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Abstract: An increase in the neutral current results in a malfunction of the low energy over current
(LCO) protective relay and raises the neutral-to-ground voltage in three-phase, four-wire radial
distribution feeders. Thus, the key point for mitigating its effect is to keep the current under a specific
level. The most common approach for reducing the neutral current caused by the inherent imbalance
of distribution feeders is to rearrange the phase connection between the distribution transformers
and the load tapped-off points by using the metaheuristics algorithms. However, the primary task
is to obtain the effective load data for phase rearrangement; otherwise, the outcomes would not
be worthy of practical application. In this paper, the effective load data can be received from the
feeder terminal unit (FTU) installed along the feeder of Taipower. The net load data consisting of
customers’ power consumption and the power generation of distributed energy resources (DERs)
were measured and transmitted to the feeder dispatch control center (FDCC). This paper proposes
a method of establishing the equivalent full-scale net load model based on FTU data format, and
the long short-term memory (LSTM) was adopted for monthly load forecasting. Furthermore, the
full-scale net load model was built by the monthly per hour load data. Next, the particle swarm
optimization (PSO) algorithm was applied to rearrange the phase connection of the distribution
transformers with the aim of minimizing the neutral current. The outcomes of this paper are helpful
for the optimal setting of the limit current of the LCO relay and to avoid its malfunction. Furthermore,
the proposed method can also improve the three-phase imbalance of distribution feeders, thus
reducing extra power loss and increasing the operating efficiency of three-phase induction motors.

Keywords: FTU; full-scale net load model; PSO; neutral current; LCO; power loss

1. Introduction

The three-phase, four-wire radial type primary feeders are widely used in Taiwan and other
countries to supply single- and three-phase loads simultaneously, and this is one of the significant causes
of load imbalance between three phases. Therefore primary feeders often have unbalanced systems
wherein the greater the system imbalance, the poorer the power quality produced. For example, the
voltage unbalance leads to zero- and negative-phase sequence voltages which, in turn, can reduce the
torque output of three-phase induction motors and increase extra power loss [1–3]. The zero-sequence
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current flow into the neutral wire will not only cause the unexpected trip of the LCO protective relay
or zero-sequence relay [4–6], but also increase the neutral-to-ground voltage and interfere with the
communication system.

For the past few decades, the common method used for reducing the neutral current in passive
distribution networks and improving the three-phase unbalance is by rephasing via artificial intelligence
(AI) algorithms and expert systems. Tu and Tsai [7] proposed an improved bacterial foraging algorithm
(IBFO) to solve the optimal phase combination problem with the aim of minimizing the line loss within
24 intervals. Meanwhile, Chen and Cherng [8] used the genetic algorithm (GA) to find the optimal
phase arrangement of distribution transformers connected to a primary feeder in order to improve
system unbalance and reduce power loss. Huang et al. [9] proposed the immune algorithm (IA) for
phase balancing, and its objective function was formulated by unbalanced phase current, customer
service interruption cost, and labor cost. To improve system unbalance, Hooshmand and Soltani [10]
presented the bacterial foraging (BF) oriented by particle swarm optimization (PSO) algorithm (BF-PSO)
for phase rearrangement in radial and meshed distribution networks. Arias [11] used a hybrid method
to load balancing in a three-phase distribution system by integer linear programming and Branch and
Bound algorithm, and the outcomes demonstrated that it could decrease unbalance by more than 10%.
Lin et al. [12] proposed the heuristic rules adopted by distribution engineers in the expert system for
solving the rephasing problem of laterals and distribution systems.

These aforementioned studies did not investigate the impact of the penetration of distributed
energy resources (DERs) for phase rearrangement on the passive distribution networks. The high
penetration of DERs in passive distribution networks results in active networks and more complex
planning and operation of active distribution networks. Among the factors affecting system imbalance,
the increase in the neutral current affects not only the network topologies, unbalance transformer
structures, three-phase capacitor banks, load characteristics, and load transfer, but also the installed
capacity, historical power generation, and type of DERs. Therefore, the DERs have been considered in
phase rearrangement studies in recent years. For example, Soltani et al. [13] modeled the hourly wind
power and load in the scenario-based method, and used the fuzzy multi-objective phase balancing
based on the θ-modified bat algorithm to solve the rephasing problem. Peng et al. [14] proposed a
new multi-objective molecular differential evolution algorithm for phasing balancing in a distribution
network with distributed generations. A loop power controller was adopted in another study for
complex power control that would allow the incorporation of photovoltaic power generation in the
feeder load balancing [15]. These studies prominently investigated the optimal phase arrangement
problem of incorporating the load and DERs simultaneously. The outcomes of the optimal phase
arrangement scheme could not consider just a single point time solution due to the time variance of
loads and DERs.

