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Abstract: This research focused on real-time optimization control to improve the fuel consumption
of power-split hybrid electric vehicles. Particle swarm optimization (PSO) was implemented to
reduce fuel consumption for real-time optimization control. The engine torque was design-variable
to manage the energy distribution of dual energy sources. The AHS II power-split hybrid electric
system was used as the powertrain system. The hybrid electric vehicle model was built using
Matlab/Simulink. The simulation was performed according to US FTP-75 regulations. The PSO design
objective was to minimize the equivalent fuel rate with the driving system still meeting the dynamic
performance requirements. Through dynamic vehicle simulation and PSO, the required torque value
for the whole drivetrain system and corresponding high-efficiency engine operating point can be
found. With that, the two motor/generators (M/Gs) supplemented the rest required torques. The
composite fuel economy of the PSO algorithm was 46.8 mpg, which is a 9.4% improvement over the
base control model. The PSO control strategy could quickly converge and that feature makes PSO a
good fit to be used in real-time control applications.
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1. Introduction

Since the industrial era, the demand for fossil fuels has increased and the burning of fossil fuels has
led to an increase in global carbon dioxide emissions, which has also increased global warming. The
National Oceanic and Atmospheric Administration (NOAA) conducted a network sampling of carbon
dioxide concentration based on 40 regions around the world. The survey found that since 1979, the
global atmospheric carbon dioxide concentration has risen sharply. With a carbon dioxide concentration
of 336 ppm in 1979, the global atmospheric carbon dioxide concentration has reached 414 ppm in
March 2020. According to Taiwan’s CO2 emissions survey by the Environmental Protection Agency
of the Ministry of Administration, the energy sector’s CO2 emissions accounted for approximately
10.5% of total fuel combustion emissions, industry accounted for 47.8%, transportation accounted
for 14.6%, services accounted for 13.4%, residential emissions accounted for 12.6%, and agriculture
accounted for 1.1% [1]. It is clear that transportation emissions are the second-largest source, after
industrial emissions.

Due to carbon dioxide emissions, major car manufacturers currently commit to the development
of new energy to replace gasoline, including electric energy, solar energy, biomass energy, etc. Many
automobile manufacturers are optimistic about electric energy since it can be practically used in mass
production. With low fuel consumption and exhaust emissions, hybrid electric vehicles (HEVs) have
been attracting widespread public attention in recent years. Hendrickson et al. [2] presented the GM
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two-mode, front-wheel-drive hybrid powertrain, detailing the mechanical structure and operating
mode of this powertrain system. Meisel et al. [3] presented the power distribution of the hybrid
transmission in different modes and four fixed-gear ratios in detail. They also compared the differences
between the Toyota THS-II gearbox and the GM two-mode gearbox, aiming at energy loss and engine
fuel consumption. The advantages of the GM two-mode power system were clearly explained. For
the hybrid electric vehicle architecture, the control strategy of the vehicle is critical and is mainly to
allocate energy and improve energy efficiency. Many energy management strategies for hybrid electric
vehicles have been proposed. They can be divided into two main types: those with 1 a rule-based
strategy, and those with 2 an optimization strategy. Torres et al. [4] focused on rule-based controls. The
benefits of these controls were rapid rule design and easy implementation. Schouten et al. [5] applied
fuzzy logic in HEV control strategies. The rules were judged based on the accelerator and brake pedal
signals, battery state of charge (SOC), and motor speed. This optimization method heavily relied on
the experience and intuition of the engineers.

