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Abstract: Detecting, measuring, and classifying partial discharges (PDs) are important tasks for
assessing the condition of insulation systems used in different electrical equipment. Owing to
the implementation of the phase-resolved PD (PRPD) as a sequence input, an existing method
that processes sequential data, e.g., the recurrent neural network, using a long short-term memory
(LSTM) has been applied for fault classification. However, the model performance is not further
improved because of the lack of supporting parallel computation and the inability to recognize the
relevance of all inputs. To overcome these two drawbacks, we propose a novel deep-learning model
in this study based on a self-attention mechanism to classify the PD patterns in a gas-insulated
switchgear (GIS). The proposed model uses a self-attention block that offers the advantages of
simultaneous computation and selective focusing on parts of the PRPD signals and a classification
block to finally classify faults in the GIS. Moreover, the combination of LSTM and self-attention
is considered for comparison purposes. The experimental results show that the proposed method
achieves performance superiority compared with the previous neural networks, whereas the model
complexity is significantly reduced.

Keywords: fault diagnosis; gas-insulated switchgear (GIS); long short-term memory (LSTM); partial
discharges (PDs); self-attention

1. Introduction

The popularity of power systems is rapidly increasing as the power demand increases, and the
reliability of a power grid is important for a stable power-system operation. Gas-insulated switchgears
(GISs) are equipment filled with SF6 gas that have excellent insulation characteristics and have been
applied to substation equipment as the main protection device since the late 1960s owing to their high
reliability, safety, and compactness [1]. Various failures can occur with the passage of service time, and
the insulation defects in a GIS can cause partial discharges (PDs) before breakdown [2–4]. Therefore,
detecting PDs at the early stages contributes to ensuring high reliability and safety of grid assets [5].

The PDs in a GIS can be measured using electrical, mechanical, and chemical methods [6,7].
High-frequency and ultra-high-frequency (UHF) sensors are used in the electrical methods [4,8,9],
acoustic sensors are used for sound measurements [10,11], and dissolved-gas analysis is employed in
the chemical methods [12,13]. In particular, the UHF method offers the advantage of high-sensitivity
detection [14]. Therefore, the UHF measurement-system verification method has been standardized [15].
The present study uses a UHF sensor for a PD measurement system.
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To examine the characteristic of PDs in a GIS, two types of analyses that have been studied are
available, namely, time-resolved PD (TRPD) and phase-resolved PD (PRPD) [16–23]. In the TRPD
method, the time-domain, frequency-domain, and both time- and frequency-domain features are used
to analyze the PD pulses [21–23]. The PRPD-based method analyzes the phase–amplitude–number
(φ− q− n) measurements, where φ is the phase angle, q is the amplitude, and n is the phase angle, q is
the amplitude, and n is the number of discharges [24]. The number of PD pulses, maximum amplitude,
or average amplitude in each phase is used as features in the PD classification [25].

Most of the previous studies on PD analysis using PRPDs focused on either extracting the useful
features or accurate classification based on these extracted features. Signal-processing techniques
such as time-domain [26], frequency-domain [27], and time–frequency-domain [28] analyses are
used to extract the representative features from PRPDs. After feature extraction, the dimension
reduction for computational efficiency is achieved through a feature-selection step. Correlation
analysis is applied to cluster the PDs into different groups [29]. Principal component analysis is used
to reduce the dimensions [30,31]. Based on the useful features from the univariate phase-resolved
distributions [32], the final step is to train the classifiers such as neural networks [33], decision trees [34],
and support vector machines (SVMs) [35]. However, the PD classification performance significantly
varies depending on the particular combination of the existing feature-extraction and classification
methods. Therefore, to maximize the PD classification performance, an integrated framework
simultaneously considering both the feature-extraction and classification methods is needed.

Motivated by this objective, a deep-learning model is proposed to combine the automatic
feature-extraction and fault-classification methods [36,37] in which deep neural networks (DNNs)
have recently achieved cutting-edge performance in pattern-recognition tasks such as computer vision,
speech recognition, text classification, and many other domains [38–40]. More recently, deep-learning
methods have been applied to PRPD classification. DNNs [41] and convolutional neural networks
(CNNs) [42] are proposed to improve the recognition accuracy of PRPDs. CNNs allow the systems
to learn the local response from temporal or spatial data; however, they lack the ability to learn the
sequential correlations of the inputs. Recurrent neural networks (RNNs) with a long short-term
memory (LSTM) have advantages over the CNN because the models can effectively process the
sequential data [43]. However, the sequential characteristic of RNN-based models does not assist
parallelism, which results in the significant training processing time when the input sequence is
long [44].