Consequently, regardless of whether there are more effective AI algorithms adopted for solving
the optimal phase arrangement problems, the key for practical application is the correct and effective
load; otherwise, these findings from past studies will only be applicable for operation reference.
The rephasing work of power companies is dependent on the regular investigation of the neutral current
record log from distribution dispatch and control center (DDCC), which is fetched by FTU, or after the
network reconfiguration has been performed [16]. Although most of the phase rearrangement studies
are focused on the efficiency and performance of their proposed solution algorithms, they actually lack
detailed explanations of the actual considerations on how often the rephasing work should be done
and the duration of load data.

In this paper, a full-scale load model of the FTU-derived data is proposed for reducing the neutral
current by optimal phase arrangement according to the monthly regular rephasing work of Taipower
distribution networks. The rest of the paper is divided into four sections. Section 1 introduces the
background and objectives of this study. Section 2 describes the proposed approach for reducing the
neutral current by optimal phase arrangement. Section 3 discusses the simulation results. Section 4
presents our conclusions.
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2. Problem Description and the Proposed Approach

2.1. The Solution Procedure of the Proposed Approach

Figure 1 shows the systematical procedure of the proposed approach for reducing the neutral
current by optimal rephasing in order to improve the current inefficient phase adjustment manual via
report review from a record log of the DDCC. The solution procedure can be divided into three main
parts: the front-end database, the forecast kernel module, and the optimal phase arrangement module.
The database is responsible for consolidating the calculation results of each module and converting it
into a structured query language (SQL) database format, which is stored in a single file. The forecast
kernel module uses an LSTM neural network of a recurrent neural network (RNN). The LSTM-RNN
is widely used in electrical load prediction, and the results demonstrate its superior load forecasting
ability [17–21]. Therefore, the LSTM-RNN is used to predict the real and reactive powers, and then the
results are also stored in the database for phase balancing in the optimal phase arrangement module.
Details about the LSTM-RNN is described in detail in the following section.
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In Figure 1, the front-end processing and forecast kernel internal architecture of the database is
shown in Figure 2. The SQL format data was stored in the Forecast_M7.db file. Its contents include the
SQL feeder data format, the SQL weather data format, and the SQL power prediction data format.
These SQL formats are converted from raw feeder data and weather data by PQ_estimate.py after
which the CSV is converted to SQLited.py files. The forecast module is added to the Feeder.py file.
The LSTM model training and testing functions were organized with the translator and TensorFlow
package of Python 3.6 (Version 1.13.1, Google, Mountain View, CA, USA) and above, and the calculation
results were returned to the Forecast_Feeder.db file for storage.

Figure 3 shows the structure diagram of the optimal phase arrangement module, which was
divided into two parts: a data processing program and a PSO algorithm model. In the a data processing
program, the load forecast results were imported from the database (.db file). The transformer
data of the practical feeder of Taipower were imported from the trial calculation table (.xlsx) to the
converterDataToOpenDSS.py sub-program, after which the OpenDSS file (.dss) was automatically
exported to establish the basic feeder model in OpenDSS. The OpenDSS (Version 8.6.5.2, Electric Power
Research Institute, Inc., Palo Alto, CA, USA) [22] is an electric power distribution system simulator,
which is designed to support DERs, including the photovoltaic, wind power, electrical energy storage,
grid integration, and smart grid applications. It is a powerful and reliable tool for solving the power
flow, harmonic, and so on, in unbalanced distribution systems and is capable of co-operating with an
objective oriented optimal program designed by other programming languages [22–26].
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The second part of the optimal phase arrangement module is the PSO algorithm model, which
contains 25 sub-programs. The PSO.py, which is the main program of the proposed PSO algorithm, calls
the dssRephase.py subroutine and sends the particle position data to it. The particle position indicates
six connection types corresponding to each transformer and is interconnected with OpenDSS through
the component object model (COM) interface. This adjusts the phase of the transformer, solves the
power flow, and then returns the power flow results to the PSO.py to continue the iterative operation.

