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Abstract: The need for more effective defence systems is of critical importance because of the rising
risk of explosive attacks. Sandwich panels are used as plastically deforming sacrificial structures,
absorbing blast wave energy. To the authors’ knowledge, the blast behaviour of sandwich panels with
connected (welded/bolted/riveted) corrugated layers has been well covered in literature. Hence, the
aim of this numerical study was to develop new, easy-to-build, non-expensive, graded sandwich
panel with ‘unconnected’ corrugated layers that can be used as a multipurpose sacrificial protective
structure against wide range of blast threats. The proposed sandwich panel is composed of six
unconnected aluminium (AL6063-T4) core layers encased in a steel (Weldox 460E) frame with 330 ×
330 × 150 mm overall dimensions. The numerical analysis was conducted using Abaqus/Explicit
solver. First, the performance of four different nongraded layer topologies (trapezoidal, triangular,
sinusoidal, and rectangular) was compared, when subjected to ~16 MPa peak reflected over-pressure
(M = 0.5 kg of TNT at R = 0.5 m). Results showed that the trapezoidal topology outperformed other
topologies, with uniform progressive collapse, lower reaction force, and higher plastic dissipation
energy. Then, the trapezoidal topology was further analysed to design a ‘graded’ sandwich panel that
can absorb a wide range of blast intensities (~4, 7, 11, 13, and 16 MPa peak reflected over-pressures)
by using a (0.4, 0.8, 1.2 mm) stepwise thickness combination for the layers. In conclusion, the superior
performance of the proposed sandwich panel with unconnected graded layers can be considered as a
novel alternative to the conventional costly laser-welded sandwich panels. Applications of the new
solution range from protecting civil structures to military facilities.

Keywords: energy absorbers; damping systems; sandwich panels; blast; shock; impact; Abaqus

1. Introduction

Explosions account for about 49% (about 88,600) of the overall number of terrorist
attacks (182,300 incidents), according to data collected from 1970 to 2017 [1]. Due to this
growing hazard of explosive attacks, the need for more robust protecting systems is of
vital importance [2–4]. Exposure of civilian structures to blast scenarios cannot be fully
prevented, however the consequences of these incidents can be significantly mitigated
by changing architecture, design, or retrofitting techniques [5,6]. Sandwich panels are
used as sacrificial structures to absorb the energy from blast/shock/impact. Usually, these
panel systems consist of a core structure that is sandwiched between two plates. The
frontal-plate is used to disperse the blast pressure uniformly to the core, which in effect
deforms plastically, absorbing the blast wave energy [7]. The inner-core structure can be
classified into two categories; cellular core and corrugated core [8,9].

Cellular cores are metallic foams, honeycomb structures or auxetic topologies. These
highly porous materials possess combinations of desired properties such as light-weight
and energy absorption [10–12]. Metallic foams are most often made from aluminum
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(aluminum foams). They can be open cell or closed cell foams. Properties and test data
are provided in Nowak, et al. [13], Andrews, et al. [14], Pecherski, et al. [15],
Papadopoulos, et al. [16] and Peroni, et al. [17]. Numerical and experimental studies
showed the effectiveness of metallic foams in absorbing blast energy. However, it is
hard to optimize foam properties to the applied load due to the irregularity in its mi-
crostructure. Peroni, et al. [17], mention that the main concerns in designing aluminium
foams are material anisotropy and large density scatter. Hence, optimising mechanical
properties for real applications could be challenging.

Honeycomb structures and auxetic topologies are alternatives as their geometrical
parameters can be modified based on the specific application. Honeycomb structures
are used in different protective structures because of their energy absorption and impact
resistance characteristics [18–21]. Analytical [22,23], numerical [24–26] and experimen-
tal [27,28] studies were done to examine their mechanical characteristics and shock/impact
response. However, latest studies confirm that the negative poison’s ratio in auxetic
topologies leads to improved energy dissipation compared to the traditional hexagonal
honeycomb topology [29,30]. There are many research articles and review studies dealing
with auxetic structures and their applications. For example, the research of Alderson [31],
Yang, et al. [32], Greaves [33], Liu and Hu [34], and Prawoto [35]. Despite the superior
performance of honeycomb structures and auxetic topologies, their production requires
a relatively expensive 3D printing [9]. This can limit their applications to specific areas,
such as aerospace industry, biomedical engineering, and military equipment. For protect-
ing larger areas against blast threats, such as the elevation/façade of a whole building,
corrugated cores can be a cheaper core option for sandwich panels.