The optimization strategy for vehicle fuel economy simulation can be categorized into two
areas, global optimization and real-time local optimization. The global optimization algorithm
requires completing the whole driving cycle in order to obtain the best fuel economy. This makes it
difficult to apply on real road scenarios. Genetic algorithms (GAs) are one of the global optimization
algorithms. Montazeri et al. [6] applied GA optimization in parallel HEVs, where the engine torque and
battery SOC were design variables with the objective of minimizing fuel consumption and emissions.
Dynamic programming (DP) is another typical global optimization algorithm. Wu et al. [7] presented
the application of DP on electric buses and used DP to explore energy management strategies for
range-extended electric buses (REEBs). Zheng et al. [8] applied stochastic DP in plug-in hybrid vehicles
to achieve a global optimization. Wang et al. [9] implemented the DP algorithm in a plug-in HEV
(PHEV) and showed a 20% improvement in fuel consumption. DP analyzes the whole driving cycle,
searching for minimum fuel consumption to get the global optimum. It provides an improvement for
fuel economy; however, it takes a lot of time for the whole simulation and process. An alternative way
is to utilize the optimum patterns obtained from pre-calculated DP, such as rule-based (RB) control. RB
can be adapted for real-time applications; however, the fuel economy of RB might not be as good as
DP’s due to the instant change in actual scenarios.

For real-time applications, optimized fuel consumption needs to be carried out quickly for each
time step. Local optimization can be suitable for the applications. The equivalent consumption
minimization strategy (ECMS) does not require long calculation and is one control algorithm fitting
for real-time fuel consumption optimization. Paganelli et al. [10] presented the application of the
equivalent consumption minimization strategy (ECMS) in parallel HEVs. They managed the power
distribution to minimize fuel consumption, which includes the actual fuel consumed by the engine
and an equivalent fuel converted from the electrical energy consumed by motors. Their simulation
maintained the battery SOC in a reasonable range by applying a penalty function to ensure battery life.
Particle swarm optimization (PSO) is another real-time control algorithm for vehicle fuel consumption.
Chen et al. [11] discussed the application of particle swarm optimization (PSO) on HEVs. They
optimized the engine output power as an energy management strategy. Wu et al. [12] applied PSO
to plug-in HEVs. The main goal of their study was to optimize the control strategy to achieve
the best fuel economy. For charge depleting (CD) mode, restrictions were imposed to optimize
the PSO. Abido et al. [13] applied PSO to the energy flow control problem of buses. The main
goal was to minimize fuel consumption and improve voltage stability. Wang et al. [14] applied a
particle-swarm-optimization-based nonlinear model predictive control strategy on a series-parallel
hybrid electric bus to optimize the fuel consumption. Chen et al. [15] discussed the application of PSO
on plug-in HEVs (PHEVs). In terms of vehicle speed, fuzzy logic judgments were added. Then, the
PSO determined the upper and lower limits of the required engine power to obtain the optimal result.
Chen et al. [16] implemented improved particle swarm optimization (IPSO) in HEVs. The difference
from the original PSO was mainly to add the value of a poor function. This function would cause the
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PSO particles to speed-up to find the best solution. Beside ECMS and PSO, there are other control
algorithms to achieve better fuel economy. Zheng et al. [17] applied Pontryagin’s minimum principle
to optimize a parallel plug-in hybrid electric bus. Feng et al. [18] combined an artificial neural network
model and a fuzzy-logic controller to optimize the fuel consumption of a hybrid electric mining truck.
Comparing the differences between PSO and genetic algorithms (GAs), GAs remove the worst position
at one time, and PSO keeps the worst particles, judging the best solution according to the position
of each particle [18]. In addition, GAs mainly process the replication, mating, and mutation, which
requires a large amount of calculation [19]. Relatively speaking, since the information transmission
between PSO particles and the interaction mechanism between particles is relatively simple in PSO,
the amount of calculation is lower and the delivery time can be shortened. With the advantages of
quick convergence, the PSO algorithm is suitable for real-time control applications for vehicle fuel
consumption optimization. This research applied PSO for real-time optimization control.

In 2018, global battery electric vehicle (BEV) and HEV sales exceeded 5.1 million, a significant
increase of 63% from the previous year. BEVs and HEVs will become the first choice for the public
in the future. The two-mode hybrid (TMH) system was the power system applied in this research.
A basic rule-based control was implemented as the base model with an initial energy management
strategy, and the simulation result was compared to the manufacturer data. Then, the PSO control
strategy was added to optimize fuel consumption and explore the reasons for improvement. This
paper investigated a TMH system that had power-split hybrid functionality.