To overcome the aforementioned drawbacks, we propose new classification methods to classify
faults in a GIS using PRPDs, namely, self-attention-based neural network for PRPDs (SANPD) and
LSTM SANPD (LSANPD) methods. Self-attention takes advantage of parallel computation and
enables the capture of the interactions among inputs [45] because the self-attention function can
capture the global dependence of the entire input without requiring recurrence or convolution
components [44]. In LSANPD, the combination of LSTM and the self-attention mechanism further
improves the performance, because the self-attention mechanism can address the lack of simultaneous
computation and focus on the important information from the LSTM inputs.

The proposed SANPD and LSANPD methods employ multi-head self-attention, feed-forward
networks, and a classification layer. The multi-head self-attention is used to jointly attend to the
information from different representation subspaces that correspond to the different phase sets of
PRPDs. The feed-forward networks overcome the lack of self-attention, which is a linear model,
because of the composite mapping of the nonlinear processing units [44]. Finally, the classification
layer is employed to detect faults in the GIS. The main contributions of this paper are summarized
as follows:

• Self-attention is introduced for the first time to classify the PRPDs in a GIS. Self-attention offers
the advantages of classification accuracy and computational efficiency compared with DNNs,
CNNs, and RNNs [41,42,46] because it can capture the relevance among the phases of the PRPDs
by considering their entire interaction sequence input regardless of distance [44].
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• The LSTM self-attention method is also considered. In the LSTM self-attention model,
the self-attention mechanism assists the LSTM to simultaneously compute and focus on the
important information from the data inputs, which improve the classification accuracy of the
PRPD classification relative to that of the LSTM RNN [46].

• The experimental results reveal that our models outperform the previous RNN model [46] in
terms of the PRPD classification accuracy with a lower complexity because the self-attention
mechanism recognizes the different relevance of the information among the inputs and takes
advantage of simultaneous computation [45].

The remainder of this paper is organized as follows. We discuss the PRPDs and on-site noise
measurements in a GIS in Section 2. Section 3 describes the proposed self-attention and LSTM
self-attention models. The performance evaluation is presented in Section 4, and Section 5 concludes
the study while also discussing future research topics.

2. Preliminaries

In this section, we discuss the experimental PRPDs of a GIS and on-site noise-measurement data
in which UHF sensors are used.

2.1. PRPD Measurements

For performance comparison with the previous result, we obtained the PRPD data using an
external UHF sensor in a 345-kV GIS chamber where a cavity-backed patch antenna as an external
UHF sensor and an amplifier with a gain of 45 dB and a signal bandwidth that ranged from 500 MHz
to 1.5 GHz was used for the PRPDs [46].

Four types of faults are possible (corona, floating, particle, and void PDs) in which artificial cells
were used to simulate the possible defects in a GIS [46]. Figure 1 shows artificial cells that model four
types of faults in GIS such as corona, floating, particle, and void [46,47]. The artificial cell for corona to
simulate protrusion of an electrode through a needle with a tip radius of 10 µm and a diameter of 1 mm,
while the distance between the needle and the ground electrode was 10 mm, and the test voltage was
11 kV, is shown in Figure 1a. As shown in Figure 1b, the cell of a floating electrode was fabricated (with
distances of 10 mm between the high-voltage [HV] and middle electrodes and 1 mm between the middle
and ground electrodes) to simulate an unconnected cell, where the test voltage was 10 kV. To simulate
the free particle discharge, as shown in Figure 1c, a small sphere with a diameter of 1 mm was placed on
a concave ground electrode and the HV electrode was attached to a 45 mm diameter sphere (fixed at
10 mm from the ground electrode), where the test voltage was 10 kV. The small gap between the epoxy
disc and the upper electrode (as shown in Figure 1d) was made to simulate the artificial void defect,
where the test voltage was 8 kV. All artificial cells were filled with 0.2 MPa of SF6 gas.

(a) (b) (c) (d)

Figure 1. Artificial cells for the simulated (a) corona, (b) floating, (c) void, and (d) particle partial
discharges (PDs).

Figure 2 shows the PRPDs with 3600 power cycles and Figure 3 shows the 2D representation of
PRPDs, where the faults for 3600 power cycles are accumulated to generate the 2D PRPD patterns, and
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the number of PD events per 3600 power cycles is illustrated by the different colors. Corona signals
were present at high frequencies from 255 to 315 degrees, slightly around 45 degrees, and close to zero.
The floating signal showed an extremely condensed density of signals with a period of 90 degrees,
which started from zero. Void signal appeared similar to corona faults that were found in the regions
around 45–90 degrees or smaller at around 270 degrees. The particle signal contained a number of
signals that coincidentally appeared even at different intensity ranges.

