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Abstract: A hydrophobic perfluoropolyether (PFPE)-based polymer, namely Fluorolink® P56, was studied
instead of the commonly used polytetrafluoroethylene (PTFE), in order to enhance gas diffusion media
(GDM) water management behavior, on the basis of a previous work in which such polymers had
already proved to be superior. In particular, an attempt to optimize the GDM production procedure
and to improve the microporous layer (MPL) adhesion to the substrate was carried out. Materials
properties have been correlated with production routes by means of both physical characterization and
electrochemical tests. The latter were performed in a single PEM fuel cell, at different relative humidity
(namely 80% on anode side and 60%/100% on cathode side) and temperature (60 °C and 80 °C)
conditions. Additionally, electrochemical impedance spectroscopy measurements were performed
in order to assess MPLs properties and to determine the influence of production procedure on cell
electrochemical parameters. The durability of the best performing sample was also evaluated and
compared to a previously developed benchmark. It was found that a final dipping step into PFPE-based
dispersion, following MPL deposition, seems to improve the adhesion of the MPL to the macro-porous
substrate and to reduce diffusive limitations during fuel cell operation.

Keywords: PEMFC; MPL production; hydrophobic coatings; perfluoropolyether; gas diffusion
layer; durability

1. Introduction

The continuous increase in world energy demand as well as in energy use per person is leading to
new challenges in energy production. A sustainable approach to energy production and storage is
likely to be followed, as the actual use of fossil fuels has become insufficient for meeting both energy
demands and environmental requirements in terms of greenhouse gas emissions [1]. Hydrogen is the
most valuable candidate to fulfill these requirements, as it allows for clean and efficient energy storage
and production [2,3]. From the energy conversion point of view, fuel cells are very promising devices,
as they are able to produce electricity and heat from multiple sources, without drawbacks from the
point of view of emissions [4].

Among others, proton exchange membrane fuel cells (PEMFCs) are considered very promising
due to their zero-emission energy production process. In addition to this, PEMFCs are characterized
by a high efficiency, low operating temperature, compactness and fast response to load change [5-7].
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Among the PEMFCs components, the gas diffusion medium (GDM) plays a crucial role, especially
in terms of water management and reactants diffusion to electrodes. The GDM is composed of two
parts: a gas diffusion layer (GDL), which introduces macro-porosity properties that optimize reactants
distribution from the flow field channels to the catalyst layer, and a micro-porous layer (MPL) that
reduces liquid flooding and contact resistances [8,9]. The latter component is usually obtained by blade
coating a thin carbon-based layer on the GDL surface and its addition to cell assembly was reported to
improve cell performance [10].

In view of the position of the GDM in the cell assembly and of its role in the device operation,
some features can be identified: the GDM should be permeable to reactants and products and, at the
same time, it should display good properties in terms of electrical and thermal conductivity [10-12].
Finally, good mechanical properties would be highly desirable, in order to prevent damages and a
consequent performance drop. Concerning thermal and electrical conductivity, good performances are
easily achieved by using carbon-based materials. On the contrary, permeability is a more trivial feature,
as specific GDL properties are used, which sometimes compete with each other. Polymer content
in GDLs is a typical example of this duality. In order to prevent mass transport limitations, GDLs
should be permeable to reactants, allowing a proper supply of fuel and oxidants to the catalyst-coated
membrane (CCM). In a similar way, cathode side flooding should be avoided by properly managing
excess water removal. In order to achieve this, GDLs are usually made hydrophobic by adding stable
fluorinated polymers [10]. In many cases, polytetrafluoroethylene (PTFE) is used in order to obtain
the desired water-repellent behavior, with polymer-loading on the layer surface in a range between
5% and 30% by weight [13]; nonetheless, commercial components featuring up to 70% PTFE as both
hydrophobic agent and binder have been employed in other valuable works [14,15]. Thus, the best
performance as a function of polymer content is the result of two competing properties: if a small
quantity of polymer is used, low values in terms of ohmic losses due to polymer dielectric properties
will be present; nevertheless, at the same time, poor hydrophobic properties will be obtained.