2.2. Description of the Long Short Term Memory

LSTM algorithm applied to the Li-ion batteries charging application and PV plant output forecast
in Chemali [27] and Ospina’s [28] study, respectively. This study made the LSTM algorithm forecast the
future three-phase power flow according to the weather and time information for the later optimization
block process. Tuition materials of the LSTM were recommended in Brownlee’s contribution with the
mathematical models, machine learning environment introduction, example codes, and question reply
in free [29]. In this study, the LSTM solver is mainly described in Figure 4.



Energies 2020, 13, 1844 5 of 20

Energies 2020, 13, x FOR PEER REVIEW 5 of 20 

 

calls the dssRephase.py subroutine and sends the particle position data to it. The particle position 

indicates six connection types corresponding to each transformer and is interconnected with 

OpenDSS through the component object model (COM) interface. This adjusts the phase of the 

transformer, solves the power flow, and then returns the power flow results to the PSO.py to continue 

the iterative operation. 

2.2. Description of the Long Short Term Memory 

LSTM algorithm applied to the Li-ion batteries charging application and PV plant output 

forecast in Chemali [27] and Ospina’s [28] study, respectively. This study made the LSTM algorithm 

forecast the future three-phase power flow according to the weather and time information for the 

later optimization block process. Tuition materials of the LSTM were recommended in Brownlee's 

contribution with the mathematical models, machine learning environment introduction, example 

codes, and question reply in free [29]. In this study, the LSTM solver is mainly described in Figure 4. 

The solver consists of four parts in the input: historical-current data, loss, output predict data, 

and LSTM solver kernel block. From Figure 2, the input historical-current data are from SQL file 

sheets. These data were: year (2019–present), month (1–12), day (1–31), weekday (1–7), hour (0–23), 

station pressure (hPa), temperature (°C), relative humidity (%), wind speed (m/s), wind direction 

(360°), sunshine hour (h), global radiation (MJ/m2), visibility (km), ultraviolet index (none), and cloud 

amount (0–10). Because these data are in different ranges, the normalize process of the LSTM 

compresses them into unity. For the memory allocation amount size and computation accuracy 

consideration, the reshape to tensor process converts a portion of the input data into the tensor format 

in the desired setup. The significant amount of the tensor size reduces the computation time but not 

accuracy, vice versa. Thus, the validation process is used to tune these parameters via the loss data. 

Finally, the de-normalize process restores the estimation process and outputs the forecast data upon 

the current data loop. 

 

Figure 4. The structure of the proposed LSTM solver. 

2.3. Description of the Particle Swarm Optimization 

The PSO method imitates the flocks of spicy bird migration and forage behavior, and was 

originally proposed by James Kennedy and Russell Eberhart [30]. This method observes living 

creatures and concludes two fundamental behaviors in the migration and forage actions. Figure 5 

presents two modes: the cognition-only and social-only modes. In PSO, every entity represents a 

particle that potentially contains a solution, and each particle also owns its position and velocity 

information. The movement of each particle updates its direction from the inertia and experience 

outcomes; this is called the cognitive learning model. When the individual particles are compared 

with other particles to derive the updated direction result, this process is referred to as the social 

Figure 4. The structure of the proposed LSTM solver.

The solver consists of four parts in the input: historical-current data, loss, output predict data,
and LSTM solver kernel block. From Figure 2, the input historical-current data are from SQL file sheets.
These data were: year (2019–present), month (1–12), day (1–31), weekday (1–7), hour (0–23), station
pressure (hPa), temperature (◦C), relative humidity (%), wind speed (m/s), wind direction (360◦),
sunshine hour (h), global radiation (MJ/m2), visibility (km), ultraviolet index (none), and cloud amount
(0–10). Because these data are in different ranges, the normalize process of the LSTM compresses
them into unity. For the memory allocation amount size and computation accuracy consideration,
the reshape to tensor process converts a portion of the input data into the tensor format in the desired
setup. The significant amount of the tensor size reduces the computation time but not accuracy,
vice versa. Thus, the validation process is used to tune these parameters via the loss data. Finally,
the de-normalize process restores the estimation process and outputs the forecast data upon the current
data loop.