2. Modeling

In this research, a simulation model was created with Matlab/Simulink that included a vehicle,
TMH transmission system, internal combustion engine (ICE), motor/generators (M/Gs), battery, and
controller, as shown in Figure 1. With the United States FTP-75 (EPA Federal Test Procedure) of urban
and highway driving cycles, the vehicle model could estimate the torque and power required for
driving. The controller module (Controller) determined the transmission mode switching and the
optimal output torques of the engine and M/Gs. The transmission module simulated the torques and
speeds of the two motor/generators. The battery module would simulate the battery’s state of charge
(SOC) and battery charge and discharge status. These modules are presented in the following sections.
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Figure 1. Simulink model of two-mode power-split hybrid system.

2.1. Vehicle Model

U.S. FTP-75 (EPA Federal Test Procedure) was employed in this model. The vehicle model
estimated the required driving torque according to the vehicle speed from the driving cycles. The
driving resistance forces included aerodynamic resistance, rolling resistance, and grading resistance.

The FTP-75 driving cycles include urban and highway sections. The total distance traveled in the
urban cycle is 17.77 km, the total time is 1874 s, the average speed is 34.1 km/h, and the highest speed
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is 91.2 km/h, as shown in Figure 2. The total distance of the highway cycle is 16.5 km, the total time is
765 s, the average speed is 77.7 km/h, and the maximum speed is 96.4 km/h, as shown in Figure 3.Energies 2019, 12, x FOR PEER REVIEW 4 of 18 
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Figure 2. US EPA FTP75 urban driving cycle.
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Figure 3. US EPA FTP75 highway driving cycle.

2.2. Transmission Model

In this research, the two-mode hybrid transmission, 2MT70, was implemented as the hybrid
electric powertrain system. The entire powertrain was composed of several main components, as shown
in Figure 4, which included a simple planetary gear set, a compound planetary gear set, four sets of
clutches, two electric motors/generators, an IC engine, and a battery [20].
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2.3. Internal Combustion Engine Model

The internal combustion engine (ICE) module mainly cooperated with the brake-specific fuel
consumption (BSFC) lookup table according to the engine speed and torque to find the corresponding
fuel rate. The total fuel consumption of the driving cycle was obtained through integration. A V-6
3.6-L engine efficiency chart is shown in Figure 5.
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2.4. Electric Motor/Generator Model

The electric motor/generator (M/G) modules obtain the operating efficiency of the electric motor
through a three-dimensional lookup table based on the current speed and torque. Two 60 kW permanent
magnet AC motors were constructed. The efficiency diagram is shown in Figure 6. The power of the
M/G was calculated as Equation (1).

PMG = ωMGTMGη
k
MG (1)

PMG, ωMG, and TMG are the power, speed, and torque of the electric motor/generator, respectively. ηMG
represented the efficiency of M/G. If the values of the torque and the speed were positive or negative at
the same time, the M/G was consuming power and performing as an electric motor. If the values of
the speed and torque were of the opposite sign, the M/G was charging and running as a generator. k
represents the energy path. If M/G operated as an electric motor, k was −1. If it operated as a generator,
k was +1.
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2.5. Battery Model

The electric power required by the M/Gs was provided by the battery, and the total power of the
battery was estimated through the motor’s power and efficiency, as presented in Equation (2).

Pbatt = TMG1ωMG1η
k
MG1η

k
c1 + TMG2ωMG2η

k
MG2η

k
c2 (2)

Pbatt is the power of the battery, ηc is the efficiency of the electric converter, TMG is the M/G torque,
ωMG is the speed of the M/G, ηMG is the efficiency of the M/G, and k indicates the energy path. k = −1
indicates that the battery was discharged, and k = 1 indicates that the battery was charged.

The battery module was composed as an equivalent circuit, including open circuit voltage and a
battery pack, as shown in Figure 7. Ibatt represents the battery current, and Pbatt is the battery output or
input power.
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2.6. Controller Model 

2.6.1. Rule-Based Controller 

The controller module had three main functions: the first one was the control of switching mode, 

which decided the timing of switching between the first and the second mode according to the 

driving cycle; the second one was based on the driving condition and battery SOC to determine the 

controlled engine speed and engine torque according to the rules established in the controller; the 

third one was engine state control logic. To achieve fuel saving, the engine would be turned off when 

it was not required to provide driving power. 

