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Abstract: This paper analyzes the efficiency of thermal power plants in Angola by means of a
two-stage Data Envelopment Analysis (DEA) approach. In the first stage, a novel super-efficiency
DEA model for undesirable outputs (CO2 emission levels and discharge of polluted water) is initially
used to measure their efficiency levels. Then, in the second stage, relevant cost structure variables
frequently used to describe a productive technology are employed as analytical thresholds for
assessing energy production performance either in terms of capital or labor-intensity levels. Precisely,
bootstrapped regression trees are used to discriminate super-efficiency scores yielding an energy
production performance predictive model based on the technology type as proxied by its cost structure
and their respective thresholds, since Angolan thermal plants are heterogeneous. Findings suggest
that Angolan power plants are old and labor intensive, as some of them date back to the colonial
era, and that lack of capital investment should be revised in favor of installing carbon capture
devices. The approach developed here consists of a valuable approach for identifying priorities when
technologically updating a heterogeneous thermal industry to face pollutant concerns.

Keywords: thermal plants; DEA; super efficiency; cost structures; bootstrapped regression trees;
Angola

1. Introduction

This research focuses on a relatively understudied topic in thermal plants, which is the relationship
between its productive efficiency and cost structure in a developing country such as Angola, a former
Portuguese colony and actually an important oil producer and exporter in Africa. Although the
efficiency of thermal power plants at the machine or equipment level is a well-defined and parameterized
research stream based on the laws of thermodynamics ([1,2], here we are interested in assessing the
efficiency of thermal energy production at the industry level where different plants consist of the units
of analysis and represent a reflex of how a set of individual equipment interacts with other factors
such as labor, managerial style, capital, etc.

Despite several previous studies focus on power plant efficiency in developed countries, only a
handful of them have addressed this issue in developing nations, despite their growing relevance with
respect to energy generation [3,4]. Scant previous research on thermal power plant energetic efficiency
has employed distinct methods, but the most common rely on non-parametric approaches such as
Data Envelopment Analysis (DEA). See for instance [5] and [6] for comprehensive reviews on the
subject. This research analyzes the technical efficiency of energy production in thermal plants located
in Angola using a new super-efficiency DEA model to account for undesirable outputs. The major
underlying idea is to assess whether cost structure variables are related to technical super-efficiency
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scores in thermal energy production, thus providing a means for describing how different technological
patterns can be employed to control for the emission of undesirable outputs (pollutants) such as CO2

emissions and discharged water. While scores are computed using a super-efficiency model, the cost
structure variables are tested as efficiency thresholds in bootstrapped regression trees, thus allowing
for the discrimination of different technological patterns in thermal energy production.

It is worth mentioning why the set of Angolan thermal power plants represents a controlled
environment for conducting this search. First, these thermal power plants are all state owned and
operate in a monopolistic market; therefore, the impact or influence of different managerial practices
on efficiency scores and cost structures is quite limited. Additionally, these 32 plants were built over
the course of more than forty years after Angola’s independence from Portugal and therefore different
production technologies used in thermal energy generation and their evolution are reflected within
this set of plants.

Another distinctive aspect of this research concerns the analysis of the cost structure as a means to
identify technological patterns and propose improvement paths within the ambit of an industry or
sector. In fact, there is an emerging research stream that can be observed in a few efficiency studies
on energy and infrastructure areas that tries to correlate efficiency levels to the cost structure of the
productive process. Wang et al. [5], Lin and Yang [6], and Barros and Wanke [7] analyzed possible
improvement paths for energy production efficiency in the thermal power industry based on cost
structure variables. Wanke and Barros [8] conducted a similar analysis within the ambit of airport
operations. All of these studies focused on the emerging economies of Asia and Africa where issues
regarding a better balance between capital intensity and labor expenditure are deemed relevant to
achieve higher productivity levels.

This paper contributes to the literature body on energy efficiency planning in three distinct
ways. Firstly, and for the first time ever, this research unveils the relationships among capital, labor,
pollutant emissions, and energy efficiency with generation thermal power plants. While using
Angolan data, the results presented here can be generalized to other contexts since capital and labor
cost structure variables are the key fundamentals for energy generation performance. Secondly,
this paper adds to this beginning research stream by applying a novel super-efficiency DEA model for
undesirable outputs altogether with statistical learning techniques such as bootstrapped regression
trees, thus allowing to explore the impact of different productive technologies by proxying them to the
cost structure. In fact, this is the first time that DEA and machine learning are complementarily used to
explore productive technologies by means of their underlying labor and capital cost structure. Thirdly,
this paper contributes to a more general research stream beyond energy generation by digging into the
cost structure variables and the respective outcomes of the productive process. While technological
patterns are most discussed when different energy sources are compared (e.g., thermal vs. hydro),
a deeper analysis within each type is deemed necessary. In this research, the term productive
technology describes the technical means by which fuel, labor, and capital are combined to produce
thermal energy. While the concept of productive technology transcends the modeling of a functional
relationship between inputs and outputs, some of their intrinsic structural concepts could be captured
and related to each other such as efficiency and cost structure for decision-making purposes.

This text is structured in five more sections. Section 2 presents the background of thermal power
plants in Angola, then Section 3 presents the literature review focusing on the previous efficiency
studies on thermal power plants using non-parametric methods such as DEA and its variants as
cornerstones. Section 4 presents the new super-efficiency DEA model capable of handling undesirable
or bad outputs developed for this research. Section 5 presents the dataset used and the bootstrapped
regression trees method, which are followed in Section 6 by the results and discussion. Section 7 makes
some concluding remarks.
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2. Background on Angolan Thermal Power Plants

This search for different technological patterns in thermal plant energy efficiency and their
underlying impact on pollutant emissions is conducted in 32 Angolan thermal plants during the
period from 2010 to 2016. It is worth mentioning why this set of plants represents a controlled
environment for conducting this search. First of all, these thermal power plants are all state-owned and
operate in a monopolistic market, therefore the impact or influence of different managerial practices
on efficiency scores and cost structures is quite limited. Besides, these 32 plants have been built over
the course of more than forty years since the independence of this country from Portugal. Therefore,
different productive technologies used in thermal energy generation and their evolution are reflected
within this set of plants.

Precisely, Angolan thermal power plants are state-owned facilities that burn fuel—oil, coal,
and natural gas—assuring energy supply for domestic use. The charge of generating electricity
has been given to a state firm, ENE-EP (Empresa Nacional de Electricidade—Empresa Pública),
which controls energy production in every province of Angola. As regards the planning of
thermal energy production, the required fuel resources and other technical capacity issues of each
plant are decided in a centralized fashion by ENE-EP. However, another state company, EDEL-EP
(Empresa de Distribuição de Electricidade—Empresa Pública), controls electricity distribution in
Angola. Specifically in the Luanda region, power distribution is controlled by a subsidiary of EDEL
created specifically for this purpose. This arrangement harkens to colonial times when the Portuguese
government performed infrastructure planning, which was highly concentrated in the Luanda region.

In fact, the technological choices embedded in the construction of the thermal power plant industry
in Angola over the course of the years yielded a unique cost structure that reflects the type of fuel burnt,
the age of the plant along with its relatively small size, and the managerial style imposed by the state
control. Older technologies, small-scaled operations, and state control are elements (as corroborated
by the literature review in Section 3) that are often related to inefficient operations.

It is reasonable to expect that all these elements are not only reflected in the efficiency levels,
but also in the different cost structure variables and ratios that characterize the productive technology
in thermal plants such as capacity cost, labor and capital costs, besides cost–asset and capital–labor
ratios. All these variables are analyzed in this study and are further discussed and operationalized in
Section 4. Thus, this study seeks to identify the subset of cost structure variables and ratios that best
explain efficiency levels and pollutant emissions in Angolan thermal plants.

3. Literature Review on Thermal Power Plant Efficiency

Thermal power plant efficiency is an emerging research area. More than 20 papers have been
published over the course of 18 years with most being published from 2010 on. Not only are these
papers characterized by a diversity of methodological approaches, although the non-parametric related
DEA methods prevail, but also their research questions are very diverse. They range from efficiency
comparison between different technologies or the evolution of efficiency levels over the course of time
to the impact of regulatory issues and ownership, besides emerging trends as regards carbon dioxide
emissions and other sustainability issues.

For example, seminal papers in the area encompass Park and Lesourd [9] who measured the
performance of 64 fuel power plants in South Korea. Lam and Shiu [10] computed the efficiency
of China’s thermal power generation based on data for 1995 and 1996. Chien et al. [3] applied a
DEA–Malmquist model to measure the efficiency of eight thermal power plants in Taiwan. Sarica and
Or [11] analyzed and compared the performance of electricity generation plants in Turkey. Barros and
Peypoch [12] analyzed the technical efficiency of Portuguese thermoelectric power generating plants
with a two-stage procedure. Nakano and Managi [13] assessed efficiency in the Japanese steam-power
sector and scrutinized the impact of reforms on the relative performance of its firms over the course of
almost two decades. Sozen et al. [14] studied the performance of 11 lignite-fired, 1 coal-fired, and 3
natural gas-fired Turkish state companies using DEA. Liu et al. [15] assessed the efficiency levels of
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major thermal and combined cycle power plants in Taiwan for the period 2004–2006 using the DEA
approach. Rezaee et al. [16] and Rezaee [17] presented a novel model based on game theory and DEA to
measure efficiency of Iranian thermal power plants in light of diverse objectives. Shrivastava et al. [18]
focused on the relative productivity of 60 Indian coal-fired plants by means of classic DEA models.
Sueyoshi and Goto [19] used DEA to conduct an efficiency assessment of coal-fired plants in the US.
Du and Mao [20] measured the environmental efficiency and costs related to carbon dioxide emissions
in Chinese coal plants by means of a novel DEA model.

Recent papers still maintain this focus. Ghosh and Kathuria [21] investigated the impact
of institutional quality typified as regulatory governance on the performance of thermal power
plants in India. They estimated a translog stochastic frontier model using an index of state-level
independent regulation as one of the determinants of inefficiency. Their findings show that technical
efficiency is sensitive to both unbundling of state utilities and regulatory experience. Barros and
Wanke [7] utilized a two-stage approach for efficiency evaluation in thermal power plants. First,
a DEA Slacks Based Model (SBM) was employed to assess the relative efficiency of thermal power
plants. In the second stage, beta regression models were combined with DEA-SBM efficiency
scores to produce a model for predicting energy production performance. Yan et al. [22] evaluated
the carbon emission efficiency using the Undesirable-SBM model and data from China’s power
industry in 30 provinces from 2003 to 2014. They performed a spatial autocorrelation analysis that is
based on Moran’s index to confirm the non-equilibrium spatial distribution of the carbon emission
efficiency for the power industry. Wu et al. [23] employed an improved two-stage analysis model
to analyze eco-efficiency of 58 Chinese coal-fired power plants. Firstly, the principal component
analysis was selected for pre-treatment of variables in order to reduce dimensionality and distinguish
prioritized factors. Secondly, the super-efficiency DEA was chosen to assess eco-efficiency with overall
discriminatory rankings.