2.3. Description of the Particle Swarm Optimization

The PSO method imitates the flocks of spicy bird migration and forage behavior, and was originally
proposed by James Kennedy and Russell Eberhart [30]. This method observes living creatures and
concludes two fundamental behaviors in the migration and forage actions. Figure 5 presents two
modes: the cognition-only and social-only modes. In PSO, every entity represents a particle that
potentially contains a solution, and each particle also owns its position and velocity information.
The movement of each particle updates its direction from the inertia and experience outcomes; this is
called the cognitive learning model. When the individual particles are compared with other particles
to derive the updated direction result, this process is referred to as the social learning model. Thus,
two models iterate and derive the optimal solution. The flow chart is shown in Figure 5, and the PSO
algorithm equations are shown in Equations (1) and (2) below.

vi+1
n = ωvi

n + ϕprand(pbest n
i − si

n) + ϕgrand(gbest
i
n − si

n) (1)

si+1
n = si

n + vi+1
n (2)
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In Equations (1) and (2), w denotes the weights, vi
n is the particle n movement velocity at the i

moment, ϕp and ϕg are the learning factors, and rand(.) refers to the random number between 0 and 1.
In addition, pbest n

i is the optimal solution of the particle n movement velocity at the i moment, si
n is

the position of the particle n movement velocity at the i moment, and gbest
i
n is the social learning’s

optimal solution of the particle and n is the movement velocity at the i moment. Compared with others,
PSO requires fewer setup parameters, is easy to implement, and can efficiently solve the optimization
problem. Hence, this algorithm is used to solve the best phase adjustment problem in this study.

2.4. The Computation Platform with the OpenDSS and Python

Initially, the Electrotek Concepts company developed OpenDSS, a distribution application
simulation software. The Electric Power Research Institute purchased it and shared in an open-source
manner for research purposes in 2008 [31]. Compared to the commercial software, such as PSS/E
(Version 33.4.0, Siemes, Washington, DC, USA) and Cyme PSAF(Version 8.2, CYME International T&D
Inc., Quebec City, QC, Canada), OpenDSS has advantages in terms of cost and computation speed
despite having fewer functionalities. This study, with an open-source Python computer language,
is dynamically linked to the OpenDSS via the COM engine interface to implement the PSO algorithm
and derive the optimal phase arrangement outcome. Figure 6 illustrates each process block and the
flow direction.

2.5. Optimal Phase Arrangement with the Multi-objective Function

As mentioned above, the practical three-phase, four-wire distribution systems exhibit unbalanced
operation caused by the asymmetrical structure of power line arrangement and distribution transformer,
DER penetration, and random power consumption of customers. This unbalanced condition results in
the serious malfunction of the protective relay, extra power loss, derating motor torque, and degraded
power quality. The phase arrangement process changes the physical connection between the individual
distribution transformer or lateral and tapped-off point in feeder main. In this paper, the rephasing work
was performed in the three-phase feeder main; therefore, the distribution transformers and laterals
connected to the feeder main will be the adjusted points. The possible connection schemes for the three-,
two-, or single-phase transformers and laterals were different, as shown in Figure 7. For example,
Figure 8 presents the six types of connection schemes used in the three-phase connection transformer.
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Figure 7. Various connections between the individual distribution transformer and the lateral and
tapped-off points in the feeder main.
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In the rephasing study, the solved problem becomes complicated due to the non-traditional
single-objective problem. Many expected goals must be considered in real applications. Hence,
it becomes a multi-purpose function problem and the weighting method must be used to solve it.
The unity proportional weight factors must also be used to combine the different scenarios into a
single-objective problem. These scenarios aim to achieve a general concept of reducing the neutral line
current to prevent the unexpected tripping of the LCO protective relay. Considering the factors of the
power loss and the labor cost of the phase adjustment, the multi-purpose fitness function is found in
Equation (3).

F = w1
INline − imin

Nline

imax
Nline − imin

Nline

+ w2
Ploss − pmin

loss

pmax
loss − pmin

loss

+ w3

Nadj − nmin
adj

nmax
adj − nmin

adj

(3)

The weights are limited in Equation (4):

w1 + w2 + w3 = 1 (4)

where INline denotes the neutral line current (A) of feeder main, Ploss is the power loss (kW) per hour,
Nadj is the number of the adjusted transformer and lateral, and w is the unity proportional weight factor.