(a) (b)

(c) (d)

Figure 2. Phase-resolved PD (PRPD) fault types in the GIS: (a) corona, (b) floating, (c) void, and (d)
particle faults.

(a) (b)

(c) (d)

Figure 3. Two-dimensional representation of PRPDs in the gas-insulated switchgear (GIS): (a) corona,
(b) floating, (c) void, and (d) particle faults.
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The PRPD signal at the mth power cycle can be defined as

xm = [xm
1 , xm

2 , ..., xm
N ] , (1)

where N = 128 is the number of data points in a power cycle.

2.2. On-Site Noise Measurements

External noise can vary with time, location, GIS, and antenna design. The noise was measured for
267 min using a PD measurement system in an on-site field in Korea. In Figure 4a, a block diagram of
the PD measurement system for the 154 kV GIS is shown. The PD measurement system consisted of an
external UHF sensor, an amplifier, and a data acquisition system (DAS). The external UHF sensor was
located outside the spacer, as shown in Figure 4b. The cavity-backed patch antenna was used for the
external UHF sensor in the PD measurement system. The amplifier had a gain of 45 dB and a signal
bandwidth from 500 MHz to 1.5 GHz. The measured reflection coefficient of the external UHF sensor
using an E5017C network analyzer is shown in Figure 5. The measured reflection coefficient was less
than −6 dB in the target frequency range from 500 MHz to 1.5 GHz.

Figure 6 shows an example of the on-site noise measurement. Here, noise signals existed in all
phase regions of the specific power cycles, and the amplitudes of the noise signals were smaller than
those of the PRPDs in the GIS.

(a)

(b)

Figure 4. (a) A block diagram of PD measurement and (b) installation of ultra-high-frequency
(UHF) sensors.



Energies 2020, 13, 2102 6 of 16

Figure 5. Measured reflection coefficient of the external UHF sensor.

Figure 6. Example of noise in on-site measurements.

3. Proposed Methods

In this section, we describe the architecture of the proposed two methods, namely, SANPD
and LSANPD, to detect the PRPDs in the GIS, as shown in Figure 7. In SANPD, PRPD is the input
and self-attention blocks (SABs) are utilized to learn the global dependence between the input and
output and the relevance among items. Then, a multiple self-attention network is used to capture the
high-level features for PRPDs of the faults. Finally, a classification layer is adopted to classify multiple
faults in the GIS and utilize the cross-entropy loss. In LSANPD, the LSTM architecture is added in
the prior SABs, and the remaining components are the same as those in SANPD. LSTM is good at
directly learning the temporal dependence of the PRPD signals [46]. However, it is not capable of
learning the model alignment between the input and output sequences, which is an essential aspect in
structured output tasks [48]. In other words, LSTM does not determine if some specific parts of the
input sequence are important to improve the model performance, whereas self-attention can recognize
the important information between the input and output sequences. Therefore, LSANPD is proposed
to improve the LSTM performance in fault classification.
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(a)

(b)

Figure 7. Architecture of the proposed methods. (a) Self-attention-based neural network for PRPDs
(SANPD). (b) Long short-term memory SANPD (LSANPD).

3.1. Proposed SANPD

Before the SABs, we introduce a concise presentation of the attention mechanism. The mechanism
can choose the critical information from a large amount of information to implement the current
necessary task target. In this attention mechanism, the different weights are used to adjust the effects
of the distinctive parts on the target. [49,50]. In other words, the attention mechanism is able to capture
important interactions among elements of an input sequential data to improve the performance of the
machine learning model.

We consider a given input sequence consisting of a vector representation of query q ∈ 1×dq

and sequence X = [xT
1 , xT

2 , . . . , xT
n ] ∈ Rn×de , where q is any representative vector created to calculate

dependencies (relative to input items), dq is a dimension of q, de = N and N is the number of data
points in a power cycle. To measure the attention of xi and q or the relevance/dependence of the
relationship between xi and q, the attention mechanism proposes compatibility function f (xi, q) as
an alignment score [51,52]. The output vector for query q is denoted as s ∈ R1×de , and calculated
as follows:

s =
n

∑
i=1

xisoftmax(a), (2)

where fsoftmax(a) =
exp(ai)

n
∑

j=1
exp(aj)

, a = [a1, a2, ..., an], and ai = f (xi, q) is an i-th alignment score. In this

study, we use a dot-product attention mechanism for the compatibility function as [52]

f (xi, q) =
〈

xiW(h1), qW(h2)
〉

, (3)

where W(h1) ∈ Rde×di , W(h2) ∈ Rdq×di are learnable parameters and 〈·, ·〉 denotes the inner product,
and di denotes the number of samples in the input data.