GDLs are usually employed in the form of carbon paper or carbon cloths, with different properties
in terms of reactants/products diffusion and pores size distribution [16-18]. The latter property is of
particular interest to enhance device performance: an optimum in pores dimension should be found,
as higher pores enhance species gas diffusion, but they increase ohmic losses [11]. In this view, the
MPL is coated onto the GDL aiming to maximize the contact between the catalyst layer and the GDL.
Additionally, transport properties, and thus electrochemical performance, are enhanced thanks to
the introduction of a micro-porosity in the diffusion media [17]. In many works, the presence of the
MPL in cell assembly was proven to be of remarkable importance for improving the overall device
performance [8,10,17,19-22]; the hydrophobicity of the MPL material together with its micro-porosity
was found to enhance the device performance, due to better properties in terms of water removal in
the Membrane Electrode Assembly (MEA) [23-26].

The MPL is typically produced by mixing a carbon powder with a hydrophobic agent, solvents
and surfactants in order to produce a carbon ink. Then, the carbon-based ink is deposited onto the
GDL surface by using a slurry coating deposition technique (i.e., blade coating, tape casting or spray
coating) and, finally, the GDM is heat treated to remove liquid components and to consolidate the MPL
layer [10]. MPL adhesion on GDL is a crucial requirement to be fulfilled in order to reach the target of
device durability. MPL detachment is a highly undesired phenomenon, which leads to a decrease in
device performance due to catalyst deactivation and mass transfer limitations [9].

In this work, an anionic polyurethane polymer based on a perfluoropolyether (PFPE) backbone,
which had been already proved to be a viable alternative to the commonly used PTFE [27], was employed
as hydrophobic agent in GDMs production. Different manufacturing routes were investigated, aiming to
maximize water management and adhesion properties. The achievement of these targets was coupled with
the enhancement of the electrochemical performance of the device. Samples were characterized both from
the physical and electrochemical point of view, in order to assess the feasibility of production processes.
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2. Materials and Methods

2.1. Preparation

In order to obtain a water-repellent gas diffusion medium, both GDL and MPL have to be made
hydrophobic. In the present work, such a goal was accomplished by using fluorinated polymers and by
applying different procedures. In the case of GDLs, a macro-porous carbon cloth (SCCG 5N by SAATI
Group, Appiano Gentile, Italy) was treated by means of a dipping/drying procedure in a fluorinated
aqueous emulsion.

The MPL was produced by blade coating deposition of an ink precursor onto the GDL surface,
according to a procedure reported in literature [28]. In a typical experiment, carbon black (Vulcan
XC-72R, Cabot Italiana S.p.A., Ravenna, Italy) was dispersed into a solution containing distilled water
and isopropyl alcohol (Sigma-Aldrich). After the addition of Fluorolink® P56 (Solvay Solexis, Milan,
Italy), a perfluoropolyether (PFPE)-based polymer, as hydrophobic agent, the four components were
mixed for 10 min at 8000 rpm, by using an UltraTurrax T25 homogenizer (IKA Instruments, Staufen,
Germany). The employed concentration of the polymer with respect to the carbon black was 6 wt. %,
which allowed the achievement of the highest performance in the reference [27].

Before applying MPLs coating, GDL substrates were pre-treated by dipping in a PFPE emulsion
(1 wt. %), and different drying processes, depending on the specific preparation route, were carried out.
Inks were deposited onto such pre-treated GDLs by using the blade coating technique. A K-Control
Coater device (RK Print-Coat Instruments Ltd., Litlington, UK) was used; the gap between blade and
substrate, corresponding to the wet thickness of the MPL, and the blade speed were set at 40 pm
and 0.154 m s7%, respectively. Different production paths were applied in order to optimize the MPL
adhesion to the GDL substrate. A graphical representation of them is reported in Figure 1, while
Table 1 shows the polymer amount employed for both GDLs and MPLs preparation; for the sake of
comparison data about the reference sample [27] is also reported.

(10 minutes) : (10 minutes)

H Path 1
i 30minutes MPL 30 minutes
: at 120°C Deposition at 120°C
.
Path2 &
Dip-coating in . ) Dip-coating in H
> 1 30 minutes MPL 30 minutes 4 30minutes 1
Bare GDL ——> PFPEemulsion 2t 120°C Deposition 2t 120°C —> PFPEemulsion —> e :
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: D?ggiat MPL 30 minutes
" Deposition at 120°C
temperature

Figure 1. Schematic representation of GDMs production processes (same color corresponds to the same
unit operation/step).