3. Simulation and Analysis

3.1. Scenario and Simulation Parameter Setting

The practical distribution feeder, shown in Figure 9, is located in the middle Taiwan district and
is selected from the Taipower. It operates with the installed PV with a 3057.7 kW capacity, 55 buses,
and three FTUs located in the front, middle, and ending positions, respectively. The FTUs measure the
summation of the injected power, which includes the customer loading Sload, line loss Sloss, and the PV
power output in a negative value −PPV,gen. These are summarized in Equation (5) below.

SFTU = Sload + Sloss − PPV,gen (5)
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Figure 9. One-line diagram of the practical distribution feeder.

Meanwhile, Figure 9 shows the FTUs and PV plant locations. There are also 81 transformers in the
feeder main, which can be rephrased in Taipower’s regular monthly work. Thus, the optimization work
proposed the phase adjustment philosophy of these buses in order to achieve the expected outcomes.

Defining the feeder main line loading is crucial in resolving the phase adjustment philosophy.
Referring to the normal three-phase loading distribution of the feeder main, Equations (6)–(8) represent
each of the active and reactive powers in the different feeder areas, which include several feeder sections.
The calculation mainly substrates each FTU’s measurement and derives the loading information in
each area.

S1,total = SFTU1 − SFTU2 (6)

S2,total = SFTU2 − SFTU3 (7)

S3,total = SFTU3 (8)

According to the installed three-phase capacity CDTr,i of the distribution transformer at each bus,
we allocated the feeder area power S1,total, S2,total, and S3,total on the bus by Equation (9). Similarly, the
loading at the tapped-off point between the feeder main and lateral can be calculated by the same
approach wherein CDTr,i is the summation of the installed capacity of the distribution transformers in
the lateral. Based on the derived hourly load at each bus in the feeder main and on the regular rule of
monthly phase adjustment strategy of Taipower, this study forecasted the month-ahead power loading
per hour unit. By using the proposed LSTM-RNN algorithm, we were able to derive the full-scale load
model in one month for the optimal phase arrangement by the proposed multi-objective function in
Equation (3):

Busload,i = Stotal ×
CDTr,i

n∑
i

CDTr,i

(9)

In the following section, the practical unbalanced distribution feeder of Taipower, shown in
Figure 1, was used in the sample system. Four cases were assumed, as shown in Table 1, with three sets
of weighting values in neutral current, total energy loss, and rephasing number, respectively, in order
to demonstrate the performance of the proposed approach. The fitness function, neutral current, total
energy loss, and rephasing number of the proposed approach were compared to those of the original
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system prior to the phase arrangement. The numerical results of Case 1 shall be fully analyzed and
discussed in Section 3.2, and the comparisons of the four cases will be discussed in Section 3.3.

Table 1. The PSO algorithm parameter and weighting values of the four test cases.

Case
Parameter

Swarm Size Iterations ω ϕp ϕg w1 w2 w3

Case 1

100 100
from 0.9 to 0.4

during iteration 0.5 0.5

1 0 0

Case 2 0.8 0 0.2

Case 3 0.4 0.3 0.3

Case 4 150 1 0 0

3.2. Numerical Results

3.2.1. Iterative Convergence Trend

According to the parameters setting in Case 1, in which the neutral current reduction was only
considered, the trends of convergence of the proposed multi-purpose fitness function, neutral current,
total energy loss, and rephasing number are shown in Figure 10. The fitness function from the initial
value to the global optimum value of 0.678675 was below 40 iterations, as shown in Figure 10a.
Moreover, the neutral current was reduced from the original value 72.17 A to 48.98 A, which was below
40 iterations, as shown in Figure 10b. These two convergence diagrams are the same because the fitness
function equals the neutral current prediction in Case 1. The convergence trend of total energy loss
per month is also similar to those shown in Figure 10a,b due to the phase balancing results in neutral
current reduction. Therefore, the power loss is decreased under a more balanced condition. The total
energy loss from the initial value of 11,317.21 kWh to the global optimum value of 8261.55 kWh is also
below 40 iterations, as shown in Figure 10c. Additionally, the trend of the rephasing number from the
initial value to the global optimum value of 61 is below 20 iterations, as shown in Figure 10d.