2.6.2. PSO Controller 

This controller module also had three main functions: the first one was to decide the time of 

switching, which was the same as the rule-based controller; the second one was to determine the 

engine speed, which was based on the drive resistance and battery SOC, and the engine torque, which 

Figure 7. Diagram of battery equivalent circuit.

The relationship between battery SOC and current Ibatt is as follows.

S
.

OC = −
Ibatt

Qmax
(3)

Qmax is the ampere-hour capacity of the battery at the current rate Ibatt. The battery current, open circuit
voltage, and internal resistance would vary according to the battery power. The relationship between
battery output or input power and current is presented as follows.

Pbatt = VOCIbatt − I2
battRbatt (4)

Ibatt = −
VOC −

√
V2

OC − 4PbattRbatt

2Rbatt
(5)

S
.

OC = −
VOC −

√
V2

OC − 4
(
TMG1ωMG1ηk

MG1η
k
c1 + TMG2ωMG2ηk

MG2η
k
c2

)
Rbatt

2RbattQmax
(6)

where Voc is the battery open circuit voltage and Rbatt is the battery’s internal resistance.

2.6. Controller Model

2.6.1. Rule-Based Controller

The controller module had three main functions: the first one was the control of switching mode,
which decided the timing of switching between the first and the second mode according to the driving
cycle; the second one was based on the driving condition and battery SOC to determine the controlled
engine speed and engine torque according to the rules established in the controller; the third one was
engine state control logic. To achieve fuel saving, the engine would be turned off when it was not
required to provide driving power.
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2.6.2. PSO Controller

This controller module also had three main functions: the first one was to decide the time of
switching, which was the same as the rule-based controller; the second one was to determine the
engine speed, which was based on the drive resistance and battery SOC, and the engine torque, which
was estimated by the particle swarm algorithm; the third one was the engine state control, which was
determined by the PSO controller. The only exception was if the vehicle traveled at very low speed
and the engine was turned off—then the rule-based control was used.

3. Energy Management Optimization

3.1. Particle Swarm Algorithm

Particle swarm optimization (PSO) is a group-based optimization search method [21,22]. The
advantage is that it has a fast convergence speed and fewer parameter settings. The swarm movement
of birds was simulated. Birds usually maintain a specific formation when they travel as a group, and
individuals will maintain a certain distance from each other. The search technology of PSO is mainly
to simulate the social behavior of birds foraging. When birds are searching for food, individuals will
understand the relationship between themselves and food. At the same time, the closest individual
to food in the flock is also observed. So, when searching for food, the best path can be found based
on these two points. Assume that food is considered as the global best solution in the function and
the distance between each individual in the flock and the food is used as the objective degree of the
function. Then, the process of each individual in the flock seeking food can be the process to search for
the optimized solution. This concept is the foundational idea of the PSO algorithm.

The detailed calculation steps of the PSO algorithm are as follows: xi
t and vi

t are defined as the
position and flight speed of the i-th particle in the particle group at time t, respectively. The model of
the PSO algorithm can be divided into speed update function and position update function as follows.

The main process steps of PSO are:

1. Initialize the position and velocity of each particle using random numbers.
2. Use the objective function to calculate the objective value for each particle.
3. Compare the current objective value with the best position of the particle, Pbest. If the currently

searched objective value is better than Pbest, the new objective value and position will be applied
to update the value of Pbest.

4. Compare the currently searched objective value with the best value in the group, gbest. If the
currently searched value is better than gbest, use the new value and position of the particle to
update gbest.