Table 1. Resume of the prepared samples: details on production path, hydrophobic agent and polymer
content in both GDL and MPL.

Sample GDL MPL Production
Hydrophobic Agent  Content [wt. %]  Hydrophobic Agent Content [wt. %] Process
GDM6-pl PFPE 1 PFPE 6 Path 1
GDMé6-p2 PFPE 1 PFPE 6 Path 2
GDM6-p3 PFPE 1 PFPE 6 Path 3
GDM6-ref. ! PTFE 12 PFPE 6 reference !

1 reference [27].
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In Path 1, a common approach was used: in the first step, the GDL was made hydrophobic by dip
coating in a 1 wt. % PFPE emulsion, then it was heat treated at 120 °C for 10 min. Such a temperature,
that is much lower than the one employed in the heat treatment of common PTFE-containing samples
(around 350 °C) [10], was selected on the basis of the authors’ previous works [27,28], and was intended
to eliminate solvent and surfactant only; indeed, it was found that treating amorphous PFPE-based
polymers at a higher temperature would be meaningless [28]. Then, the MPL was deposited and
the same thermal treatment at 120 °C was performed. In Path 2, following the same operation as for
Path 1, a final dipping into the polymer emulsion followed by heat treatment was added, in order to
enhance the MPL adhesion to the substrate. Path 3 represents a new approach to GDMs production
as an attempt to maximize MPL-GDL interactions was made by performing a single heat treatment;
indeed, the polymer-treated GDL was only dried at room temperature and directly coated by the MPL;
then, the obtained GDM was heat treated at 120 °C for 30 min.

2.2. Characterization

The surface hydrophobicity of GDMs was assessed by means of static contact angle measurements.
For this purpose, an OCA 20 instrument (DataPhysics Instrument GmbH, Filderstadt, Germany) was
used. Further details regarding contact angle measurements on PEMFCs components have been
reported by the authors elsewhere [28].

The pores size distribution of the prepared samples was assessed through mercury intrusion
porosimetry (MIP) by means of an Autopore V9600 by Micrometrics Instrument Corporation.

The produced samples were assembled in a single lab-scale fuel cell; in order to focus on GDMs
properties only, a commercial catalyst coated membrane (CCM, provided by Baltic Fuel Cells GmbH,
Germany) was employed for the electrochemical tests. Nafion 212 was the electrolytic membrane
while platinum was the catalytic active phase, with different loadings at the anode side (0.2 mg cm~2)
and at the cathode side (0.4 mg cm™2) due to different kinetics of oxidation and reduction reactions.
The electrodes’ active area was equal to 23 cm?. Finally, graphitic bipolar plates were used for reagents
distribution; a single feeding channel was used for supplying hydrogen, while a triple serpentine was
used for air. Various operating conditions were tested, both in terms of temperature and humidity.
Electrochemical experiments were carried out at 60 °C and 80 °C, with different inlet gas humidification
levels in order to evaluate the water management properties of cell components. The relative humidity
(RH) of the hydrogen fed to the anode was kept constant at 80%, while it was set at 60% and 100% for
the cathodic air. Inlet volumetric flow rates were fixed at 0.25 NI min~"! for hydrogen and 1 N1 min~!
for air; these values correspond to stoichiometric ratios of 1.3 and 2.2 for hydrogen and air, respectively,
calculated at 1.2 A cm 2.

Polarization curves were obtained by monitoring the fuel cell current, voltage and power during
operation by using an electronic load (RBL488 50-150-800, TDI Power, Hackettstown, New Jersey, USA),
in galvanostatic mode, from open circuit voltage (OCV) to high current density values with 0.09 A cm™2
steps. Electrochemical Impedance Spectroscopy (EIS) was used together with polarization curves
in order to investigate the materials” electrochemical properties and behavior during cell operation.
By means of a proper equivalent circuit model [29], EIS allows us to quantify the different contributions
to cell potential losses; each of them is characteristic of physical-chemical processes which take place
in the fuel cell, and they can be investigated to compare materials’ properties. EIS was performed
by means of a frequency response analyzer (FRA, Solartron 1260, Solartron Analytical, Farnborough,
England, UK), which was connected to the electronic load. A typical experiment was performed in
galvanostatic mode, in the frequency range 0.5 Hz-1 kHz [30]. The obtained spectra were fitted using
the ZView software (Scribner Associates, Southern Pines, North Carolina, USA). Fuel cell internal
losses were modeled using an equivalent electrical circuit which consisted of a resistance representing
ohmic losses in series with two capacitance/resistance parallel circuits. The first parallel circuit was
introduced in order to model charge transfer resistance by quantifying activation polarization, while
the second one modelled mass transfer resistance by determining concentration polarization [31,32].
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Due to the porous nature of the analyzed components, constant phase elements (CPE) were used as
circuit elements instead of pure capacitances [33,34].