3.2.2. Neutral Current Profile

Figure 11 shows the single line diagram of the LCO protective relay in the three-phase, four-wire
distribution systems. The current of LCO is formulated as the three-phase current, which is equal to the
neutral current. In Taipower, the LCO relay tripping setting limit value is around 70 A, and the LCO
detects the neutral current over 70 A to trip the unbalanced short-circuit fault, which then causes the
increased tripping setting limit value of the neutral current. Unfortunately, the unbalanced loading can
also lead to high neutral current and the malfunctioning of the LCO. In turn, this can cause unexpected
interruption and increase the system average interruption duration index (SAIDI) and system average
interruption frequency index (SAIFI) of the power company. Thus, supervisory control should be
implemented and the neutral current must be acquired. The objective of this paper was to reduce the
neutral current by using the proposed approach. Figure 12a,b indicate the corresponding simulation
results of the neutral current spread and probability density function (PDF), which was in the front
end of the feeder flow into the LCO, before and after rephasing by the full-scale net load model in one
month. In the figures, the horizontal axis represents the time in hour (24 h × 7 day × 4 week = 672 h).
The neutral current before rephasing is much higher than that after rephasing; it is over 70 A during
some time periods before rephasing but decreased to below 50 A after rephasing. The improvement of
neutral current was significant. The neutral reduction before and after the proposed optimal approach
can be more clearly seen in Figure 12b. The neutral currents of each line section in the three-phase,
four-wire feeder before and after rephasing are illustrated in Figure 13a,b, respectively. The line section
numbers from 0 to 50 represent the feeder front to the feeder end. The current unbalanced condition in
each line section can also be investigated from these figures.
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3.2.3. Line Current Profile

Figure 14 depicts the simulation results of the current of each phase in each line section before
and after rephasing. The magnitudes of the line current of phases A, B, and C in each line section from
the feeder at the secondary side of main transformer in distribution substation to the feeder end of a
radial type distribution feeder show a decreasing distribution. In other words, the smaller the distance
from the distribution substation, the larger the current becomes. In this study, the loading from heavy
to light was as follows: phase C > phase A > phase B, and this corresponded to the magnitude of
the line current in each phase. The simulation results shown in Figure 14b,d,f show that the current
unbalance of each phase after optimization was better than those shown in Figure 14a,c,d, respectively,
before optimization.
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3.2.4. Bus Voltage Profile

Figure 15 illustrates the simulation results of the magnitude of bus voltage of each phase along the
feeder main before and after rephasing. The magnitudes of bus voltage of phases A and C decreased
from the front to end along the radial type distribution feeder. On the contrary, the magnitude of
bus voltage of phase B increased from the front to end along the feeder, which was caused by the
induced voltage rise by mutual induction under the unbalanced condition. In this study, the loading
from heavy to light was as follows: phase C > phase A > phase B. Thus, the average magnitude of
bus voltage from high to low was as follows: phase B > phase A > phase C. The simulation results of
Figure 15b,d,f show that the voltage unbalance of each phase after optimization was better than those
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shown in Figure 15a,c,d, respectively, before optimization. In addition, according to the symmetrical
components method, introduced by Dr. C. L. Fortescue in 1918, V0, V1, and V2 denote the zero-
positive-, and negative-sequence voltage components, respectively. The zero- and negative-sequence
voltage unbalance factors are defined in Equations (10) and (11), respectively. These two unbalance
factors can completely reflect the voltage unbalance phenomenon caused by magnitude and phase
angle deviation. Consequently, the zero- and negative-sequence voltage unbalance factors were used
to estimate the performance of the proposed approach in this paper. The simulation results show that
the maximum values of the zero- and negative-sequence voltage unbalance factors were near 1.7%
before rephasing, but decreased to below 0.3% after rephasing (Figure 16).

D0 =
|V0|

|V1|
× 100% (10)

D2 =
|V2|

|V1|
× 100% (11)

Energies 2020, 13, x FOR PEER REVIEW 14 of 20 

 

Figure 15 illustrates the simulation results of the magnitude of bus voltage of each phase along 

the feeder main before and after rephasing. The magnitudes of bus voltage of phases A and C 

decreased from the front to end along the radial type distribution feeder. On the contrary, the 

magnitude of bus voltage of phase B increased from the front to end along the feeder, which was 

caused by the induced voltage rise by mutual induction under the unbalanced condition. In this 

study, the loading from heavy to light was as follows: phase C > phase A > phase B. Thus, the average 

magnitude of bus voltage from high to low was as follows: phase B > phase A > phase C. The 

simulation results of Figures 15b, 15d, and 15f show that the voltage unbalance of each phase after 

optimization was better than those shown in Figures 15a, 15c, and 15d, respectively, before 

optimization. In addition, according to the symmetrical components method, introduced by Dr. C. L. 