Self-attention mechanism is considered as a special case of the attention mechanism where query
q is captured from the input itself. Each SAB is composed of a multi-head self-attention sub-block and
a feed-forward network sub-block, as shown in Figure 8. A residual connection is employed around
each of the two sub-blocks [53].

Figure 8. Self-attention blocks (SAB) architecture.
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In the multi-head self-attention sub-block, the attention function of this mechanism has three
input arguments, namely, queries Q ∈ RM×dk , keys K ∈ RM×dk , and values V ∈ RM×dv , where M is
the number of power cycles, dk is the dimension of matrix Q and K and dv is the dimension of matrix
V [45]. The output, i.e., Attention(Q,K,V) ∈ RM×dv , is obtained as follows:

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V, (4)

where T is transpose. In (4), the self-attention mechanism uses a scaled dot-product function to
compute the relationship between each query and the key, divides each relationship by

√
dk, and

adopts a softmax function to obtain the weighted sum of the values [45].
To improve the computational effectiveness and take advantage of parallel computation, the

multi-head attention is implemented by applying the attention for h times on the projected (Q, K, V)

matrices of the dimension [45]. The multi-head attention is calculated as

MultiHead(Q,K,V)=Concat (H1, · · · ,Hh)WO, (5)

where Concat (·, ·) is defined as a merge of matrices {H1, · · · ,Hh}, and WO ∈ Rdk×dv is the weight
matrix for multi-head attention. In (5), Hi is defined as Attention(QWQ

i ,KWK
i ,VWV

i ), where WQ
i ∈

Rdk×(dk/h), WK
i ∈ Rdk×(dk/h), WV

i ∈ Rdv×(dk/h) are the parameter matrices for projections.

E =MultiHead(Q,K,V) + X. (6)

In the feed-forward network sub-block, a linear transformation using a rectified linear unit (ReLU)
activation function [54] defined as fReLU(u) = max(0, u), where u is the argument of the function,
is applied and a residual connection was used to obtain the low-layer information. The output of this
sub-block is defined as

F = (ReLU(EW1 + B1)W2 + B2) + E, (7)

where W1 ∈ Rdv×d1 , B1 ∈ RM×d1 , W2 ∈ Rd1×d2 and B2 ∈ RM×d2 are the learnable parameters, and d1

and d2 are the number of neuron units of the first and output layers of feed-forward network sub-block,
respectively. Thus, the output of SABs, which includes the multi-head self-attention and feed-forward
network sub-blocks, is given as

F =SAB(X). (8)

To capture the different types of features [55], the self-attention network with multiple SABs using
F in (8) is expressed as

F(b)=SAB(F(b−1)), (9)

where b is the number of SABs and the first SAB is defined as F(1)= F.
The classification block is applied to detect the faults in the GIS, as shown in Figure 9. A pooling

layer reduces the parameters of the network and avoids overfitting. As the input size obtained by
the output of the SABs has a size of M × d2, maximum pooling is done according to the column
(i.e., maximizing the elements in the same column), and the pooling layer output is a 1× d2 vector and
given as

r = Maxpooling(F(b)) = max
{

f(b)i,j ; j = 1, ...M
}

, (10)

where i = 1, ..., d2, and f(b)i,j is the (i, j) th element of matrix F(b).
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Figure 9. Architecture of the classification block.

The output of the maximum pooling is then fed into a single-layer neuron network. In the neuron
network, a linear transformation using the ReLU activation function is then applied to create a fault
representation vector with d3 dimensions, which is defined as

d= ReLU(rW3 + b3), (11)

where W3 ∈ Rd2×d3 is the weighted matrix and b3 ∈ R1×d3 is the bias vector, and d3 is the number of
neuron units of the layer.

Finally, the characteristic representation vector is derived in a softmax layer as [56]

ẑ = [z1, . . . , zC]
T= softmax(dW4+b4), (12)

where W4 ∈ Rd3×dc is the weighted matrix, b4 ∈ R1×dc is the bias vector, dc is the dimension of the C
classes, and zi is the predicted fault representing the i-th category (where i ∈ C) in the C classes.