5. Change the speed and position of the particles according to Equations (7) and (8).

vt
i = ω ∗ vt−1

i + c1 ∗ rand() ∗
(
pi − xt−1

i

)
+ c2 ∗ rand() ∗

(
gi − xt−1

i

)
(7)

xt
i = xt−1

i + vt
i (8)

where xi
t is the position of the i-th particle at time t, vi

t is the speed of the i-th particle at time t, pi
is the best position that the i-th particle has traveled to, gi is the best position that all particles have
traveled to, c1 is the weight of one’s own experience to make particles closer to the best solution of the
individual, c2 is the weight of the group’s experience to make the particles closer to the best solution of
the group, ω is the inertia weight, which affects the range and speed of convergence, and rand() is a
random value used to maintain the diversity of group movement directions.

3.2. PSO Algorithm Applied to Hybrid Electric Power System

This research implemented PSO to find the minimum instantaneous fuel consumption at each
driving moment. The process of the PSO algorithm is described as follows.
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1. Initialization: This research applied engine torque as the initial particle position. The initial
flying speed was randomly generated. To avoid exceeding the operational range of engine torque
during the algorithm search process, the constrained equations were included in the simulation.
The engine torque constrained condition is shown in Equation (9). Since the PSO algorithm did
not have a practical mechanism to control the speed of the particles, the constrained condition
was set for the speed Equation (10). During the particle search process, the battery SOC must
be ensured to avoid over-charging and over-discharging. The constrained equation for the SOC
upper and lower limits is shown in Equation (11).

TE,min < TE < TE,max (9)

vt
i,min < vt

i < vt
i,max (10)

SOCt
i,min < SOCt

i < SOCt
i,max (11)

where TE is the engine torque, vi is the particle speed, and SOCi
t is the battery state of charge at

time t, TE,min is the lower limit of engine torque, TE,max is the upper limit of engine torque, vi,min is
the lower limit of particle speed, vi,max is the upper limit of particle speed, SOCt

i,min is the lower
limit of the SOC, and SOCt

i,max is the upper limit of the SOC.
2. Apply the objective function: In order to improve the performance of the system, a suitable

objective function was designed to allow particles to search for the objective value. The lowest
instantaneous equivalent fuel consumption was the best solution of this optimization problem.
So, instantaneous equivalent fuel consumption was applied as the objective function as in
Equation (12).

Fobj =
.

meq + β =
.

me(TE,ωE) + W(SOC)
.

mb + β (12)

where
.

meq is the sum of the instantaneous equivalent fuel consumption,
.

me(TE,ωE) is the
instantaneous fuel consumption of the engine,

.
mb is the equivalent fuel consumption of

the battery’s electrical energy, β is a penalty value to avoid the particle searching process
violating restrictions, and W(SOC) is the weight factor to prevent the power of the battery from
being depleted.

The instantaneous fuel consumption of electric power was calculated by Equation (13). The
battery power consumption was converted to the equivalent fuel consumption,

.
mb, by the engine BSFC

corresponding to the engine torque and speed.

.
mb =

(
ζdischarge ∗ BSFC ∗ PMG

ηbatt∗ηMG
+ ζcharge ∗ BSFC ∗ PMG ∗ ηbatt ∗ ηMG

)
1000 ∗ 3600

(13)

where
.

mb is the conversion of battery power consumption into equivalent fuel consumption, BSFC is
the BSFC corresponding to engine torque and speed, PMG is the electric motor power, ηbatt is the battery
operating efficiency, ηbatt is the electric motor working efficiency. ζdischarge is the battery discharge factor,
and ζcharge is the battery charge factor.

3. Select and memorize: Each particle would remember the corresponding objective value and
compare it with the value obtained by the particle at the previous moment. After determining the
best value, Pbest, of each particle, the values of all particles were compared to determine the best
value in the group, gbest. With the best value, gbest, of the group, the corresponding engines best
torque could be received.

4. Modify particle’s speed and position: Each particle’s TE was moved to the next position according
to Equations (7) and (8).