Fortescue in 1918, V0, V1, and V2 denote the zero- positive-, and negative-sequence voltage components, 

respectively. The zero- and negative-sequence voltage unbalance factors are defined in Equations (10) 

and (11), respectively. These two unbalance factors can completely reflect the voltage unbalance 

phenomenon caused by magnitude and phase angle deviation. Consequently, the zero- and negative-

sequence voltage unbalance factors were used to estimate the performance of the proposed approach 

in this paper. The simulation results show that the maximum values of the zero- and negative-

sequence voltage unbalance factors were near 1.7% before rephasing, but decreased to below 0.3% 

after rephasing (Figure 16). 

 
1

 100%
0

0

V
D

V
 (10) 

 
2

1

 100%
2

V
D

V
 (11) 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 15. Cont.



Energies 2020, 13, 1844 15 of 20
Energies 2020, 13, x FOR PEER REVIEW 15 of 20 

 

  
(e) 

  
(f) 

Figure 15. Bus voltage profiles: (a) phase A: before rephasing, (b) phase A: after rephasing, (c) phase 

B: before rephasing, (d) phase B: after rephasing, (e) phase C: before rephasing, and (f) phase C: after 

rephasing. 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 16. Zero- and negative-sequence voltage unbalance factors: (a) Zero-sequence: before 

rephasing, (b) Zero-sequence: after rephasing, (c) Negative-sequence: before rephasing, and (d) 

Negative-sequence: after rephasing. 

3.2.5. Power Loss Profile 

As stated earlier, the higher the neutral current, the greater the three-phase unbalance, which 

then causes extra power loss. Figure 17 depicts the simulation results of the total three-phase power 

loss in each line section before and after rephasing. The numerical value in each line section reflects 

the magnitude of the current and the three-phase unbalance ratio. The simulation results in Figure 

Figure 15. Bus voltage profiles: (a) phase A: before rephasing, (b) phase A: after rephasing, (c) phase
B: before rephasing, (d) phase B: after rephasing, (e) phase C: before rephasing, and (f) phase C:
after rephasing.
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3.2.5. Power Loss Profile

As stated earlier, the higher the neutral current, the greater the three-phase unbalance, which then
causes extra power loss. Figure 17 depicts the simulation results of the total three-phase power loss
in each line section before and after rephasing. The numerical value in each line section reflects the
magnitude of the current and the three-phase unbalance ratio. The simulation results in Figure 17b
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show that the overall power loss after optimization was smaller than that before optimization, as shown
in Figure 17a.
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Rephasing 

Number  

Original - 72.17 11,317.21 - 

Case 1 0.678675 48.98 8261.55 30 

Case 2 0.720195 54.95 9074.69 18 

Case 3 0.699720 54.56 8980.33 20 

Case 4 0.691161 49.88 8636.6 26 

Figure 17. Energy loss profiles: (a) before rephasing and (b) after rephasing.

3.3. Discussion

Based on the numerical results of Case 1, the proposed algorithm was proven to be a feasible
approach to reduce neutral current, thereby balancing the three-phase current, improving voltage
quality, reducing energy loss, and increasing efficiency. Due to the fact that phase balancing is
dependent on the distribution network topology, the load distribution, the monthly loading, and the
connection of the distribution transformer, the weighting value can be adjusted to obtain the optimal
rephasing strategy. Except for Case 1 and Case 4 with different swarm size only for the optimal neutral
current, the simulation results of Case 2 for the optimal neutral current and rephasing number are
shown in Figure 18, and the simulation results of Case 3 for the optimal neutral current, power loss,
and rephasing number are shown in Figure 19, and the results of Case 4 are shown in Figure 20.Energies 2020, 13, x FOR PEER REVIEW 18 of 20 
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Table 2 lists the values of fitness function, maximum neutral current, monthly energy loss,
and rephasing numbers of the original and four cases to evaluate the performance of the proposed
multi-objective function. The optimal phase arrangement comparisons of four cases with the original
condition is listed in Table 3. As can be seen, the maximum neutral current of Case 1 was the smallest
among the four cases, because of the weighting w1 = 1 and those of w2 and w3, which were zero.
In Case 2, the weightings were adjusted to reduce the rephasing number: w1 = 0.8, w2 = 0.2, and w3 = 0.
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The simulation results show that the rephasing number reduced to 18; however, the neutral current and
energy loss increased. Additionally, a compromise weighting setting was Case 3, and the simulation
results reflected the setting value. Furthermore, the difference of parameters setting between Case 1
and Case 4 was only the swarm size, and the result of neutral current reduction of Case 4 was slightly
greater than that of Case 1; similarly, the maximum neutral current of Case 4 was smaller than Case 2
and Case 3. It is worth noting that the decision of the swarm size of the PSO should be carefully
evaluated on a case by case basis.
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Table 2. Performance comparison of four cases with the original condition.