3.2. Proposed LSANPD

In LSANPD, we propose a combination of LSTM and self-attention using stacked LSTM layers
and multi-head self-attention sub-block, as shown in Figure 7b. Input sequence {x1, x2, ..., xM} in (1) is
fed into the LSTM block, and {x̃1, x̃2, ..., x̃M} can be obtained using the LSTM mechanism, as shown in
Figure 10. Then, all vector outputs are linked together to form the X̃ =

[
x̃T

1 , x̃T
2 , · · · , x̃T

M
]

matrix as the
SAB input. The next steps are performed on the SAB and classification block, similar to those in the
SANPD model.

Figure 10. LSTM block architecture.

3.3. Training

The SANPD and LSANPD parameters are learned through training dataset L to minimize the loss
function in the classification block. The parameter set includes hyper parameters, weight parameters,
and bias parameters. In the proposed SANPD and LSANPD, the cross-entropy loss function is used.
Thus, the loss function of the lth training data is formulated as follows:

Loss(v(l), z(l)) = − log(z(l)), (13)
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where v(l) = [v1, . . . , vC]
T is the label that corresponds to the lth training data in which vi = 1 if the

true classification is fault type i. The other cases are vc = 0 for c 6= i, and z(l) = zi if the predicted
classification of the lth training data is a type-i fault. The target of the training process is to find the
suitable parameters that minimize the cost function of the entry training dataset:

I(Θ) =
1
|L| ∑l∈L

Loss(v(l), z(l)), (14)

where Θ represents all learnable parameters and |·| is the number of elements in a set.
To minimize the loss function, many variants of the gradient-descent method have been studied

in the literature, such as AdaGrad, AdaDelta, Adam, and Nestrove momentum, into the ADAM
optimizer [57–60]. These optimizers adaptively change the learning rate to properly minimize the loss
function. We select the Nestrove momentum in the ADAM optimizer in our experiments.

4. Performance Evaluation

This section presents a performance analysis of the proposed models using PRPD data from PD
experiments and noise measurements. The performance of the proposed models is compared to that of
the recently developed RNN model [46], which has achieved significant performance improvement
over existing machine-learning methods and other techniques. For comparison purposes, we consider
this model as the baseline system.

For PRPD experiments, four types of faults, such as corona, floating, particle, and void faults
are considered. Table 1 shows the numbers of experiments for each fault type and noise, where one
experiment for PRPD and noise measurements includes 3600 power cycles and the total number of
experiments is defined as K = 735.

Table 1. Experimental dataset.

Fault Types Corona Floating Particle Void Noise

Number of experiments 94 35 66 242 298

Figure 11 shows the data-augmentation process. The data that have been used in this study
include K = 735 experiments of PRPD faults. Each experiment is performed at 3600 power cycles.
To overcome the issue of overfitting during the training process, we applied a data-argumentation
technique to increase the number of training samples [61]. We divided every experiment into M = 60
equally small groups containing 60 power cycles (3600 in total). Afterward, the total number of data
samples became KM = 44,100.

We split the dataset into three parts: training, validation, and test sets. We used 81%, 9%, and 10%
of the data for these three sets, respectively. Thus, we have a total of 35,721 training, 3969 validation,
and 4410 test samples.

Multiple experiments with different numbers of attention heads and SABs were conducted
using the validation data. With different parameters to tune our model, extensive experiments were
conducted to obtain the other optimized hyperparameters such as the batch size, number of epochs,
and learning rate. The model parameters for the proposed architectures are listed in Tables 2 and 3,
where the output shapes, activation functions, and numbers of trainable parameters are presented.
During our experiments, we performed 20 trials to mitigate the effects of random initialization of
the neural network and then the results were averaged to confirm the robustness of our proposed
model. During the training process, the optimization step was carried out according to small batches
of 512 samples, and the learning rate was 0.001. The model was implemented using Keras [62] with
TensorFlow [63], which is a deep learning framework of Google.
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Figure 11. Data augmentation of the PRPD data.

Table 2. Details of proposed SANPD.

Layer Name Output Activation Number
Dimension Function of Parameters

Input Layer 60× 128 - 0
i-th Self-attention 60× 16 - 6144
(i ∈ {1, ..., 8})
Concatenate 60× 128 - 0

Add 60× 128 - 0
Dense Layer 1 60× 128 ReLU 16,512
Dense Layer 2 60× 128 - 16,512

Add 60× 128 - 0
Max pooling 1× 128 - 0

Dense Layer 3 1× 64 ReLU 8256
Dense Layer 4 1× 5 Softmax 325

Table 3. Details of proposed LSANPD.

