinusoidal momentum with a small magnitude, which is beneficial for the dynamic stability of a
capturing system. In the future, the stability control method for capturing a manipulator by using
multistage decentralized damping could be a valuable research direction.
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