Table 1 presents a literature review synthesis of the previous studies on efficiency in thermal
energy generation. These previous studies not only suggest that environmental issues are increasingly
growing in importance over the years as more and more plants focus on reducing carbon dioxide
emissions, but they also reveal that the production technology of each plant may be a relevant study
field to understand efficiency in thermal energy generation. Precisely, plant age, fuel type, scale size,
frontier shift, and catching-up effects appear to be the descriptors used the most in previous papers
of the technological patterns that lie within thermal energy generation. Besides, ownership and
regulatory impacts are also relevant issues addressed by some of these researches undertaken in
different countries worldwide, especially in Asia and Europe, while research on African countries is
still negligible. Besides, although the use of non-parametric methods such as DEA and SBM (Slacks
Based Model) prevail, it is worth noting that the use of super-efficiency models is still scarce and
focused on addressing environmental impacts (Wu et al., [23]).

Therefore, this research fills a literature gap by not only addressing the issue of thermal energy
production efficiency in an important African country, but also by proposing a novel super-efficiency
model to better discriminate efficiency scores in a sector where productivity variations are subtle,
especially within the ambit of the Angolan state-owned plants, as discussed in Section 2. Additionally,
the review synthesized in Table 1 also sheds some light, by contrast, on the nature of the contributions
of this paper since most previous studies did not consider the impact of cost structure to diagnose
technological patterns and their relationship with efficiency levels and pollutant emissions (Barros
and Wanke, [7]). Some of them, however, use fuel prices to trace their impact on eco-efficiency levels
(Wu et al., [23]). In fact, the joint use of super-efficiency DEA models and bootstrapped regression
trees is an additional innovative feature of this research when compared to previous research described
in Table 1 since for the first time statistical learning methods are employed in the second stage of
analysis when efficiency scores are usually correlated or regressed onto contextual variables.

Hence, the distinctive aspect of the current research in comparison to the other previous researches
is the joint use of novel super-efficiency models and statistical learning techniques to unveil the



Energies 2020, 13, 2404 5 of 25

relationship between cost structure (as a proxy of the productive technology) and efficiency levels
in thermal power plant energy generation. As explored in Section 5.2., statistical learning methods
constitute a useful approach for unveiling hidden relationships between efficiency scores and cost
structure variables, as long as they do not rely on the traditional parametric assumptions found in the
typical regression approach (Tobit, truncated bootstrapped regression, beta, and Generalized Method
of Moments (GMM), cf. Table 1), yielding higher analytical flexibility and explanatory power.

Table 1. Literature review synthesis.

Author (Year) Country Sample Size Methods

Park and Lesourd [9] South Korea 64 fuel power plants DEA and Stochastic-Frontier

Lam and Shiu [10] China
Thermal Power Generation in
30 provinces, autonomous regions,
and municipalities

DEA and Tobit Regression

Chien et al. [3] Taiwan 8 thermal power plants DEA–Malmquist

Sarica and Or [3] Turkey 65 thermal, hydro, and wind
power plants

Constant returns to scale (CRS) DEA,
variable returns to scale (VRS) DEA,
and Assurance region DEA

Barros and Peypoch [11] Portugal 7 thermoelectric plants data from 1996
to 2004

DEA and Simar and Wilson
bootstrapped procedure

Nakano and Managi [13] Japan 10 local monopoly companies data
from 1965 to 2003

DEA, Luenberger productivity
indicator and Generalized Method
of Moments (GMM) estimation

Sozen et al. [14] Turkey 15 thermal power plants CRS DEA and VRS DEA

Liu et al. [15] Taiwan 9 thermal power plants DEA

Rezaee et al. [16] Iran 24 power plants DEA and game theory

See and Coelli [24] Malaysia 14 thermal plants Stochastic Frontier Analysis (SFA)

Shrivastava et al. [18] India 60 coal-fired power plants
CRS (Constant Returns-to-Scale)
DEA and VRS (Variable
Returns-to-Scale) DEA

Sueyoshi and Goto [19] United
States 20 U.S. coal-fired power plants Non-radial DEA model

Wang et al. [5] China 30 thermal power DEA, Malmquist–Luenberger
productivity index

Lin and Yang [6] China Power industry for 31 provinces from
2005 to 2010

Slacks-Based Measure (SBM) in
dynamic DEA model

Rezaee [17] Iran 20 power plants Shapley value and
multiobjective DEA

Du and Mao [20] China 1158 power plants data Parametric Linear Programing

Munisamy and Arabi [25] Iran 48 thermal power plants SBM, Malmquist–Luenberger index

Ghosh and Kathuria [21] India 77 coal-based thermal power plants SFA

Barros and Wanke [7] Angola 32 Angolan thermal power plants from
2010 to 2014

SBM-Undesirable and Beta
regression

Yan et al. [22] China Power industry in 30 provinces SBM-Undesirable, Malmquist index

Wu et al. [23] China 58 coal-fired power plants
Super Efficiency DEA,
Kruskal–Wallis rank, Tobit
regression

Xie et al. [2] China Thermal power plants in 30 provinces Nonparametric weighted Russell
directional distance method

Mahmoudi et al. [26] Iran 52 thermal power plants

Multivariate data analysis
techniques, game theory,
and Shannon entropy combined
with DEA

Wei and Zhang [27] China 93 coal-fired power plants Partial parametric environmental
production frontier
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4. The Proposed Super-Efficiency DEA Model with Undesirable Outputs

A comprehensive review of previous studies shows that most DEA applications have considered
primary cross sectional data and evaluated relative efficiencies in a single period, usually one year
(Emrouznejad and Yang, [28]; Fernández et al., [29]). Exceptions are found in window analyses
(Charnes et al., [30]) and other models based on the Malmquist productivity index (Färe and
Grosskopf, [31]; Yao et al., [4]). Looking beyond the inherent differences between these models,
we posit that their main objective is to address the changing patterns of efficiency scores along distinct
time periods. While these approaches may be useful for decision making, they do not take into
account an aggregated measure of efficiency that represents and provides a synthesis of multiperiod
productive systems.

In this sense, a clear exception is found within the ambit of dynamic DEA models. Nemoto and
Goto [32]s proposed a dynamic DEA model to assess the overall efficiency of a multiperiod production
system. This overall efficiency can be viewed as price or economic efficiency. However, even in a
particular period, the assumption of exact costs of individual inputs is unrealistic (Thompson et al., [33]).
Moreover, the true monetary value (or exact discount factor) of an input in the time horizon
remains unknown in practice (for more details see Jahanshahloo et al., [34]; Silva and Stefanou, [35];
Soleimani-damaneh, [36]).

Here, in this paper, we focused on Multiperiod Data Envelopment Analysis (MDEA) in which
the aggregative efficiency in the context of time serial data is measured. Any previous information
on prices or input and output weights across multiple periods are required. Hence, a Multiperiod
Aggregative Efficiency (MAE) that corresponds conceptually to a technical (but not price or economic)
efficiency of multiperiod production units can be delivered. This multiperiod technical efficiency,
economic-free, is deemed necessary to proxy in an unbiased way for the technological pattern of a
thermal plant over the course of time in terms of its cost structure, which is treated here in the ambit of
the contextual variable set.

Besides, a distinctive feature of the model here developed is regards super-efficiency.
The super-efficiency concept is traditionally a method used in DEA to break the ties between
fully efficient units. Putting it into other words, the super-efficiency approach is an alternative to make
a better discrimination for each Decision Making Unit (DMU). Suppose we have n DMUs and there are
L periods, t = 1, 2, . . . , L, and in each period DMU j, j = 1, 2, . . . , n, consume m inputs, xt

i j, i = 1, 2, . . . , m,

to produce s outputs, yt
r j, r = 1, 2, . . . , s. In order to compute the multiperiod aggregative efficiency,

abbreviated as MAE in the context of time serial data, Sam Park and Park [37] proposed a two-phase
DEA model (PP-model). The phase-I of the PP-model related to DMUo (o ∈ {1, 2, . . . , n}) is as follows:

Phase (I) max ψo

s.t.
∑n

j=1
µt

jy
t
r j ≥ ψoyt

ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1

µt
jx

t
i j ≤ xt

io i = 1, 2, . . . , m t = 1, 2, . . . , L

µt
j ≥ 0, j = 1, 2, . . . , n t = 1, 2, . . . , L

(1)
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Indeed, the above model is an aggregated output-oriented CCR model that evaluates DMUo

within all L periods simultaneously [38]. Let ψo
∗ be the optimal value of Equation (1), if ψo

∗ = 1 we say
DMUo is weakly efficient. The following model is solved in phase-II of the PP-model.

Phase (II) max
∑L

t=1

∑s

r=1
s+t

r +
∑L

t=1

∑m

i=1
s−t

i

s.t.
∑n

j=1
µt

jy
t
r j − s+t

r = ψo
∗yt

ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1

µt
jx

t
i j + s−t

i = xt
io, i = 1, 2, . . . , m, t = 1, 2, . . . , L

µt
j ≥ 0, j = 1, 2, . . . , n, t = 1, 2, . . . , L

s+t
r ≥ 0, r = 1, 2, . . . , s, t = 1, 2, . . . , L

s−t
i ≥ 0, i = 1, 2, . . . , m, t = 1, 2, . . . , L

(2)

Generally there is more than one DMU with ψo
∗ = 1 per Equation (1); therefore, it is necessary to

propose a ranking model to rank efficient DMUs. In this study inspired by the AP-model (Andersen and
Petersen, [39]) in which DMUo is removed from the production possibility set, Equations (1) and (2)
are converted to the following models, respectively.