5. End rule: Set the convergence conditions. If the convergence conditions were not met, steps 2–4
until the particle search met the convergence conditions.
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3.3. Formulation of PSO Algorithm

3.3.1. Initialization and Parameter Setting

Initially, four particles were generated randomly. In this research, vehicle performance was
improved by optimizing the instantaneous fuel consumption and the engine torque was applied as the
particle’s position. The particles’ initial position and speed were assigned as follows.[

xt
1 xt

2 xt
3 xt

4

]
=

[
Tt

E,1 Tt
E,2 Tt

E,3 Tt
E,4

]
=

[
0 10 20 30

]
(14)[

vt
1 vt

2 vt
3 vt

4

]
=

[
−1 −2 2 4

]
(15)

The lower speed limit, vt
i,min, and upper speed limit, vt

i,max, were set between (–10–10). If the value
of the speed vector was too large, it would cause the particles to jump out of the area with a good
solution. If the value of the speed vector was too small, it would cause the particles to fall into the local
minimum value. For the better solution, the particle speed was usually set to 10–20% of the search
range [18]. The learning factors were both set as 2.

3.3.2. Evaluate Each Particle

The objective value of each particles position was measured. In the initial state, random particles
were first moved by the random speed and the updated position of the particles was compared
with the initial random position to obtain the local optimal position, Pbest. Then, based on their own
experience and group experience among the particles, the particles moved to the new positions. To
avoid unreasonable particle positions and over-charge or over-discharge of the battery, some constraints
were set as follows.

0 < TE < 220 (16)

0.4 < SOC < 0.6 (17)

3.3.3. Evaluate the End of Searching

If the position distances between the particles were less than 0.01, the search result was converged
(Equations (18)–(21) and the optimal solution was reached. To prevent the searching time from being
too long, an extra setting was added. If the particle search time was greater than 0.5 s, the current best
value was directly taken as the optimal torque of the engine.∣∣∣TE,1 − TE,2

∣∣∣ < 0.01 (18)∣∣∣TE,2 − TE,3
∣∣∣ < 0.01 (19)∣∣∣TE,3 − TE,4
∣∣∣ < 0.01 (20)∣∣∣TE,4 − TE,1
∣∣∣ < 0.01 (21)

4. Simulation Results and Discussion

4.1. Vehicle Parameters

The model for this research was implemented with Matlab/Simulink. The parameters of the
vehicle are shown in Table 1. A V6 3.6 L engine was applied in this research. This engine had a
manufacturer configuration for a midsize power-split HEV, and it was compatible with the power of
M/Gs applied in this vehicle. The power-split HEV was designed with this engine in order to maintain
the performance as the original ICE version. The additional M/Gs provided the HEV with better
acceleration and gradeability.
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Table 1. Vehicle parameters.

Engine

Engine Type V6, SI
Displacement 3.6 (L)
Peak torque 300 Nm
Peak speed 6000 rpm

EM characteristics
Type Permanent magnet motor

Maximum power 60 kW
Maximum speed 10,000 rpm
Peak efficiency 0.92

Peak torque 190 Nm
Battery

Type Lithium–ion
Capacity 1.5 kWh

Vehicle characteristics
Vehicle mass 1600 kg
Radius of tire 0.352 m

Vehicle front area 2642 m2

Rolling resistance coef. 0.01
Aerodynamic drag coef. 0.386

4.2. Charge and Discharge

In this research, the working range of the battery’s SOC was set between 0.4 and 0.6, which could
effectively extend the battery’s service life. At the same time, the battery’s internal resistance was low
in this working range, regardless of the state of charge or discharge, as shown in Figures 8 and 9.
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4.3. Simulation Results

EPA FTP-75 driving cycles were applied in the simulation. The urban and highway driving curves
are shown in Figures 2 and 3, respectively. Rule-based simulation results are shown in Table 2. The
fuel economy (FE) of urban and highway simulations were 46.28 mpg and 39.11 mpg, respectively,
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and the composite FE was 42.74 mpg. The formula for composite FE is shown in Equation (22) As
shown in Table 2, the difference between the composite FE of the rule-based simulation and that of the
manufacturer data was 0.9%, which was within the allowable range. Therefore, the rule-based control
model was applied as a base model to evaluate the optimization simulation of the PSO algorithm.