Case
Result

Fitness Function Maximunm
Neutral Current (A)

Total Energy
Loss (kWh)

Rephasing
Number

Original - 72.17 11,317.21 -

Case 1 0.678675 48.98 8261.55 30

Case 2 0.720195 54.95 9074.69 18

Case 3 0.699720 54.56 8980.33 20

Case 4 0.691161 49.88 8636.6 26
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Table 3. Optimal phase arrangement comparisons of four cases with the original condition.

Bus No.
Connection Original Case 1 Case 2 Case 3 Bus No.

Connection Original Case 1 Case 2 Case 3

6_1 BC BA BC BA 21_11 AB AB AB AB

11_4 A A A A 21_13 BC BA BA BC

11_5 BC AB BC BA 21_14 BC BA BC BA

11_6 C A A A 21_15 C B C A

11_7 A A A A 27_1 A A A A

11_9 BC BC BC BC 27_7 AC BC AC AC

11_10 C C B C 28_1 B B B B

11_12 B B B B 30_0 A A A A

11_16 B B B B 33_2 B B B B

11_17 B B B B 36_0 ABC ABC ABC ABC

11_27 AB AB AB AB 35_1 AB AB AB AB

11_28 B B B B 38_2 B B B B

13_1 B B B B 38_3 AC AB AC AC

13_9 C A A A 38_5 AC AC AC AC

13_10 C B A A 38_6 BC BC BC BC

15_2 AC AB AC AC 39_0 BC BA BC BA

15_3 B B B B 40_3 AC AC AC AC

15_4 B A B B 40_4 AC AC BC AB

16_2 B B B B 40_5 AC AC AC AC

16_7 BC BC BA BC 40_27 A A A A

16_10 B B B B 40_28 C A C C

16_15 C B B C 40_31 AC AC AC AB

16_20 A A A A 40_33 B B B B

17_20 A A A A 40_34 C B A A

17_22 B A B B 47_0 AC AC AC AC

17_23 B B B B 49_1 A A A A

17_25 B B B B 50_0 AC BC AB AB

17_26 BC AB BA BC 51_0 AC AC AC AC

18_0 BC AB BA BC 54_0 AC AC AC AC

19_0 C A C C 54_2 AC AC AC BC

19_4 C B A C 54_6 C B C C

19_5 B B B B 54_10 C A C A

19_7 B B B B 54_11 AB AB AB AB

19_8 A A A A 54_12 B B B B

19_9 AB AB AB AB 54_13 BC BA BA BA

20_3 C C A A 54_14 AB AB AB AB

20_9 AC AC AC AB 54_15 B B B B

20_10 BC BA BA BC 54_16 AC BC AB BC

20_11 C A C C 57_0 AC AB BC BC

21_9 AC AC AC AC 57_1 AC BC AC AC

21_10 C B A B Note: Bus No._nth Transformer(lateral)

4. Conclusions

In this paper, a monthly full-scale net load model derived from the FTU measurement data
and predicted by LSTM was used to reduce the neutral current via phase arrangement optimization
by PSO. The proposed multi-objective function, which is composed of neutral current, power loss,
and rephasing number, was applied to solve the optimal phase arrangement problem of a practical
unbalanced distribution feeder. The simulation results demonstrated that the proposed approach
had good performance in terms of reducing the neutral current and avoiding the malfunction of the
LCO protective relay. Clearly, the phase balancing achieved using this approach is superior to that
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of the original condition after optimal rephrasing. Furthermore, the monthly energy loss is reduced
dramatically. The full scope of the next-month system status can be explored by the month-ahead
forecasting load data before and after rephasing. Consequently, the proposed approach is helpful for
improving system operation efficiency and is worthy of practical application in the regular operations
of real-life distribution systems.
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