Phase (I) max ψo

s.t.
n∑

j=1, j,o

µt
jy

t
r j ≥ ψoyt

ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1, j,o

µt
jx

t
i j ≤ xt

io i = 1, 2, . . . , m t = 1, 2, . . . , L

µt
j ≥ 0 ∀ j , o = 1, 2, . . . , L

(3)

Phase (II) max
L∑

t=1

s∑
r=1

s+t
r +

L∑
t=1

m∑
i=1

s−t
i

s.t.
∑n

j=1, j,o
µt

jy
t
r j − s+t

r = ψo
∗yt

ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1, j,o

µt
jx

t
i j + s−t

i = xt
io i = 1, 2, . . . , m t = 1, 2, . . . , L

µt
j ≥ 0 ∀ j , o t = 1, 2, . . . , L

s+t
r ≥ 0 r = 1, 2, . . . , s t = 1, 2, . . . , L

s−t
i ≥ 0 i = 1, 2, . . . , m t = 1, 2, . . . , L

(4)

The drawback of the above models is that they consider an overall efficiency score for each
DMU, whereas the behavior of a DMU may change from one period to another. Consequently, it is
reasonable to consider a different efficiency score for each time period; therefore, the following models
are proposed.
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Phase (I) max Ψo =
1
L

L∑
t=1

ψt
o

s.t.
n∑

j=1, j,o

µt
jy

t
r j ≥ ψ

t
oyt

ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1, j,o

µt
jx

t
i j ≤ xt

io i = 1, 2, . . . , m t = 1, 2, . . . , L

µt
j ≥ 0 ∀ j , o t = 1, 2, . . . , L

(5)

Phase (II) max ξo =
L∑

t=1

s∑
r=1

s+t
r +

L∑
t=1

m∑
i=1

s−t
i

s.t.
∑n

j=1, j,o
µt

jy
t
r j − s+t

r = ψ∗to yt
ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1, j,o

µt
jx

t
i j + s−t

i = xt
io i = 1, 2, . . . , m t = 1, 2, . . . , L

µt
j ≥ 0 ∀ j , o t = 1, 2, . . . , L

s+t
r ≥ 0 r = 1, 2, . . . , s t = 1, 2, . . . , L

s−t
i ≥ 0 i = 1, 2, . . . , m t = 1, 2, . . . , L

(6)

Here ψt
o represents the efficiency score of DMUo in t-th, t = 1, 2, . . . , L, period. The objective

function of Equation (5) is the average efficiency of DMUo within all L periods. The advantage of
Equation (5) is that not only does it maximize the average efficiency of DMUo, it also computes the
ψt

o. The objective of Equation (6) is to find a solution that maximizes the sum of input excesses and
output shortfalls while keeping ψt

o = ψ∗to . Let ξo
∗ be the optimal value of Equation (6), then we have

the following definitions.

Definition 1. DMUo is called efficient if Ψ∗o ≤ 1 and max
1≤t≤L

{
ψ∗to

}
≤ 1. If Ψ∗o > 1 or max

1≤t≤L

{
ψ∗to

}
> 1, we say

DMUo is inefficient.

Definition 2. DMUo is called weakly efficient if Ψ∗o = 1 and ξo
∗ , 0.

Conventional DEA models rely on the assumption that outputs have to be maximized. However,
it was mentioned already in the literature that the production process might also produce undesirable
outputs (Mariano et al., [40]; Ozkan and Ulutas, [41]; Scheel, [42]). In Equation (1), the outputs of
the DMUs are all desirable outputs and Equation (1) cannot be applied when some of the outputs
are undesirable. Now, assume that each DMUj uses m inputs to produce s desirable outputs and
k undesirable outputs. The inputs, desirable outputs, and undesirable outputs of each DMU j,

j = 1, 2, . . . , n in period t are defined as xt
i j, i = 1, 2, . . . , m, ygt

rj , r = 1, 2, . . . , s, and ybt
pj, p = 1, 2, . . . , k,

respectively. Similar to Seiford and Zhu [43] and Hadi-Vencheh et al. [44], we assume strong
disposability of the undesirable outputs. The data of the undesirable outputs are then transformed
using the following Equation (7).

ŷbt
p = −ybt

p + wt
p > 0, p = 1, 2, . . . , k, t = 1, 2, . . . , L (7)

In Equation (7), wt is a positive vector for period t, which can be used to let all the negative
undesirable outputs be positive. Considering the transformed data, Equations (5) and (6) are converted
to Equations (8) and (9), respectively.
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Phase (I) max Ψo =
1
L

L∑
t=1

ψt
o

s.t.
n∑

j=1, j,o

µt
jy

t
r j ≥ ψ

t
oyt

ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1, j,o

µt
jx

t
i j ≤ xt

io i = 1, 2, . . . , m t = 1, 2, . . . , L

n∑
j=1, j,o

µt
j ŷ

bt
pj ≤ ŷbt

po p = 1, 2, . . . , k t = 1, 2, . . . , L

µt
j ≥ 0 ∀ j , o t = 1, 2, . . . , L

(8)

Phase (II) max ξo =
L∑

t=1

s∑
r=1

s+gt
r +

L∑
t=1

k∑
p=1

s−bt
p +

L∑
t=1

m∑
i=1

s−t
i

s.t.
∑n

j=1, j,o
µt

jy
t
r j − s+gt

r = ψ∗to yt
ro r = 1, 2, . . . , s t = 1, 2, . . . , L

n∑
j=1, j,o

µt
jx

t
i j + s−t

i = xt
io i = 1, 2, . . . , m t = 1, 2, . . . , L

n∑
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j ŷ
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pj + s−bt

p = ŷbt
po p = 1, 2, . . . , k t = 1, 2, . . . , L

µt
j ≥ 0 ∀ j , o t = 1, 2, . . . , L

s+gt
r ≥ 0 r = 1, 2, . . . , s t = 1, 2, . . . , L

s−bt
p ≥ 0 p = 1, 2, . . . , k t = 1, 2, . . . , L

s−t
i ≥ 0 i = 1, 2, . . . , m t = 1, 2, . . . , L

(9)

As can be seen from (8) and (9), the undesirable outputs of the DMUs are considered as inputs
when evaluating the performance of the DMUs.

As regards the model fitting the Angolan thermal plant industry analyzed here, it is worth noting
the justification for some methodological choices with respect to the returns-to-scale assumption,
the model productive orientation, and the strong disposability of pollutant assumption. First,
a constant returns-to-scale assumption was adopted here because when compared to international
standards, even the largest Angolan plant is small when compared to their USA, UE, or even South
African counterparts. Besides, as shown by results analyzed and discussed in Section 5, these thermal
plants are labor intensive and in such cases the returns-to-scale effect tends to be behave mostly
linearly with respect to the number of employees. Second, an output orientation was chosen due to
the socioeconomic characteristics of the country and, why not, for the African region as a whole since
energy shortages are frequent and interruptions in energy supply cannot be sourced by alternative
transmission lines given that transmission networks within Angola and between African countries
barely exist. Third, a strong disposability of undesirable pollutants was considered as an adequate
assumption due to the existence of technological devices for reducing CO2 emissions and water
discharges without affecting energy production levels.
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5. Data and Bootstrapped Regression Trees

5.1. Data

Data for 2010–2016 encompassing the operation of 32 Angolan thermal plants were obtained
from ENE-EP. The inputs of these thermal plants are those commonly used in previous papers and
encompassed, besides the costs of investment, fuel, and labor, the productive capacity and the number
of employees. It is worth mentioning that productive capacity was adopted here to proxy a relevant
resource constraint, thus modeling that energy production cannot be indefinitely expanded in the short
and medium terms. In fact, productive capacity is considered here as a fixed input required to produce
energy despite severe limitations with respect to its short/medium term variations.

As regards the outputs, energy production is used as the sole desirable output, while on the
other hand carbon dioxide emissions and discharged polluted water are considered as the undesirable
outputs. It is worth mentioning that, due to a lack of completeness of the dataset, fuel costs had to be
estimated as a proportion of the investment costs and the labor costs, observing accepted technical
standards (for a conventional coal power plant, capital costs lie around 65%, whereas fuels costs are
about 30% (EIA, [45,46]). For conventional gas power plants, capital costs are about 32%, whereas fuels
costs are about 61% (EIA, [45,46])). For modern combined cycle gas power plants, the capital costs are
23% and fuel costs increase to over 70% with labor costs tending to be negligible (EIA, [45,46])). Table 2
presents their descriptive statistics and the respective dataset used is given in Appendix A.

Table 2. Descriptive statistics for the sample.

Variables Min Max Mean SD

Inputs

Plant capacity in MW 5 70 21.533 16.663
Investment costs * (log) 10.608 21.945 15.6845 2.3792

Employee costs per year * (log) 2.657 2.801 2.73681 0.0332
Fuel costs per year * (log) 6.664 43.891 11.0235 7.3653

Number of employees 15 69 31.613 13.671

Outputs
Production in 1000 MWh 10 117 35.292 24.206

Carbon dioxide emissions in tons per year 0.940 2.720 1.989 0.251
Discharge of polluted water in liters per year 1,018.64 1,898.21 1,190.07 136.460

Trend
Trend 1 7 3.987 2.005

Trend squared 1 49 19.916 16.407

Cost
Structure

Capital–labor ratio −1.700 11.408 2.257 1.923
Capacity cost per MW 0.290 4.430 1.571 0.959

Labor cost per employee 0.230 0.996 0.576 0.226
Capital cost 0.510 1 0.721 0.089

Cost–asset ratio −2.420 12.058 4.237 2.869

* Investment costs, employee costs per year, and fuel costs per year were originally measured in current Kwanzas
and subsequently converted to 2016 USD.

In addition, a number of contextual variables are used to proxy the productive technology.
They are also described in Table 2 and involve major cost structure elements. These variables are
fourfold: the capacity cost per MW (calculated as the ratio of the logarithms between the total cost
of the plant and its productive capacity), the labor cost per employee (calculated as the ratio of the
logarithms between total salaries paid and number of employees), the capital cost (calculated as the
ratio of the logarithms between amortizations and total assets), and the cost–asset ratio (calculated
as the ratio of the logarithms between total costs and total assets). Lastly, the capital–labor ratio is
calculated as the ratio of the logarithms between total assets and total salaries paid to employees. It is
also important to mention that principles of accrual accounting were adopted here to compute the
capital cost as the amortizations to total assets ratio. In fact, amortization, depreciation, and depletion
are methods that are used to prorate the cost of a specific type of asset over the asset’s life. This prorated
cost yields, therefore, an accounting proxy for the capital cost.
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5.2. Bootstrapped Regression Trees

Tree methods were first used by researchers [2,47,48] and have gained popularity through the major
theoretical and practical contributions of Breiman et al. [5]. They involve stratifying and segmenting
the predictor space into a number of simple regions (James et al., [49]). These features are particularly
useful since (a) efficiency scores reflect uncertainty derived not only from vagueness in input/output
collection and (b) explanatory variables may be endogenous or exogenous. Readers should refer to
Faraway [2], Opitz and Maclin [50], Polikar [51], and Torgo [52] on how to resample (ensemble) trees
using bagging.

Bagging (“bootstrapping aggregation”) is a bootstrap ensemble method introduced by Breiman [53]
and combines predictors across different subsets of the training data. The R functions used to perform
such bootstrapped regression tree analysis and their respective default values used for the analysis are
presented in Table 3 (Ledolter, [54]).

Table 3. R packages and respective default values for bootstrapped regression trees.