The durability of the best performing sample and of the PFPE-based benchmark [27] was evaluated.
This was realized by operating the fuel cell at a constant current density (0.5 A cm~2) for 1000 h at
60 °C and RH 80-100%, performing polarization tests every 168 h (i.e., one week).

The same samples were also subjected to an ex-situ mechanical accelerated stress test (AST) in order
to have a faster and more real evaluation of the durability without carrying out tests for thousands of
hours. As a matter of fact, mechanical degradation was proven to be the most critical stressor for GDMs,
mainly due to detachment of the MPL surface carbon, which may be caused by both reactants flow and
water [35]. The GDMs were assembled in a dummy cell with a 210 pm thick Teflon membrane as a
separator without catalyst layers for preventing chemical stresses on the samples [12]. For the same reason,
only air was supplied continuously to each side of the cell for 1000 h. Flow rates were 0.5 NL min~! at
the dummy anode and 2 NL min~! at the dummy cathode, so twofold values compared to the ones used
for standard electrochemical tests aiming to quicken mechanical degradation. Electrochemical tests in
the running fuel cell were performed again upon the AST experiments, in order to evaluate the effects of
the imposed stressors on the GDMs.

3. Results

3.1. Physical Characterization

Due to the strong influence of GDMs’ water management properties on fuel cell performance,
the components” hydrophobicity was evaluated using static contact angle analysis; the results of such
measurements are reported in Table 2. Values were recorded both before cell testing (BCT) and after
cell testing (ACT); in the latter case, measurements were performed at both the anode side and the
cathode side. Ten measurements per sample were performed and then averaged.

All the samples were close to the superhydrophobicity limit (150°) upon preparation. While GDMs
prepared by paths 2 and 3 show practically unchanged contact angle values upon electrochemical
tests, both for anodic and cathodic samples, the GDM prepared by means of path 1 exhibited a
dramatic decrease in hydrophobicity of the anodic sample. This behavior can be ascribed to the water
back-diffusion taking place at a high current density due to unbalanced pressure and concentration
between electrodic compartments; this sample was not able to withstand the unavoidable back-diffusion
because of the possible low adhesion between MPL and GDL. Indeed, due to that faulty adhesion, part
of the MPL surface carbon might have been lost and the measurement of the contact angle affected by
the back layer which was treated with a lower quantity of PFPE. As a rough confirmation of this, the
loss of material of the GDMs upon the electrochemical testing procedure was measured and reported
in Table 2 as well. Such loss is mainly due to the detachment of the MPLs surface carbon. Of course,
the cell disassembling procedure can increase the material loss, but this is true and always the same
phenomenon for all the samples. GDM6-p2 and GDM6-ref. showed a probable better adhesion of the
MPL to the GDL, since a loss that is much lower than the one of the other samples was observed.

Table 2. Measured values of static contact angle (C.A.) for GDM samples (BCT: before cell test, ACT:
after cell test) and weight loss after cell tests.

C.A. ACT[°]
Sample C.A.BCT [°] Loss ACT [wt. %]
Anode Cathode
GDMé6-pl 152 +3 124 +9 152 +4 9.2
GDMé6-p2 151 +2 149 + 5 149+ 3 0.9
GDM6-p3 150 £ 3 153 +3 153 +4 5.7