Composite FE =
1

0.55
CIty FE + 0.45

Highway FE

(22)

Table 2. Vehicle parameters.

Item Urban Highway Composite

Rule-based 46.28 mpg 39.11 mpg 42.74 mpg
Manufacturer 48 mpg 37 mpg 42.34 mpg

Rule-based control and PSO simulation results are presented in Table 3. In the urban driving cycle,
the FE of the rule-based simulation was 46.28 mpg, and the FE of the PSO simulation was 51.79 mpg.
PSO showed a 12% improvement over rule-based control. In the highway driving cycle, the FE of the
rule-based simulation was 39.11 mpg, and the FE of the PSO simulation was 41.85 mpg. PSO showed a
7% improvement over rule-based control. For composite FE, rule-based control was 42.74 mpg and
PSO was 46.78 mpg. PSO showed an improvement of 9.4% compared to rule-based control.

Table 3. Comparison of fuel economy.

Urban Highway Composite

Rule-based 46.28 mpg 39.11 mpg 42.74 mpg
PSO 51.79 mpg 41.85 mpg 46.78 mpg

Improved 12% 7% 9.4%

To understand the reasons for the improvements with the PSO algorithm, the instantaneous fuel
consumption of the rule-based control and PSO models were compared, as shown in Figures 10 and 11.
Figure 10 shows the urban simulation results; the instantaneous fuel consumption of the PSO was
generally smaller than that of the rule-based controller. The switching timing for the engine to turn
on/off depended on the required engine torque and battery SOC. In rule-based control, the results were
obtained from the pre-set rules/tables. In PSO, the algorithm searched for better fuel consumption
under the desired engine torque. Therefore, the fuel rate of PSO was smaller and engine-switch timing
was different from rule-based control. Figure 11 shows the instantaneous fuel consumption for the
highway driving cycle. It can be seen that the maximum instantaneous fuel consumption was 2.6 g/s
for rule-based control and 2.3 g/s for PSO. PSO would affect the engine switch timing and engine
operating points. The fuel consumption of PSO was better than that of the rule-based control.
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Figures 12 and 13 are comparisons of engine speeds on urban and highway driving cycles,
respectively. The engine speeds of PSO and rule-based control were mainly determined by driving
resistance and SOC. According to the simulation results of the two methods, most of the engine speeds
in urban areas were around 1400 to 2000 rpm. The improvement in fuel consumption was affected by
engine torque.
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Figure 13. Comparison of engine speed in the highway driving cycle.

Figures 14 and 15 are comparisons of engine torque in urban and highway driving cycles,
respectively. It can be seen that the engine torque in PSO was less than that in rule-based control. The
peak torque values in urban driving cycles decreased from 250 Nm in rule-based control to 160 Nm in
PSO. The reason that PSO algorithm provided a better fuel consumption is mainly due to the engine
torque being reduced. In the highway driving cycle, the improvement of fuel consumption was because
of different engine operating points and engine running time.
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Figures 16 and 17 provide the electric conversion loss from the motor/generator to charge the
battery. It can be clearly seen that the conversion loss was higher with rule-based control in both
driving cycles, which was one of the reasons that PSO could improve the fuel consumption.
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Figures 18 and 19 show the engine operating points of rule-based control and PSO in urban areas
and the highway driving cycle, respectively. In the urban driving cycle, the engine torque of PSO
operating points was mainly in the 50–170 Nm range. Compared to the operating points of rule-based
control, the trend of overall PSO engine power decline also led to an improvement of fuel consumption.
In rule-based control, some of the engine operating points were around 170–240 Nm, which is in a
high-efficiency range. It did not require such a large amount of engine power to drive the vehicle, so
the excess engine power would be transferred to the generator to charge the battery. That resulted in
an increase of conversion loss. Furthermore, the stored energy in the battery would not stay in the



Energies 2020, 13, 2278 14 of 18

battery very long and would soon be used for driving. This resulted in a second conversion loss and
would affect the fuel economy.Energies 2019, 12, x FOR PEER REVIEW 14 of 18 
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Figure 19. Comparison of highway engine operating points.