Method R Library R Function Values

RF-CART randomForest randomForest

x, where x represents a data frame or matrix of predictors,
y = NULL,

xtest = NULL,
ytest = NULL,

ntree = 500,
mtry = max(floor(ncol(x)/3), 1),

replace = TRUE,
classwt = NULL,

sampsize = nrow(x),
nodesize = 5,

maxnodes = NULL,
importance = FALSE,

localImp = FALSE,
nPerm = 1,

norm.votes = TRUE,
do.trace = FALSE,

keep.forest = TRUE,
corr.bias = FALSE,

keep.inbag = FALSE

CART tree Tree

na.action = na.pass,
method = "recursive.partition",

split = c("deviance", "gini"),
model = FALSE,

x = FALSE,
y = TRUE,

wts = TRUE,
mincut = 5,

minsize = 10,
mindev = 0.01

6. Results and Discussion

The levels of super-efficiency computed for the Angolan thermal power plant sample using the
proposed super-efficiency model for undesirable outputs are presented in Figures 1–4. The full rank of
DMU scores is given in Appendix B. Readers should recall that a DMU is considered efficient (inefficient)
if super-efficiency scores are below (above) 1. If super-efficiency score is exactly 1, the DMU is classified
as weakly efficient. As displayed in Figure 1, pooled efficiency scores are strongly concentrated
around 1 and inefficiency prevails in Angolan thermal power plants. Super-efficiency levels also
appear to be stagnant over the course of the years, as suggested by Figure 2, even though a slight
decrease in efficiency is seen from 2014 on. Although this stagnant behavior may be justified by the fact
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that Angola thermal power generation plants are publicly owned and controlled by ENE-EP, a state
company (cf. Section 2), the wide dispersion of super-efficiency scores suggest that inefficiency may
be driven by different technological patterns in thermal energy production reflected in cost-structure
variables, and that they may also impact the emission of pollutants. Based on the literature review,
the evidence implies that the smaller, older, and coal thermal plants are less efficient and more polluting
than the larger, newer plants that burn gas. The former would, therefore, be located above one in
Figure 1 while the latter below one. One is the super-efficiency threshold that divides efficient from
non-efficient plants.
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Figure 3 presents a scatterplot panel of efficiency levels against the two undesirable outputs.
As expected, super-efficiency scores fluctuate around 1, although not symmetrically. Readers should
recall that inefficient plants present scores higher than 1.0 and that a score of 0.6, for instance, indicates a
less efficient plant than another one with a score of 0.5. Figure 3 reveals that inefficient thermal power
plants tended to emit more CO2, although this direct relationship did not appear to be so strong in
terms of polluted water. In fact, the following results could be observed when comparing the groups
between efficient and inefficient plants. While the efficient plants present a CO2 emission level that
was 1.08% lower than those observed in the inefficient plants, the discharge of polluted water between
both groups presented even a smaller variation (around 0.33% less).
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Similarly, Figure 4 also presents a scatterplot panel of efficiency levels, but now against cost
structure variables. Figure 4 clearly shows that inefficient energy generation prevailed when Angolan
thermal plants presented a lower KL ratio, meaning that they are labor intensive, and had a higher
cost–asset ratio, which means that they have higher operating costs in comparison to the value of their
assets. As regards the lower KL ratios, the state-controlled operation of Angolan thermal plants may
explain the excessive number of highly paid employees in relation to the size/scale of the plant. On the
other hand, higher cost–asset ratios may reflect the operation of older, smaller, poorly maintained
plants. With this cost structure in mind, the adoption of costly technologies for controlling CO2

emissions may be enhanced by opportunities that emerge from rebalancing KL and cost–asset ratios.
This is necessary because adopting carbon capture devices would certainly increase the cost to asset
ratio. Therefore, labor expenses should be rightsized first in order to open room in cost expenditure
before adopting such an antipollutant measure.

Firstly, an adequate equilibrium between a rightsized labor force and the intensity of capital
seems to be the cornerstone for improving efficiency levels while simultaneously controlling the
discharge of undesirable outputs as a byproduct of the energy generation process. The drop in oil
prices imposed strong budgetary restrictions upon the Angolan economy causing the classical conflict
between labor and capital to increase with respect to scarce resource allocation. Secondly, with respect
to the capital investments required for controlling carbon dioxide emissions, it is deemed necessary to
apprehend how economically feasible these investments are for a thermal plant and how they impact
relevant ratios such as the capital–labor and the cost–asset ratios. As a matter of fact, thermal energy
generation is one of the biggest causers of the greenhouse effect on a worldwide basis. Except for
CO2, all other emissions from a thermal plant can be mitigated with the technology available at a
feasible cost (http://www.brighthubengineering.com/power-plants/57788-power-plant-emissions/).
This happens because carbon dioxide is an unavoidable part of the thermal generation process.
Therefore, systems for capturing carbon dioxide emissions consists of a costly alternative for reducing
pollutant emissions in the context of the investments required for building up and/or renovating a
thermal plant (U.S. Department of Energy (DOE) and U.S. National Energy Technology Laboratory
(NETL). 2010. DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap. http://www.netl.
doe.gov/File%20Library/Research/Carbon%20Seq/Reference%20Shelf/CCSRoadmap.pdf), but they are
often economically feasible in newer plants.

These results are confirmed by the bootstrapped regression trees presented in Figures 5 and 6.
While Figure 5 depicts the bootstrapped regression tree structure and its thresholds at each tree
node, Figure 6 shows the most impacting variables in terms of overall increase in the Mean Squared
Errors (MSE). The interpretation of a regression tree is very straightforward in terms of allowing the
decision-maker to segment the results. For example, the first branch of the tree presented in Figure 5
states that “if labor cost is lower than 0.33 and capacity cost is lower than 0.80, and KL ratio is lower

http://www.brighthubengineering.com/power-plants/57788-power-plant-emissions/
http://www.netl.doe.gov/File%20Library/Research/Carbon%20Seq/Reference%20Shelf/CCSRoadmap.pdf
http://www.netl.doe.gov/File%20Library/Research/Carbon%20Seq/Reference%20Shelf/CCSRoadmap.pdf
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than 1.37, then the average plant efficiency is 0.962 (almost weak-efficient)”. The other branches read
similarly. Both figures suggest that capacity cost and labor cost are the most impacting variables on
Angolan thermal power plant efficiency.
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Policy implications for Angolan thermal plants suggest the need for a better training of the
workforce, downsizing of personnel in order to keep labor costs under control, and investing in carbon
capture equipment. Since it is expensive and impacts the plant’s capacity cost, such equipment can
be acquired by rebalancing the KL equilibrium in Angolan plants so that total operating costs are
kept under control. There are, however, technological limits to adopting such measures, which are
revealed by the capital cost. Lower values of capacity cost, often related to older amortized plants,
may present physical constraints to the deployment of newer carbon capture technologies. In such
cases, efficiency improvements may be confined to the traditional conversion from diesel to combined
cycle gas, which has already occurred in some Angolan thermal plants.
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7. Conclusions

This research assessed the thermal plants in Angola in terms of their energetic efficiency by jointly
applying a novel super-efficiency DEA model that handles undesirable outputs and bootstrapped
regression trees that discriminate productive technologies based on cost structure variables. This novel
super-efficiency model makes it possible to capture subtle productivity variations in a state-owned
industry where managerial practices tend to be quite similar over the course of time. This paper gives
insights on how the technological patterns or productive technologies of thermal energy generation are
reflected in the cost structure variables of each plant by means of efficiency levels, which constitutes a
relatively novel approach not only in the energy efficiency strand, but also on infrastructure efficiency.

Efficiency levels were computed based on three outputs (energy production, carbon dioxide
emissions, and discharged polluted water) and on five inputs (fuel, investment, labor costs,
plant capacity, and number of employees). The findings suggest that efficiency levels of fuel
consumption and undesirable emissions included are mostly affected by the capacity cost and the labor
cost, which are the reflex of rightsizing and training the workforce in parallel with adopting expensive
carbon capture devices. Specifically with respect to the pattern of pollutant emissions/discharges,
CO2 emissions appear to be more impacted by the technological pattern of the power plant than
the level of discharged polluted water, which may suggest that carbon capture technologies have
evolved and can be deployed faster than technologies for recycling water in the energy generation
productive processes.

Limitations of this research are related to the very nature of case studies built on the evidence
of single countries. Although these results cannot be generalized to other countries with different
regulatory regimes, some useful lessons for conducting similar research in other countries have been
learned. It may be advisable to focus on capital, labor, and operating expenses and their countervailing
forces while seeking opportunities for adopting antipollutant technologies. Further research should
confirm these results in other environments.
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Appendix A. Angolan Thermal Plants Dataset

DMU Year
Energy

Production
(MWh)

CO2 Emission
(Tons Per

Year)

Polluted
Water (Liters

Per Year)

Capacity
(MW)

Number of
Employees

Employee
Cost Per

Year (Log)

Fuel Cost
Per Year

(Log)

Investment
Cost
(Log)

KL Ratio
(Log)

Capacity
Cost per

MW (Log)

Labor Cost
Per Year

(Log)

Capital
Cost Per

Year (Log)

Cost–Asset
Ratio
(Log)

Fuel_Type

Central Termica de Xitoto Novo 2016 106.000 2.000 1232.614 70.000 45.000 2.768 9.714 16.660 3.100 0.340 0.354 0.700 5.230 Diesel
Central Termica de Xitoto Antigo 2016 10.000 2.412 1245.006 8.000 40.000 2.773 7.901 13.030 3.630 2.670 0.400 0.610 2.070 Diesel

Central Termica do Aeroporto 2016 10.000 2.392 1270.162 8.000 23.000 2.714 10.156 17.597 2.730 2.676 0.656 0.822 4.838 Diesel
Central Termica de Arimba 2016 40.600 2.372 1257.516 35.000 15.000 2.704 9.962 17.221 2.200 0.674 0.996 0.730 6.664 Diesel

Central Termica de Anexo SE 2016 30.000 2.432 1254.758 20.000 30.000 2.774 10.241 17.709 0.790 1.162 0.534 0.762 6.982 Diesel
Central Termica de Kileva 2016 45.600 2.338 1250.716 30.000 69.000 2.764 6.737 10.710 11.408 0.700 0.230 0.510 −2.420 Diesel
Central Termical do Lobito 2016 20.000 2.318 1228.670 5.000 31.000 2.721 7.713 12.706 4.810 3.620 0.490 0.702 −1.748 Diesel
Central Termica de Biopio 2016 117.000 2.296 1238.282 15.000 46.000 2.750 12.128 21.506 0.630 1.648 0.340 0.870 10.592 Diesel

Central Termica do Cunene 2016 15.000 2.296 1234.144 5.000 20.000 2.729 8.151 13.572 1.180 3.770 0.766 0.720 2.540 Diesel
Central Termica Do Kuando

Kubango
2016 30.000 2.256 1270.162 10.000 16.000 2.721 11.894 21.067 −0.590 2.310 0.950 0.912 9.340 Diesel