GDMe6-ref. [27] 146 + 5 154 +£3 145 +2 1.0
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The results of the porosimetry tests in terms of pores size distribution (Figure 2) show important
differences between the samples. The porosity of the GDM is crucial because it influences the efficiency
of gases and water transport across such components. The classification of GDMs pores does not
correspond to the one adopted in other fields and is as follows: macropores (pores radius > 5 um),
mesopores (0.07 um < radius < 5 umy), and micropores (radius < 0.07 pm) [17]. Accordingly, in Figure 2,
it is possible to notice the presence of micropores which are more pronounced for GDM6-p2 than for
the other new samples. Such behavior can result in a better water management, since a greater amount
of micropores would enhance the capillary effect of the MPL, which could remove the excess water
more quickly [17,36]; moreover, the average pore diameter of GDM6-p2 (around 40 nm) is lower than
the one shown by the other new samples (in the range 47-50 nm), and very similar to that exhibited by
GDMB6-ref. Such a result will prove crucial for the electrochemical performance, especially in the high
current density region, where a high amount of water is produced. Conversely, it must be also noticed
that the macropores region is very similar for all the new samples, due to the presence of the same
PFPE-based GDL substrate—independent of the process of dipping or thermal treatment followed.
The difference with the reference sample in which the GDL had been treated with PTFE is clear, but the
higher impact of macropores is on gas transport from the bipolar plates to the catalyst layer [12].

25 0.4
(a) (b)
—— GDM6-p1 —— GDM8-p1
204 ——GDMé6-p2 —— GDM86-p2
—— GDM6-p3 034 —— GDM6-p3
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=) o
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3 104 5
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Figure 2. Pores size distribution of the prepared GDMs and the reference sample (a) and enlargement

of the micro-porous region (b).

3.2. Electrochemical Characterization

Figure 3 shows the results of the electrical tests in terms of polarization and power density curves.
It can be noticed that GDM6-p2 exhibited the best performance among the new prepared samples at all
the operating conditions employed: both the highest output power density and the lowest slope of
polarization curves in the whole range of generated current density were obtained with the fuel cell
assembled with the samples. The curves related to GDM6-p2 performances are practically overlapped
with the ones obtained with the benchmark; however, it is worth underlining that, in the reference
sample, the GDL was PTFE-treated with a much higher polymer concentration (12 wt. % of PTFE vs.
1 wt. % of PFPE). In addition, the performances are stable on the whole range of conditions adopted
for the testing, with just slight variations in terms of mass transfer resistance. This suggests that there
is a proper management of the water content, independent of the operating conditions, and that the
sample is not affected by significant degradation mechanisms during the short period.

The best performances of the GDM6-p3 sample were achieved at low relative humidity, with just
a slight increase in ohmic losses, and mainly of losses due to concentration polarization compared to
GDM6-p2. Overall, it is evident that a sharp improvement of performances for the fuel cell assembled
with this sample occurs when the gas flow at the cathode features a relative humidity of 60%. This
can be due to a mass transfer enhancement, considering that a reduced humidity prevents the water
condensation within the cell, thus preserving the oxygen diffusivity in the cathodic compartment.
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Finally, GDM6-p1 is the worst performing sample, in particular at high current density. Mass
transfer losses are particularly large compared to the other samples and prevent the achievement
of decent power densities, especially at 80 °C. Moreover, strong voltage drops have been recorded
at medium current density, i.e., in the ohmic region, at 80 °C, which suggests a dependence of

the electrolyte hydration on the operating temperature due to excessive vapor permeation through
the MPL.
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Figure 3. Polarization and power density curves obtained with fuel cells assembled with prepared PFPE-
based GDMs. Operating conditions: 60 °C and RH (A-C) 80-100% (a), 60 °C and RH (A-C) 80-60% (b),
80 °C and RH (A-C) 80-100% (c), 80 °C and RH (A-C) 80-60% (d).

Figures 4 and 5 show trends of both ohmic and mass transfer resistance as a function of current
density. Such parameters are those mostly influenced by GDMs features, whereas charge transfer
resistance is mainly dependant on the catalytic layer, which is a commercial component with fixed
properties in this work; therefore, it has not been reported.