Layer Name Output Activation Number
Dimension Function of Parameters

Input Layer 60× 128 - 0
LSTM 60× 128 - 131,584

i-th Self-attention 60× 16 - 6144
(i ∈ {1, ..., 8})
Concatenate 60× 128 - 0

Add 60× 128 - 0
Dense Layer 1 60× 128 ReLU 16,512
Dense Layer 2 60× 128 - 16,512

Add 60× 128 - 0
Max pooling 1× 128 - 0

Dense Layer 3 1× 64 ReLU 8256
Dense Layer 4 1× 5 Softmax 325

The list in Table 4 illustrates the comparison between the SANPD, LSANPD, and LSTM RNN
methods in [46]. The overall accuracy and classification accuracy in each fault of the SANPD
and LSANPD outperform that of the RNN because the SABs are able to capture the relevance
among the PRPD phases by considering their entire interaction sequence input regardless of the
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distance. Moreover, the LSANPD improves the performance compared to the LSTM RNN owing
to the self-attention mechanism that assists the LSTM in simultaneously computing and focusing
on the important information of the sequence input, where the accuracy of the LSTM RNN is
quite high compared with traditional methods such as the linear SVM and artificial neural network
(Table 2 [46]). In addition, the performance of the proposed SANPD and LSANPD is comparably
obtained. Performance accuracy for each fault is also presented in Table 4. It can be observed that most
models (for corona, void, and noise data) managed to perform efficiently. Furthermore, it was difficult
to classify floating and partial faults because the amount of data of the floating and partial faults was
smaller than that of the other faults, as shown in Table 1.

Table 4. Performance comparisons in terms of accuracy.

Fault Types Overall Corona Floating Particle Void Noise

LSTM RNN [46] 92.5 94.8 80.0 69.9 96.7 94.5
SANPD 93.8 95.0 81.4 85.5 96.7 94.2

LSANPD 94.0 95.4 81.9 81.8 97.7 94.5

Table 5 lists the comparison of the models in terms of the number of parameters and computation
training and test times. SANPD demonstrates the lowest number of parameters of approximately
90,000, whereas the number of LSTM RNN parameters is approximately 264,000, which is 2.9 times
larger. The parameters of the LSANPD method is approximately 222,000, which is 1.2 times lower
than that of the LSTM RNN. The training and test times of SANPD are faster than those of RNN by
approximately 1.8 and 1.03 times, respectively. They are respectively 2.3 and 1.3 times lower than those
of LSANPD. In terms of complexity, SANPD is better than LSANPD and LSTM RNN because SANPD
has a self-attention mechanism parallel architecture without a recurrent or convolution module in the
PRPD phase while LSANPD has an LSTM structure, which increases the model complexity.

Table 5. Comparison of complexity.

Model Number Training Time Test Time
of Parameters (s) (s)

LSTM RNN [46] 264 k 667 217
SANPD 90 k 420 210

LSANPD 222 k 974 284

In terms of accuracy performance, the proposed SANPD and LSANPD are superior to the existing
LSTM RNN model [46]. Although SANPD exhibits slightly lower accuracy performance than LSANPD
by 0.2 times, it is significantly better than the LSANPD and LSTM RNN in terms of complexity.

5. Conclusions

Deep learning is a fast-evolving technique that has many implications in many different
applications. However, the performance of the existing deep learning approaches is not further
improved for the sequential PRPD data because the models are not capable of simultaneous
computation and learning the important relevance of inputs. To deal with the problems,
a state-of-the-art self-attention-based neural-network technique is investigated to classify faults in the
GIS. In the proposed model, the multi-head self-attention is implemented to learn the interactions of
the PD signals by focusing on the important information of the PRPD sequence input and improve
computation and performance using parallelism. The experimental results show that the SANPD
outperforms the previous LSTM RNN model in terms of accuracy and complexity. SANPD has slightly
lower accuracy than LSANPD. However, it reduces the complexity compared with LSANPD because it
takes advantage of parallel computation. Therefore, the proposed method can be successfully applied
to fault diagnosis in GISs.
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For future work, we will install the PD diagnosis systems in power grids. The proposed scheme
will be further verified to improve the robustness at various noise conditions (depending on time,
location, GIS, and antenna design) and detect various faults using experimental data, including corona
discharges, floating discharges, particle discharges, and void discharges at three/four different levels
of voltage.
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