Central Termica do Benfica 2016 50.400 2.232 1282.926 35.000 34.000 2.801 8.449 14.098 1.154 0.530 0.484 0.760 2.250 Diesel
Central Termica do Cuito 2016 10.000 2.212 1268.818 7.000 42.000 2.743 11.039 19.334 1.566 2.762 0.370 1.000 2.250 Diesel

Central Termica do Moxico 2016 40.000 2.176 1250.726 30.000 23.000 2.759 12.352 21.945 0.920 0.950 0.686 0.770 12.058 Diesel

Central Termica de Cazenga 2016 40.000 2.156 1246.388 30.000 50.000 2.773 41.401 17.928 2.160 0.830 0.320 0.720 7.280
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2016 96.800 2.136 1231.272 50.000 65.000 2.788 10.674 18.560 1.902 0.580 0.250 0.640 10.784 Diesel

Central Termica do Morro Bento 2016 30.000 2.112 1232.224 15.000 32.000 2.752 9.152 15.552 1.210 1.440 0.490 0.720 4.630 Diesel
Central Termica do Morro da Luz 2016 34.800 2.092 1245.008 10.000 25.000 2.747 7.872 12.996 5.770 2.166 0.624 0.600 1.940 Diesel

Central Termica KM9 2016 15.000 2.092 1246.398 10.000 35.000 2.748 11.582 20.416 2.330 2.374 0.446 0.860 7.300 Diesel
Central Termica Benfica 2016 20.000 1.136 1247.778 17.000 18.000 2.723 11.272 19.821 1.270 1.388 0.846 0.840 7.850 Diesel

Central Termica Praia do Bispo 2016 35.000 2.074 1249.168 20.000 15.000 2.671 10.939 19.207 −0.330 1.060 0.964 0.906 7.162 Diesel
Central Termica dos Quarteis 2016 30.000 2.052 1246.548 30.000 37.000 2.781 9.445 16.110 2.936 0.716 0.436 0.750 4.340 Diesel

Central Termica Boavista I 2016 32.000 2.252 1255.880 15.000 30.000 2.728 9.084 15.440 1.380 1.410 0.510 0.730 4.356 Diesel
Central Termica Boavista II 2016 20.000 2.192 1237.996 10.000 45.000 2.785 8.881 14.976 1.704 2.080 0.360 0.720 3.180 Diesel
Central Termica Boavista III 2016 22.600 2.148 1259.340 16.000 42.000 2.796 8.700 14.605 1.160 1.304 0.390 0.700 3.404 Diesel

Central Termica Kassaki 2016 10.000 2.128 1290.828 8.000 28.000 2.752 7.878 13.003 5.214 2.580 0.560 0.630 0.930 Diesel
Central Termica CEEF 2016 15.000 2.106 1396.924 10.000 20.000 2.681 10.064 17.447 1.640 2.082 0.730 0.838 6.434 Diesel

Central Termica do Bengo 2016 32.200 2.086 1472.140 18.000 25.000 2.747 8.937 15.128 2.008 1.218 0.624 0.690 4.418 Diesel
Central Termica do Uige 2016 20.000 2.128 1402.332 15.000 20.000 2.727 8.179 13.632 5.710 1.420 0.764 0.640 1.890 Diesel

Central Termica Banza Congo 2016 20.000 2.086 1368.170 10.000 35.000 2.734 7.444 12.154 4.820 2.060 0.440 0.590 0.680 Diesel

Central Termica Soyo 2016 110.600 2.402 1898.212 70.000 15.000 2.704 42.215 18.404 3.760 0.402 0.996 0.654 10.232
Combined
Cycle Gas

Central Termica Landana 2016 30.200 2.386 1462.912 20.000 30.000 2.708 10.406 18.105 2.490 1.060 0.500 0.854 4.204 Diesel
Central Termica Malongo 2016 45.000 2.720 1333.350 40.000 15.000 2.698 9.183 15.667 1.420 0.544 0.990 0.720 5.854 Diesel

Central Termica de Xitoto Novo 2015 93.000 1.940 1197.222 70.000 45.000 2.763 9.711 16.660 3.100 0.340 0.352 0.700 5.230 Diesel
Central Termica de Xitoto Antigo 2015 10.000 2.341 1209.258 8.000 40.000 2.773 7.901 13.030 3.430 2.670 0.400 0.610 2.070 Diesel

Central Termica do Aeroporto 2015 10.000 2.321 1233.691 8.000 23.000 2.709 9.705 16.701 2.730 2.673 0.653 0.781 4.319 Diesel
Central Termica de Arimba 2015 40.300 2.301 1221.408 35.000 15.000 2.701 9.808 16.914 2.200 0.662 0.993 0.730 6.127 Diesel

Central Termica de Anexo SE 2015 30.000 2.361 1218.729 20.000 30.000 2.770 10.124 17.479 0.790 1.156 0.532 0.756 6.721 Diesel
Central Termica de Kileva 2015 42.800 2.269 1214.803 30.000 69.000 2.764 6.737 10.710 9.384 0.700 0.230 0.510 -2.420 Diesel
Central Termical do Lobito 2015 20.000 2.249 1193.390 5.000 31.000 2.721 7.388 12.055 4.810 3.620 0.490 0.666 -1.874 Diesel
Central Termica de Biopio 2015 103.500 2.228 1202.726 15.000 46.000 2.750 11.052 19.354 0.630 1.564 0.340 0.825 8.231 Diesel
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Central Termica do Cunene 2015 15.000 2.228 1198.707 5.000 20.000 2.725 8.149 13.572 1.180 3.770 0.763 0.720 2.540 Diesel
Central Termica Do Kuando

Kubango
2015 30.000 2.188 1233.691 10.000 16.000 2.721 11.128 19.535 -0.590 2.230 0.950 0.876 8.065 Diesel

Central Termica do Benfica 2015 45.200 2.166 1246.088 35.000 34.000 2.797 8.447 14.098 0.642 0.530 0.482 0.760 2.250 Diesel
Central Termica do Cuito 2015 10.000 2.146 1232.384 7.000 42.000 2.743 10.534 18.324 1.453 2.741 0.370 0.955 2.250 Diesel

Central Termica do Moxico 2015 40.000 2.113 1214.813 30.000 23.000 2.754 11.657 20.559 0.920 0.890 0.683 0.770 10.219 Diesel

Central Termica de Cazenga 2015 40.000 2.093 1210.599 30.000 50.000 2.773 41.401 17.928 1.840 0.830 0.320 0.720 7.280
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2015 88.400 2.073 1195.916 50.000 65.000 2.788 10.434 18.080 1.756 0.565 0.250 0.640 10.127 Diesel

Central Termica do Morro Bento 2015 30.000 2.051 1196.842 15.000 32.000 2.752 8.990 15.228 1.210 1.440 0.490 0.705 4.630 Diesel
Central Termica do Morro da Luz 2015 32.400 2.031 1209.259 10.000 25.000 2.744 7.861 12.978 4.970 2.163 0.622 0.600 1.940 Diesel

Central Termica KPM9 2015 15.000 2.031 1210.609 10.000 35.000 2.741 10.815 18.889 2.330 2.332 0.443 0.810 6.295 Diesel
Central Termica Benfica 2015 20.000 1.103 1211.949 17.000 18.000 2.720 11.030 19.340 1.270 1.379 0.843 0.825 7.370 Diesel

Central Termica Praia do Bispo 2015 35.000 2.012 1213.299 20.000 15.000 2.669 10.747 18.826 -0.330 1.060 0.962 0.888 7.111 Diesel
Central Termica dos Quarteis 2015 30.000 1.991 1210.754 30.000 37.000 2.774 9.408 16.043 2.073 0.713 0.433 0.750 4.340 Diesel

Central Termica Boavista I 2015 31.000 2.186 1219.820 15.000 30.000 2.728 9.084 15.440 1.380 1.410 0.510 0.730 4.353 Diesel
Central Termica Boavista II 2015 20.000 2.126 1202.448 10.000 45.000 2.785 8.881 14.976 1.462 2.080 0.360 0.720 3.180 Diesel
Central Termica Boavista III 2015 21.300 2.084 1223.180 16.000 42.000 2.796 8.689 14.582 1.160 1.302 0.390 0.700 3.362 Diesel

Central Termica Kassaki 2015 10.000 2.064 1253.764 8.000 28.000 2.752 7.878 13.003 4.567 2.580 0.560 0.630 0.930 Diesel
Central Termica CEEF 2015 15.000 2.043 1356.812 10.000 20.000 2.681 9.634 16.587 1.640 2.076 0.730 0.799 5.402 Diesel

Central Termica do Bengo 2015 31.100 2.023 1429.870 18.000 25.000 2.744 8.849 14.954 1.814 1.204 0.622 0.690 4.409 Diesel
Central Termica do Uige 2015 20.000 2.064 1362.066 15.000 20.000 2.724 8.178 13.632 5.000 1.420 0.762 0.640 1.890 Diesel

Central Termica Banza Congo 2015 20.000 2.023 1328.885 10.000 35.000 2.734 7.444 12.154 4.665 2.060 0.440 0.590 0.680 Diesel

Central Termica Soyo 2015 100.300 2.331 1843.706 70.000 15.000 2.701 39.646 17.122 3.760 0.381 0.993 0.642 8.441
Combined
Cycle Gas

Central Termica Landana 2015 30.100 2.318 1420.906 20.000 30.000 2.708 9.961 17.214 2.490 1.060 0.500 0.812 3.907 Diesel
Central Termica Malongo 2015 45.000 2.510 1295.065 40.000 15.000 2.698 9.154 15.610 1.420 0.542 0.990 0.720 5.467 Diesel

Central Termica de Xitoto Novo 2014 80.000 1.880 1161.830 70.000 45.000 2.757 9.708 16.660 3.100 0.340 0.350 0.700 5.230 Diesel
Central Termica de Xitoto Antigo 2014 10.000 2.270 1173.510 8.000 40.000 2.773 7.901 13.030 3.230 2.670 0.400 0.610 2.070 Diesel

Central Termica do Aeroporto 2014 10.000 2.250 1197.220 8.000 23.000 2.705 9.256 15.806 2.730 2.670 0.650 0.740 3.800 Diesel
Central Termica de Arimba 2014 40.000 2.230 1185.300 35.000 15.000 2.698 9.653 16.608 2.200 0.650 0.990 0.730 5.590 Diesel

Central Termica de Anexo SE 2014 30.000 2.290 1182.700 20.000 30.000 2.766 10.008 17.250 0.790 1.150 0.530 0.750 6.460 Diesel
Central Termica de Kileva 2014 40.000 2.200 1178.890 30.000 69.000 2.764 6.737 10.710 7.360 0.700 0.230 0.510 -2.420 Diesel
Central Termical do Lobito 2014 20.000 2.180 1158.110 5.000 31.000 2.721 7.062 11.403 4.810 3.620 0.490 0.630 -2.000 Diesel
Central Termica de Biopio 2014 90.000 2.160 1167.170 15.000 46.000 2.750 10.033 17.316 0.630 1.480 0.340 0.780 5.870 Diesel