The ohmic resistances shown in Figure 4 follow similar trends under all the operating conditions.
GDMB6-p2 exhibits the best behavior, comparable to the one of the benchmark. The difference with the
other samples may be determined by the additional PFPE coating that could reduce the permeability of
the MPL, thus enhancing the accumulation of water in the electrolyte at the cathodic side: this probably
has favored the back-diffusion mechanism in the MEA, so the ohmic resistance of the ionomer has
been kept low due to uniform and constant hydration. Indeed, at a low-medium current density, the
water removal action of the MPL is of limited importance, given the low amount of water produced at
the cathodic side; however, its presence is effective in preventing the dispersion of water expelled by
the ionomer—particularly at higher temperatures and a low relative humidity. Such effects point out
the dual role of the MPL, which at the same time is responsible for effective water removal in order to
avoid the cell flooding and for maintaining a proper level of hydration for the electrolyte. The RH
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decrease in the gas flow at the cathode seems to be detrimental, mainly for the less efficient samples,
while GDM6-p2 is definitely on par with the benchmark from this point of view.
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Figure 4. Trend of ohmic resistance as a function of current density obtained with fuel cells assembled
with prepared PFPE-based GDMs. Operating conditions: 60 °C and RH (A-C) 80-100% (a), 60 °C and
RH (A-C) 80-60% (b), 80 °C and RH (A-C) 80-100% (c), 80 °C and RH (A-C) 80-60% (d).
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Figure 5. Trend of mass transfer resistance as a function of current density obtained with fuel cells
assembled with prepared PFPE-based GDMs. Operating conditions: 60 °C and RH (A-C) 80-100% (a),
60 °C and RH (A-C) 80-60% (b), 80 °C and RH (A-C) 80-100% (c), 80 °C and RH (A-C) 80-60% (d).
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Figure 5 shows that the most significant distinction between the samples are ascribed to the
mass transfer resistance, which is deeply related to diffusion limitations arising mainly from water
production within the cell. Indeed, it can be noticed that GDM6-p1 suffers from a sharp increase
in resistance even at relatively low current density. This is in accordance with the ineffective water
management induced by high diffusion limitations observed for polarization curves in Figure 3, and it
could be due to the lower amount of PFPE on the MPL surface compared to GDM6-p2. Moreover,
the preparation route might have hindered the adherence of the MPL to the substrate leading to
the formation of water films at their interface, which acts as a barrier against oxygen transport and
promotes the delamination of the GDM, as suggested by the higher material loss (Table 2). It is evident
that the second preparation route is more beneficial in terms of mass transfer with respect to the third
as well, maybe due to the addition of PFPE in the final step of the process which could induce a more
effective adhesion between MPL and GDL.

Results of the preliminary durability tests performed with GDM6-p2 and the PFPE-based reference
sample are reported in Figure 6 in terms of polarization and power density curves. Electrical tests were
carried out every 168 h (i.e., one week) of running at constant current density, i.e., 0.5 A cm~2. A good
durability can be claimed since all the curves obtained for both samples are practically overlapped.
However, a slight potential drop can be seen in the high current density region of the polarization
curves obtained for the reference sample (Figure 6b). This may be traced back to a worsening of the
water management capability, maybe due to the bigger macropores (Figure 2) of the GDL and to the
fact that different polymers were in contact in GDL and MPL, therefore likely reducing the adhesion
between the components. Indeed, the material loss upon disassembling the fuel cell, after performing
the whole test, was 2.1 wt. % and 3.5 wt. % for GDM6-p2 and GDMé6-ref., respectively. The bigger
macropores may reduce the capillary condensation and water removal, since they can be more easily
clogged by the produced water; indeed, such phenomena can be only observed at a high current
density, when more water is being generated.

However, it is worth underlining that the PEMFC systems which are already commercialized
produce electric energy in the ohmic region; in the region, both samples exhibited the same performance.
This is also the reason why these tests were carried out at 0.5 A cm~2. So, ad-hoc accelerated stress tests
(AST) are needed in order to be more accurate in predicting the resistance against degradation of such
components. Figure 7 shows the polarization and power density curves after 1000 h of AST compared
to those obtained for fresh samples, i.e., not subjected to AST. Obviously, the stressed samples exhibited
worse performance, even though the reduction was not dramatic and the voltage values in the ohmic
zone were still capable of producing acceptable efficiencies in possible real systems [4,35]. As expected,
the highest loss occurred in the concentration polarization region, i.e., at a high current density, and this
is due to the difficult water management caused by the partial loss of the surface carbon of the MPL
upon mechanical AST. Indeed, upon disassembling the fuel cell after performing ASTs, a total weight
loss of 8.2 wt. % was found for the reference sample, while a smaller loss of 2.9 wt. % was detected
for GDM6-p2. This may be a further indication of a satisfying adhesion between the new MPL and
its GDL substrate, and of a better resistance to degradation compared to our benchmark featuring a
PFPE-based MPL deposited onto a standard PTFE-treated GDL.