On the highway driving cycle, most of the PSO engine operating points were in the range of
75–120 Nm, which is in a better efficiency range of the engine. The engine operating points of rule-based
control were scattered throughout a wider range. Some points were around 200 Nm, which is in a
high-efficiency region; however, the vehicle did not require such a large amount of engine power. The
excess engine power would charge the battery and cause an electric conversion loss. The stored energy
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in the battery would be applied for driving. This resulted in a second conversion loss. It affected the
fuel economy.

Figures 20 and 21 show the comparison of electric motor torque of M/G1 in urban and highway
driving cycles, respectively. M/G1 was mainly driven by the engine in mode one. In the urban driving
cycle, M/G1 was mostly in the charge condition. In the highway driving cycle, the powertrain mainly
stayed on mode two. M/G1 worked as a driving motor and provided power to drive the vehicle.
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Figures 22 and 23 were the torque of M/G2 in the urban and highway driving cycles, respectively.
In the urban driving cycle, the positive torque output time of the PSO algorithm was longer than that
of the rule-based control. With the optimization process of the PSO, the vehicle would have more time
driven by electric motors to save fuel and improve vehicle fuel economy.Energies 2019, 12, x FOR PEER REVIEW 16 of 18 
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Figure 23. M/G2 torque in the highway driving cycle.

The battery SOC in urban and highway driving cycles are shown in Figures 24 and 25, respectively.
Through the driving cycles, the initial SOC and the SOC at the end of the cycles remained very close.
During the driving cycle the battery was charged and discharged, and the battery energy at the end of
the cycle remained at the same level as at the beginning. All of the driving energy was provided by
the engine.
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5. Conclusions

This research focused on the real-time control algorithm to improve the fuel economy of a
two-mode, power-split hybrid electric vehicle. The vehicle model was built with Matlab/Simulink.
The fuel economy simulation results of the base model with rule-based control were close to the fuel
economy data provided by the original manufacturer, which confirmed the reliability of the vehicle
model. Particle swarm optimization (PSO) was implemented as a real-time optimization control
with the goal of reducing fuel consumption. The minimum instantaneous fuel consumption was the
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objective of PSO. The engine torque was the design variable. PSO was to set up a group of sprinkled
particles to search for the best solution. The particles were dispersed in a reasonable working area
of the engine, and the value of the objective function was calculated for each particle position. The
objective function of each particle and the instantaneous fuel consumption was compared, and the
particle position was updated based on better results of the group. The above action was repeated until
the particles converged, and the objective value of the particle was the current minimum instantaneous
fuel consumption. The following conclusions were obtained based on the simulation results.

1. Urban cycle fuel economy: The result of rule-based simulation was 46.28 mpg; the result of PSO
simulation was 51.79 mpg; PSO showed a 12% improvement over rule-based control.

2. Highway cycle fuel economy: The result of rule-based simulation was 39.11 mpg; the result of
PSO simulation was 41.85 mpg; PSO showed a 7% improvement over rule-based control.

3. Composite fuel economy: The result of rule-based simulation was 42.74 mpg; the result of PSO
simulation was 46.78 mpg; PSO showed an improvement of 9.4% compared to rule-based control.

4. Compared with the rule-based control, PSO could more effectively control the engine on/off

switch timing and the engine operating points. With the lower engine torque selected by the
PSO algorithm, the engine power and fuel consumption were reduced. With less charging and
discharging of the battery, the energy conversion loss was smaller with the PSO algorithm and
the vehicle would spend more time driven by electric motors to save fuel and improve vehicle
fuel economy.

5. The rule-based control requires long-term accumulated experience to set the rule table. Compared
with rule-based control, PSO could find the minimum instantaneous fuel consumption at each
moment, achieve real-time control, and improve the fuel economy of power-split HEVs.

Author Contributions: Conceptualization, H.-Y.H.; investigation, H.-Y.H.; methodology, H.-Y.H.; project
administration, J.-S.C.; software, J.-S.C.; validation, J.-S.C. All authors have read and agreed to the published
version of the manuscript.
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