Central Termica do Cunene 2014 15.000 2.160 1163.270 5.000 20.000 2.721 8.147 13.572 1.180 3.770 0.760 0.720 2.540 Diesel
Central Termica Do Kuando

Kubango
2014 30.000 2.120 1197.220 10.000 16.000 2.721 10.391 18.060 -0.590 2.150 0.950 0.840 6.790 Diesel

Central Termica do Benfica 2014 40.000 2.100 109.250 35.000 34.000 2.792 8.445 14.098 0.130 0.530 0.480 0.760 2.250 Diesel
Central Termica do Cuito 2014 10.000 2.080 195.950 7.000 42.000 2.743 10.035 17.326 1.340 2.720 0.370 0.910 2.250 Diesel

Central Termica do Moxico 2014 40.000 2.050 1178.900 30.000 23.000 2.750 10.961 19.173 0.920 0.830 0.680 0.770 8.380 Diesel

Central Termica de Cazenga 2014 40.000 2.030 1174.810 30.000 50.000 2.773 41.401 17.928 1.520 0.830 0.320 0.720 7.280
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2014 80.000 2.010 1160.560 50.000 65.000 2.788 10.194 17.600 1.610 0.550 0.250 0.640 9.470 Diesel

Central Termica do Morro Bento 2014 30.000 1.990 1161.460 15.000 32.000 2.752 8.828 14.904 1.210 1.440 0.490 0.690 4.630 Diesel
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Central Termica do Morro da Luz 2014 30.000 1.970 1173.510 10.000 25.000 2.741 7.850 12.960 4.170 2.160 0.620 0.600 1.940 Diesel
Central Termica KM9 2014 15.000 1.970 1174.820 10.000 35.000 2.734 10.069 17.404 2.330 2.290 0.440 0.760 5.290 Diesel

Central Termica Benfica 2014 20.000 1.070 1176.120 17.000 18.000 2.716 10.790 18.865 1.270 1.370 0.840 0.810 6.890 Diesel
Central Termica Praia do Bispo 2014 35.000 1.950 1177.430 20.000 15.000 2.667 10.556 18.444 -0.330 1.060 0.960 0.870 7.060 Diesel
Central Termica dos Quarteis 2014 30.000 1.930 1174.960 30.000 37.000 2.767 9.371 15.975 1.210 0.710 0.430 0.750 4.340 Diesel

Central Termica Boavista I 2014 30.000 2.120 1183.760 15.000 30.000 2.728 9.084 15.440 1.380 1.410 0.510 0.730 4.350 Diesel
Central Termica Boavista II 2014 20.000 2.060 1166.900 10.000 45.000 2.785 8.881 14.976 1.220 2.080 0.360 0.720 3.180 Diesel
Central Termica Boavista III 2014 20.000 2.020 1187.020 16.000 42.000 2.796 8.678 14.560 1.160 1.300 0.390 0.700 3.320 Diesel

Central Termica Kassaki 2014 10.000 2.000 1216.700 8.000 28.000 2.752 7.878 13.003 3.920 2.580 0.560 0.630 0.930 Diesel
Central Termica CEEF 2014 15.000 1.980 1316.700 10.000 20.000 2.681 9.207 15.732 1.640 2.070 0.730 0.760 4.370 Diesel

Central Termica do Bengo 2014 30.000 1.960 1387.600 18.000 25.000 2.741 8.760 14.780 1.620 1.190 0.620 0.690 4.400 Diesel
Central Termica do Uige 2014 20.000 2.000 1321.800 15.000 20.000 2.721 8.177 13.632 4.290 1.420 0.760 0.640 1.890 Diesel

Central Termica Banza Congo 2014 20.000 1.960 1289.600 10.000 35.000 2.734 7.444 12.154 4.510 2.060 0.440 0.590 0.680 Diesel

Central Termica Soyo 2014 90.000 2.260 1789.200 70.000 15.000 2.698 37.148 15.876 3.760 0.360 0.990 0.630 6.650
Combined
Cycle Gas

Central Termica Landana 2014 30.000 2.250 1378.900 20.000 30.000 2.708 9.516 16.324 2.490 1.060 0.500 0.770 3.610 Diesel
Central Termica Malongo 2014 45.000 2.300 1256.780 40.000 15.000 2.698 9.125 15.552 1.420 0.540 0.990 0.720 5.080 Diesel

Central Termica de Xitoto Novo 2013 81.000 1.820 1138.600 70.000 45.000 2.728 9.694 16.660 3.100 0.340 0.340 0.700 5.230 Diesel
Central Termica de Xitoto Antigo 2013 11.000 2.200 1150.040 8.000 40.000 2.773 7.901 13.030 3.230 2.670 0.400 0.610 2.070 Diesel

Central Termica do Aeroporto 2013 11.000 2.180 1173.270 8.000 23.000 2.705 9.256 15.806 2.730 2.670 0.650 0.740 3.800 Diesel
Central Termica de Arimba 2013 41.000 2.160 1161.600 35.000 15.000 2.698 9.653 16.608 2.200 0.650 0.990 0.730 5.590 Diesel

Central Termica de Anexo SE 2013 31.000 2.220 1159.050 20.000 30.000 2.747 9.999 17.250 0.790 1.150 0.520 0.750 6.460 Diesel
Central Termica de Kileva 2013 40.000 2.140 1155.310 30.000 69.000 2.764 6.737 10.710 7.360 0.700 0.230 0.510 -2.420 Diesel
Central Termical do Lobito 2013 21.000 2.120 1134.950 5.000 31.000 2.721 7.062 11.403 4.810 3.620 0.490 0.630 -2.000 Diesel
Central Termica de Biopio 2013 91.000 2.090 1143.820 15.000 46.000 2.750 10.033 17.316 0.630 1.480 0.340 0.780 5.870 Diesel

Central Termica do Cunene 2013 16.000 2.090 1140.000 5.000 20.000 2.721 8.147 13.572 1.180 3.770 0.760 0.720 2.540 Diesel
Central Termica Do Kuando

Kubango
2013 31.000 2.050 1173.270 10.000 16.000 2.721 10.349 17.976 -0.590 2.140 0.950 0.840 6.790 Diesel

Central Termica do Benfica 2013 41.000 2.030 1185.060 35.000 34.000 2.792 8.445 14.098 0.130 0.530 0.480 0.760 2.250 Diesel
Central Termica do Cuito 2013 11.000 2.010 1172.030 7.000 42.000 2.743 10.035 17.326 1.340 2.720 0.370 0.910 2.250 Diesel

Central Termica do Moxico 2013 41.000 1.990 1155.320 30.000 23.000 2.750 10.961 19.173 0.920 0.830 0.680 0.770 8.380 Diesel

Central Termica de Cazenga 2013 41.000 1.970 1151.320 30.000 50.000 2.773 41.401 17.928 1.520 0.830 0.320 0.720 7.280
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2013 81.000 1.950 1137.350 50.000 65.000 2.788 10.194 17.600 1.610 0.550 0.250 0.640 9.470 Diesel

Central Termica do Morro Bento 2013 31.000 1.930 1138.230 15.000 32.000 2.752 8.828 14.904 1.210 1.440 0.490 0.690 4.630 Diesel
Central Termica do Morro da Luz 2013 31.000 1.910 1150.040 10.000 25.000 2.741 7.850 12.960 4.170 2.160 0.620 0.600 1.940 Diesel

Central Termica KPM9 2013 15.000 1.910 1151.320 10.000 35.000 2.734 10.069 17.404 2.330 2.290 0.440 0.760 5.290 Diesel
Central Termica Benfica 2013 21.000 1.040 1152.600 17.000 18.000 2.716 10.790 18.865 1.270 1.370 0.840 0.810 6.890 Diesel

Central Termica Praia do Bispo 2013 35.000 1.900 1153.880 20.000 15.000 2.667 10.556 18.444 -0.330 1.060 0.960 0.870 7.060 Diesel
Central Termica dos Quarteis 2013 31.000 1.880 1151.460 30.000 37.000 2.767 9.371 15.975 1.210 0.710 0.430 0.750 4.340 Diesel

Central Termica Boavista I 2013 31.000 2.060 1160.090 15.000 30.000 2.728 9.084 15.440 1.380 1.410 0.510 0.730 4.350 Diesel
Central Termica Boavista II 2013 21.000 2.000 1143.560 10.000 45.000 2.785 8.881 14.976 1.220 2.080 0.360 0.720 3.180 Diesel
Central Termica Boavista III 2013 21.000 1.960 1163.280 16.000 42.000 2.796 8.678 14.560 1.160 1.300 0.390 0.700 3.320 Diesel

Central Termica Kassaki 2013 11.000 1.940 1192.370 8.000 28.000 2.752 7.853 12.953 3.920 2.570 0.560 0.630 0.930 Diesel
Central Termica CEEF 2013 16.000 1.920 1290.370 10.000 20.000 2.681 9.207 15.732 1.640 2.070 0.730 0.760 4.370 Diesel

Central Termica do Bengo 2013 31.000 1.900 1359.850 18.000 25.000 2.725 8.752 14.780 1.620 1.190 0.610 0.690 4.400 Diesel
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Central Termica do Uige 2013 21.000 1.940 1295.360 15.000 20.000 2.708 8.170 13.632 4.290 1.420 0.750 0.640 1.890 Diesel
Central Termica Banza Congo 2013 21.000 1.900 1263.810 10.000 35.000 2.734 7.444 12.154 4.510 2.060 0.440 0.590 0.680 Diesel

Central Termica Soyo 2013 91.000 2.190 1753.420 70.000 15.000 2.698 37.148 15.876 3.760 0.360 0.990 0.630 6.650
Combined
Cycle Gas

Central Termica Landana 2013 31.000 2.180 1351.320 20.000 30.000 2.708 9.516 16.324 2.490 1.060 0.500 0.770 3.610 Diesel
Central Termica Malongo 2013 46.000 2.230 1231.640 40.000 15.000 2.698 8.981 15.264 1.420 0.530 0.990 0.720 5.080 Diesel

Central Termica de Xitoto Novo 2012 81.000 2.260 1115.830 70.000 45.000 2.728 9.694 16.660 3.100 0.340 0.340 0.700 5.240 Diesel
Central Termica de Xitoto Antigo 2012 11.000 1.780 1127.040 8.000 40.000 2.773 9.730 16.688 2.540 2.980 0.400 0.700 5.230 Diesel