This may be more understandable by analyzing the trend of ohmic and, at a higher extent, of
mass transfer resistances as a function of current density (Figure 8), obtained after performing AST.
The change in the ohmic resistance (Figure 8a) upon AST is not significant for the new produced
sample (GDM6-p2), while a sharper increase compared to the values of the fresh sample can be noticed
for the reference sample (GDM6-ref.). This may have been caused by a worse contact between the MPL
and the catalyst layer due to the witnessed loss of surface material, which would lead to an increase in
the contact resistance and consequently in the overall ohmic resistance.
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Figure 6. Polarization and power density curves obtained every week of constant current durability
tests for GDM6-p2 (a) and GDM6-ref. (b) GDMs. Operating condition: 60 °C and RH (A-C) 80-100%.
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Figure 7. Polarization and power density curves obtained upon 1000 h of accelerated stress tests
for GDM6-p2 (a) and GDM6-ref. (b) compared to curves obtained for fresh (as prepared) samples.
Operating condition: 60 °C and RH (A-C) 80-100%.

On the other hand, an increase in mass transfer resistance (Figure 8b) is clear for both samples.
This was largely expected, since mechanical degradation induced by AST has caused partial MPL
material loss and worsened the capability of removing the excess water, as found in a previous
work [35]. However, it is clear that the new sample was able to improve resistance to degradation and
that it was damaged less than the reference sample; indeed, for GDM6-p2, a lower increase in the mass
transfer resistance with respect to the fresh sample was found compared to the change in the same
parameter for the benckmark, i.e., GDM6-ref. sample.
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Figure 8. Trend of ohmic resistance (a) and mass transfer resistance (b) as a function of current density
obtained for fresh samples (not subjectd to AST) and upon 1000 h of accelerated stress tests. Operating
condition: 60 °C and RH (A-C) 80-100%.

4. Conclusions

In the present work, three different preparation routes were employed to prepare perfluoropolyether
(PFPE)-based GDMs, with both GDLs and MPLs treated with the same polymer. Such polymers had
been already applied successfully as alternative to the currently most-used hydrophobic agent, PTFE.
The main improvement introduced by the novel polymer was the chance to operate at a much lower
temperature during the preparation of the GDM, and to use a lower amount of hydrophobic agent
compared to PTFE.

This work mainly aimed to investigate the electrochemical performance of fuel cells assembled
with novel GDMs when PFPE was used for both GDLs and MPLs, while the benchmark was a sample
in which only MPL was based on PFPE, keeping PTFE as hydrophobic agent for the GDL. Moreover,
the reason why different preparation routes were carried out lies in the pursuit of an effective adhesion
between MPL and GDL, with the final target of improving the durability of the GDM.

It was found that the preparation method had an effect on the pores size distribution, changing the
microporous and macroporous region of the obtained sample. This was reflected in the electrochemical
performance, too; indeed, much better polarization curves were achieved for GDM6-p2, which showed
a better compromise between porosity, wettability and adhesion. Indeed, the sample—which featured
a further dipping in the polymeric dispersion during the preparation, upon the MPL deposition using
the blade coating technique—exhibited a low change in the static contact angle after electrochemical
tests, together with a less pronounced loss of material upon the disassembly of the fuel cell.

The durability of the best performing sample and of the PFPE-based MPL benchmark was tested by
applying both constant current tests and mechanical accelerated stress tests (ASTs) for 1000 h. Fuel cell
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tests performed after durability experiments revealed a better resistance of the novel sample compared
to the reference one against degradation, since a reduced increase in mass transfer limitations—likely
due to better adhesion between the MPL and the GDL—was found.

The use of PFPE is of great interest from an economic point of view too. The GDMs production
procedure is comparable to that already employed for PTFE-based components, but the amount of
material is much lower (1 wt.% vs. 12 wt.% for the GDLs treatment and 6 wt.% vs. 12 wt.% for the
MPLs production). In addition, the maximum temperature of the heat treatment step is lower too,
thus reducing the energy consumption and process time. The durability improvement is particularly
meaningful, because it may extend the service life of the fuel cell, thus reducing the costs of maintenance
and waste disposal.

These promising findings may prompt further detailed studies about the possible employment of
PFPE as a valid alternative to PTFE for the hydrophobic treatment of both GDLs and MPLs, aiming to
reduce the temperature of the thermal treatment in the preparation route, as well as to improve the
durability of the final obtained GDMs.
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