Central Termica do Aeroporto 2012 11.000 2.160 1149.810 8.000 23.000 2.689 7.859 13.030 4.460 2.670 0.640 0.610 2.070 Diesel
Central Termica de Arimba 2012 41.000 2.140 1138.370 35.000 15.000 2.688 9.243 15.799 2.780 0.610 0.980 0.740 3.800 Diesel

Central Termica de Anexo SE 2012 31.000 2.120 1135.870 20.000 30.000 2.747 9.623 16.498 1.250 1.130 0.520 0.730 5.590 Diesel
Central Termica de Kileva 2012 40.000 2.180 1132.200 30.000 69.000 2.764 10.045 17.325 0.590 0.770 0.230 0.750 6.460 Diesel
Central Termical do Lobito 2012 21.000 2.090 1112.250 5.000 31.000 2.721 6.677 10.634 8.020 4.170 0.490 0.510 -2.420 Diesel
Central Termica de Biopio 2012 91.000 2.070 1120.950 15.000 46.000 2.750 7.045 11.340 4.400 1.200 0.340 0.630 -2.000 Diesel

Central Termica do Cunene 2012 16.000 2.050 1117.200 5.000 20.000 2.721 9.999 17.277 1.190 4.430 0.760 0.780 5.870 Diesel
Central Termica Do Kuando

Kubango
2012 31.000 2.050 1149.810 10.000 16.000 2.721 8.129 13.536 1.070 1.880 0.950 0.720 2.540 Diesel

Central Termica do Benfica 2012 41.000 2.010 1161.360 35.000 34.000 2.792 10.363 17.934 -1.600 0.610 0.480 0.840 6.790 Diesel
Central Termica do Cuito 2012 11.000 1.990 1148.590 7.000 42.000 2.743 8.447 14.151 0.940 2.660 0.370 0.760 2.250 Diesel

Central Termica do Moxico 2012 41.000 1.970 1132.220 30.000 23.000 2.750 9.974 17.199 1.180 0.630 0.680 0.910 2.250 Diesel

Central Termica de Cazenga 2012 41.000 1.950 1128.290 30.000 50.000 2.773 43.891 19.173 0.430 0.830 0.320 0.770 8.380
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2012 81.000 1.930 1114.600 50.000 65.000 2.788 10.394 18.000 1.100 0.500 0.250 0.720 7.280 Diesel

Central Termica do Morro Bento 2012 31.000 1.910 1115.470 15.000 32.000 2.752 10.208 17.664 2.400 1.840 0.490 0.640 9.470 Diesel
Central Termica do Morro da Luz 2012 31.000 1.900 1127.040 10.000 25.000 2.741 8.788 14.835 1.480 2.150 0.620 0.690 4.630 Diesel

Central Termica KPM9 2012 15.000 1.880 1128.290 10.000 35.000 2.734 7.817 12.900 4.360 2.150 0.440 0.600 1.940 Diesel
Central Termica Benfica 2012 21.000 1.880 1129.550 17.000 18.000 2.716 10.079 17.442 2.540 1.350 0.840 0.760 5.290 Diesel

Central Termica Praia do Bispo 2012 35.000 1.020 1130.800 20.000 15.000 2.667 10.730 18.792 1.910 1.160 0.960 0.810 6.890 Diesel
Central Termica dos Quarteis 2012 31.000 1.860 1128.430 30.000 37.000 2.767 10.518 18.270 -1.700 0.700 0.430 0.870 7.060 Diesel

Central Termica Boavista I 2012 31.000 1.840 1136.890 15.000 30.000 2.728 9.351 15.975 1.590 1.420 0.510 0.750 4.340 Diesel
Central Termica Boavista II 2012 21.000 2.020 1120.690 10.000 45.000 2.785 9.094 15.403 0.390 2.110 0.360 0.730 4.350 Diesel
Central Termica Boavista III 2012 21.000 1.960 1140.020 16.000 42.000 2.796 8.886 14.976 1.290 1.300 0.390 0.720 3.180 Diesel

Central Termica Kassaki 2012 11.000 1.920 1168.520 8.000 28.000 2.752 8.656 14.560 1.730 2.600 0.560 0.700 3.320 Diesel
Central Termica CEEF 2012 16.000 1.900 1264.560 10.000 20.000 2.681 7.830 12.978 4.990 2.060 0.730 0.630 0.930 Diesel

Central Termica do Bengo 2012 31.000 1.880 1332.650 18.000 25.000 2.725 9.228 15.732 0.950 1.150 0.610 0.760 4.370 Diesel
Central Termica do Uige 2012 21.000 1.860 1269.460 15.000 20.000 2.708 8.703 14.697 1.900 1.420 0.750 0.690 4.400 Diesel

Central Termica Banza Congo 2012 21.000 1.900 1238.530 10.000 35.000 2.734 8.151 13.568 3.970 2.120 0.440 0.640 1.890 Diesel

Central Termica Soyo 2012 91.000 1.860 1718.350 70.000 15.000 2.698 29.350 11.977 5.060 0.290 0.990 0.590 0.680
Combined
Cycle Gas

Central Termica Landana 2012 31.000 2.140 1324.300 20.000 30.000 2.708 8.032 13.356 3.480 1.060 0.500 0.630 2.620 Diesel
Central Termica Malongo 2012 46.000 2.140 1207.010 40.000 15.000 2.698 9.511 16.324 2.730 0.530 0.990 0.770 3.790 Diesel

Central Termica de Xitoto Novo 2011 85.000 1.700 1064.500 70.000 45.000 2.728 9.694 16.660 3.130 0.340 0.340 0.700 5.240 Diesel
Central Termica de Xitoto Antigo 2011 13.000 2.050 1075.200 8.000 40.000 2.773 9.702 16.632 2.570 2.970 0.400 0.700 5.230 Diesel

Central Termica do Aeroporto 2011 13.000 2.030 1096.920 8.000 23.000 2.689 7.835 12.981 4.490 2.660 0.640 0.610 2.070 Diesel
Central Termica de Arimba 2011 46.000 2.010 1086.000 35.000 15.000 2.688 9.243 15.799 2.810 0.610 0.980 0.740 3.800 Diesel

Central Termica de Anexo SE 2011 36.000 2.070 1083.620 20.000 30.000 2.747 9.623 16.498 1.280 1.130 0.520 0.730 5.590 Diesel
Central Termica de Kileva 2011 44.000 1.990 1080.120 30.000 69.000 2.764 9.932 17.100 0.620 0.760 0.230 0.750 6.460 Diesel
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Central Termical do Lobito 2011 24.000 1.970 1061.090 5.000 31.000 2.721 6.677 10.634 8.050 4.170 0.490 0.510 -2.420 Diesel
Central Termica de Biopio 2011 100.000 1.950 1069.380 15.000 46.000 2.750 7.045 11.340 4.430 1.200 0.340 0.630 -2.000 Diesel

Central Termica do Cunene 2011 18.000 1.950 1065.810 5.000 20.000 2.708 9.993 17.277 1.220 4.430 0.750 0.780 5.870 Diesel
Central Termica Do Kuando

Kubango
2011 34.000 1.910 1096.920 10.000 16.000 2.721 8.129 13.536 1.100 1.880 0.950 0.720 2.540 Diesel

Central Termica do Benfica 2011 45.000 1.890 1107.940 35.000 34.000 2.792 10.363 17.934 -1.570 0.610 0.480 0.840 6.790 Diesel
Central Termica do Cuito 2011 12.000 1.870 1095.750 7.000 42.000 2.743 8.421 14.098 0.970 2.650 0.370 0.760 2.250 Diesel

Central Termica do Moxico 2011 45.000 1.860 1080.130 30.000 23.000 2.735 9.967 17.199 1.210 0.630 0.670 0.910 2.250 Diesel

Central Termica de Cazenga 2011 45.000 1.840 1076.390 30.000 50.000 2.773 43.891 19.173 0.460 0.830 0.320 0.770 8.380
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2011 89.000 1.820 1063.330 50.000 65.000 2.788 10.394 18.000 1.130 0.500 0.250 0.720 7.280 Diesel

Central Termica do Morro Bento 2011 34.000 1.800 1064.150 15.000 32.000 2.752 10.208 17.664 2.430 1.840 0.490 0.640 9.470 Diesel
Central Termica do Morro da Luz 2011 35.000 1.780 1075.190 10.000 25.000 2.741 8.788 14.835 1.510 2.150 0.620 0.690 4.630 Diesel

Central Termica KPM9 2011 16.000 1.780 1076.390 10.000 35.000 2.711 7.806 12.900 4.390 2.150 0.430 0.600 1.940 Diesel
Central Termica Benfica 2011 23.000 0.970 1077.590 17.000 18.000 2.704 10.008 17.313 2.570 1.340 0.830 0.760 5.290 Diesel

Central Termica Praia do Bispo 2011 38.000 1.760 1078.790 20.000 15.000 2.667 10.730 18.792 1.940 1.160 0.960 0.810 6.890 Diesel
Central Termica dos Quarteis 2011 34.000 1.750 1076.520 30.000 37.000 2.743 10.507 18.270 -1.660 0.700 0.420 0.870 7.060 Diesel

Central Termica Boavista I 2011 35.000 1.920 1084.590 15.000 30.000 2.728 9.351 15.975 1.620 1.420 0.510 0.750 4.340 Diesel
Central Termica Boavista II 2011 23.000 1.860 1069.140 10.000 45.000 2.785 9.094 15.403 0.420 2.110 0.360 0.730 4.350 Diesel
Central Termica Boavista III 2011 24.000 1.820 1087.580 16.000 42.000 2.796 8.886 14.976 1.320 1.300 0.390 0.720 3.180 Diesel

Central Termica Kassaki 2011 12.000 1.800 1114.770 8.000 28.000 2.752 8.628 14.504 1.770 2.590 0.560 0.700 3.320 Diesel
Central Termica CEEF 2011 17.000 1.790 1206.390 10.000 20.000 2.681 7.798 12.915 5.020 2.050 0.730 0.630 0.930 Diesel

Central Termica do Bengo 2011 34.000 1.770 1271.350 18.000 25.000 2.725 9.228 15.732 0.980 1.150 0.610 0.760 4.370 Diesel
Central Termica do Uige 2011 23.000 1.800 1211.060 15.000 20.000 2.708 8.703 14.697 1.930 1.420 0.750 0.690 4.400 Diesel

Central Termica Banza Congo 2011 24.000 1.770 1181.560 10.000 35.000 2.734 8.151 13.568 4.000 2.120 0.440 0.640 1.890 Diesel

Central Termica Soyo 2011 100.000 2.040 1639.300 70.000 15.000 2.688 29.330 11.977 5.090 0.290 0.980 0.590 0.680
Combined
Cycle Gas

Central Termica Landana 2011 34.000 2.040 1263.380 20.000 30.000 2.708 8.032 13.356 3.510 1.060 0.500 0.630 2.620 Diesel
Central Termica Malongo 2011 85.000 1.610 1151.490 40.000 15.000 2.698 9.511 16.324 2.760 0.530 0.990 0.770 3.790 Diesel

Central Termica de Xitoto Novo 2010 13.000 1.640 1021.920 70.000 45.000 2.728 9.694 16.660 3.120 0.340 0.340 0.700 5.240 Diesel
Central Termica de Xitoto Antigo 2010 13.000 1.990 1032.190 8.000 40.000 2.773 9.702 16.632 2.560 2.970 0.400 0.700 5.230 Diesel

Central Termica do Aeroporto 2010 46.000 1.970 1053.040 8.000 23.000 2.689 7.729 12.768 4.480 2.660 0.640 0.600 2.070 Diesel
Central Termica de Arimba 2010 36.000 1.950 1042.560 35.000 15.000 2.688 9.243 15.799 2.800 0.610 0.980 0.740 3.800 Diesel

Central Termica de Anexo SE 2010 39.600 2.010 1040.270 20.000 30.000 2.747 9.623 16.498 1.270 1.130 0.520 0.730 5.590 Diesel
Central Termica de Kileva 2010 24.000 1.930 1036.920 30.000 69.000 2.764 9.818 16.872 0.610 0.760 0.230 0.740 6.460 Diesel
Central Termical do Lobito 2010 100.000 1.910 1018.640 5.000 31.000 2.721 6.664 10.608 8.040 4.160 0.490 0.510 -2.420 Diesel
Central Termica de Biopio 2010 18.000 1.890 1026.610 15.000 46.000 2.750 7.045 11.340 4.420 1.200 0.340 0.630 -2.000 Diesel

Central Termica do Cunene 2010 34.000 1.890 1023.180 5.000 20.000 2.708 9.973 17.238 1.210 4.420 0.750 0.780 5.870 Diesel
Central Termica Do Kuando

Kubango
2010 45.000 1.850 1053.040 10.000 16.000 2.721 8.129 13.536 1.090 1.880 0.950 0.720 2.540 Diesel

Central Termica do Benfica 2010 12.000 1.840 1063.620 35.000 34.000 2.771 10.353 17.934 -1.580 0.610 0.470 0.840 6.790 Diesel
Central Termica do Cuito 2010 45.000 1.820 1051.920 7.000 42.000 2.743 8.421 14.098 0.960 2.650 0.370 0.760 2.250 Diesel

Central Termica do Moxico 2010 45.000 1.800 1036.930 30.000 23.000 2.735 9.967 17.199 1.200 0.630 0.670 0.910 2.250 Diesel

Central Termica de Cazenga 2010 89.000 1.780 1033.330 30.000 50.000 2.773 43.891 19.173 0.450 0.830 0.320 0.770 8.380
Combined
Cycle Gas

Central Termica do Caminho de
Ferro de Luanda

2010 34.000 1.760 1020.790 50.000 65.000 2.788 10.394 18.000 1.120 0.500 0.250 0.720 7.280 Diesel
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DMU Year
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Capital
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Fuel_Type

Central Termica do Morro Bento 2010 35.000 1.750 1021.590 15.000 32.000 2.752 10.208 17.664 2.420 1.840 0.490 0.640 9.470 Diesel
Central Termica do Morro da Luz 2010 16.000 1.730 1032.190 10.000 25.000 2.725 8.780 14.835 1.500 2.150 0.610 0.690 4.630 Diesel

Central Termica KPM9 2010 23.000 1.730 1033.340 10.000 35.000 2.711 7.698 12.685 4.380 2.150 0.430 0.590 1.940 Diesel
Central Termica Benfica 2010 38.000 0.940 1034.480 17.000 18.000 2.704 10.008 17.313 2.560 1.340 0.830 0.760 5.290 Diesel

Central Termica Praia do Bispo 2010 34.000 1.710 1035.630 20.000 15.000 2.657 10.724 18.792 1.930 1.160 0.950 0.810 6.890 Diesel
Central Termica dos Quarteis 2010 35.000 1.690 1033.460 30.000 37.000 2.743 10.507 18.270 -1.670 0.700 0.420 0.870 7.060 Diesel

Central Termica Boavista I 2010 23.000 1.860 1041.210 15.000 30.000 2.728 9.351 15.975 1.610 1.420 0.510 0.750 4.340 Diesel
Central Termica Boavista II 2010 24.000 1.800 1026.370 10.000 45.000 2.785 9.094 15.403 0.410 2.110 0.360 0.730 4.350 Diesel
Central Termica Boavista III 2010 12.000 1.770 1044.070 16.000 42.000 2.796 8.828 14.861 1.310 1.290 0.390 0.720 3.180 Diesel

Central Termica Kassaki 2010 17.000 1.750 1070.180 8.000 28.000 2.752 8.628 14.504 1.760 2.590 0.560 0.700 3.320 Diesel
Central Termica CEEF 2010 34.000 1.730 1158.130 10.000 20.000 2.681 7.798 12.915 5.010 2.050 0.730 0.630 0.930 Diesel

Central Termica do Bengo 2010 23.000 1.710 1220.500 18.000 25.000 2.725 9.160 15.595 0.970 1.140 0.610 0.760 4.370 Diesel
Central Termica do Uige 2010 24.000 1.750 1162.620 15.000 20.000 2.708 8.703 14.697 1.920 1.420 0.750 0.690 4.400 Diesel

Central Termica Banza Congo 2010 100.000 1.710 1134.300 10.000 35.000 2.734 8.045 13.356 3.990 2.120 0.440 0.630 1.890 Diesel

Central Termica Soyo 2010 34.000 1.980 1573.730 70.000 15.000 2.688 29.330 11.977 5.080 0.290 0.980 0.590 0.680
Combined
Cycle Gas

Central Termica Landana 2010 28.000 1.980 1212.840 20.000 30.000 2.708 8.032 13.356 3.500 1.060 0.500 0.630 2.620 Diesel
Central Termica Malongo 2010 45.000 1.560 1105.430 40.000 15.000 2.698 9.511 16.324 2.750 0.530 0.990 0.770 3.790 Diesel
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Appendix B. Complete Ranking of DMUs

DMU Phase I ψ2010
o ψ2011

o ψ2012
o ψ2013

o ψ2014
o ψ2015

o ψ2016
o Phase II Rank

DMU
Location

DMU
Name

DMU
Capacity
(MW)

1 1.0825 0.85 0.9169 0.991 0.9904 1.1773 1.2453 1.4068 - 15 Namibe Xitoto Novo 70
2 1.226 1.0524 1.0915 1.1361 1.1345 1.3469 1.4104 1.4101 - 23 Namibe Xitoto Antigo 8
3 1.1193 1.212 1.1884 1.155 1.1546 1.0444 1.043 1.0376 - 16 Namibe Aeroporto 8
4 0.9546 0.951 0.9517 0.9519 0.9569 0.9418 0.9601 0.9691 - 8 Lubango Arimba 35
5 1.2801 1.2981 1.2805 1.2627 1.2614 1.2819 1.2762 1.3001 - 29 Lubango Anexo SE 20
6 1.1208 0.8338 0.8427 0.8585 0.8632 1.4997 1.4707 1.4769 - 17 Benguela Kileva 30
7 0.7757 0.9064 0.8848 0.8521 0.8524 0.7232 0.7245 0.4868 - 4 Benguela Lobito 5
8 0.5208 0.448 0.4514 0.4534 0.4622 0.3726 0.4035 1.0545 - 1 Benguela Biópio 15
9 0.7547 0.7534 0.7539 0.7544 0.7547 0.755 0.7555 0.756 - 3 Cunene Cunene 5
10 0.8143 0.8274 0.8181 0.806 0.8002 0.8108 0.8104 0.8275 - 5 Cuando-Cubango Kuando Kubango 10
11 1.1904 1.0509 1.0534 1.057 1.0557 1.3517 1.3566 1.4074 - 19 Huambo Benfica 35
12 1.3248 1.3825 1.3823 1.3827 1.3812 1.2493 1.2456 1.2496 - 31 Bié Cuito 7
13 1.2069 1.2522 1.2149 1.1736 1.1742 1.1858 1.2014 1.2459 - 21 Moxico Moxico 30
14 2.3954 2.5889 2.5306 2.4504 2.453 2.4537 2.4937 1.7977 - 32 Luanda Cazenga 30
15 1.2533 1.0851 1.0762 1.0779 1.0769 1.4617 1.4639 1.5313 - 26 Luanda Caminho de Ferro de Luanda 50
16 1.23 1.1608 1.1517 1.1362 1.1366 1.3331 1.337 1.3543 - 24 Luanda Morro Bento 15
17 1.0105 0.8956 0.9149 0.9376 0.9395 1.1263 1.121 1.1387 - 9 Luanda Morro da Luz 10
18 1.2566 1.4324 1.3648 1.3078 1.3084 1.129 1.1311 1.1228 - 27 Luanda KM9 10
19 1.0157 0.9742 0.9769 0.9786 0.9822 1.1277 1.0333 1.0371 - 10 Luanda Benfica 17
20 0.9266 0.9355 0.9364 0.9374 0.9399 0.8488 0.9435 0.9448 - 7 Luanda Praia do Bispo 20
21 1.2979 1.2124 1.2143 1.2135 1.2143 1.4004 1.4049 1.4252 - 30 Luanda Quarteis 30
22 1.2056 1.1773 1.18 1.176 1.1753 1.2183 1.2474 1.2648 - 20 Luanda Boavista I 15
23 1.2693 1.1584 1.1972 1.2448 1.245 1.35 1.3436 1.3463 - 28 Luanda Boavista II 10
24 1.236 1.1493 1.1675 1.2084 1.2086 1.3093 1.3064 1.3022 - 25 Luanda Boavista III 16
25 1.0691 1.0057 1.0181 1.0335 1.0315 1.1312 1.1309 1.133 - 14 Luanda Kassaki 8
26 1.0321 1.0818 1.0726 1.0513 1.0508 0.9891 0.9892 0.9897 - 12 Luanda CEEF 10
27 1.1248 1.0936 1.0876 1.0811 1.0822 1.1697 1.1743 1.1852 - 18 Bengo Bengo 18
28 1.0236 0.973 0.975 0.9772 0.9791 1.0796 1.09 1.0914 - 11 Uige Uige 15
29 1.0657 0.9578 0.9868 1.0278 1.028 1.1666 1.1657 1.1274 - 13 Zaire Banza Congo 10
30 0.6098 0.4069 0.4487 0.5 0.5055 0.5055 0.85 1.0524 - 2 Zaire Soyo 70
31 1.2169 1.3405 1.296 1.245 1.2438 1.1195 1.1252 1.1483 - 22 Cabinda Landana 20
32 0.8512 0.9106 0.8922 0.8718 0.866 0.9213 0.5817 0.9149 - 6 Cabinda Malongo 40
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