Corrugated core sandwich panels have been proposed as attractive alternative due
to their high longitudinal stretching, shear strengths, and energy absorption characteris-
tics [36–38]. A folding technique is used to manufacture the corrugated layers that can be
welded to form a relatively non-expensive core. The geometric topologies can be divided
into four main types; triangular/V-shape, sinusoidal/arc-shaped, rectangular/box-shaped,
and the trapezoidal-shaped. The four topologies are presented in Figure 1. Analytical, nu-
merical, and experimental studies have been conducted so far to predict the blast resistance
and energy absorption of corrugated core sandwich panels [38,39]. The literature review
presented below is categorized based on the studied topology.
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Figure 1. Topologies commonly used in corrugated core sandwich panels. (a) Triangular;
(b) Sinusoidal; (c) Rectangular; (d) Trapezoidal.

Rubino, et al. [40], compare the dynamic performance of the triangular/V-shape cor-
rugated core panels with monolithic plates by measuring permanent transverse deflection
of those fully-clamped structures. The sandwich panels outperformed monolithic plates
of equal mass and the plastic strain of the sandwich panel’s frontal face exceeded that
of monolithic plates [40]. Three-dimensional fully coupled simulation was conducted by
Zhang, et al. [41], to investigate in detail the performance of V-shape sandwich panels when
subjected to close-range air blast. The numerical study showed that the failure/deformation
modes of the tested panels are mainly linked to stand-off distance. It was also found that
the core configuration affects the global deflection with negligible influence on the peak
reflected pressure [41]. Rejab and Cantwell [42] show detailed experimental and numerical
compression response of aluminum triangular corrugated-core sandwich panels. The initial
failure mode was buckling of the cell walls, followed by fracture of the cell walls, then,
localized delamination and finally debonding between the layers [42].
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Metallic Sinusoidal corrugated core sandwich panels with polymeric foam filling were
developed by Yazici, et al. [43]. Both the experimental and the numerical simulations
revealed that foam filling usually improved sandwich panel blast resistivity, with reducing
deflections at the rear and frontal faces by >50%. In addition, for simply-supported panels,
the benefits of foam infill were more prominent than the encastred edge panels [43]. The use
of arc-shaped layers arranged with uniform and nonuniform thicknesses (graded core) was
investigated in another study [44]. The Split-Hopkinson bar and shock tube experiments
(supported by FE model) showed that arc-shaped core layers with nonuniform thicknesses
(graded) outperform those with uniform thicknesses [44,45].

Blast performance of trapezoidal corrugated cores, made of 304 stainless steel material,
was investigated by Zhang, et al. [36] through a series of air blast experiments. Results
revealed that the influence of the frontal sheet’s thickness on the panel’s overall deflection
is greater than that of the rear sheet. Moreover, increasing the core plate thickness and
corrugation angle revealed better blast performance [36]. Wijaya and Kim [46], compare
the blast response of unstiffened and stiffened trapezoidal corrugated core panels. The
study concludes that unstiffened panels produce localized buckling and a larger permanent
deformation than the stiffened cores [46]. An experimental shock tube study [47], show
the blast response of trapezoidal corrugated panel and investigate the influence of its
connection details. The results highlight the conservative nature of the blast wall design
guidelines, which limit the deflections to 1/40 of the blast wall height, leading to a more
economical design [47]. In Liang, et al. [48], an efficient method was developed which
combines the Backtrack Programming Method (BPM) with the Feasible Direction Method
(FDM) to look at the optimum design of trapezoidal cores under blast pressures. Failure
behavior constraints and structure buckling were taken into considerations in the optimum
design. The study can be considered as a valuable guide for the design of corrugated core
sandwich panels [48]. In Li, et al. [49], a ballistic pendulum system and FE simulations
were used to examine the air blast response of trapezoidal corrugated sandwich panels.
The structures’ failure modes, history of deformation, and absorption of energy were
analyzed. Parametric studies demonstrate that the face sheets’ residual deflections may be
minimized by increasing the yield stress, thickness, and contact area between the face sheet
and core [49]. Kılıçaslan, et al. [50] propose adding interlayer sheets between multilayer
trapezoidal aluminum corrugated core sandwich structures. The study shows that multi-
layering can reduce buckling stress and can increase densification strain of the corrugated
layers. The addition of interlayer sheets led to a progressive and homogenous deformation
of the individual layers at the cost of lower specific energy absorption capability [50,51].

Rong, et al. [52], performed a thorough comparative study of all geometric configu-
rations mentioned earlier. The main aim was to check the effect of geometric topologies
(Figure 1) on the behavior of sandwich panels, when subjected to small or high energy
impact. Results show that sinusoidal core sandwich panels have lower compression
stiffness, lower ultimate strengths, and the least energy absorption. Major debonding
observed in sandwich panels with triangular and sinusoidal cores because of the small
bonding/welding area. The rectangular and trapezoidal cores absorbed more energy
than the other structures. However, Rong, et al. [52] mention that the forming process
of rectangular core can be demanding, as the stamping die is difficult to separate from
the core during fabrication. The study concludes that, “trapezoidal corrugated core is an
excellent structure with balanced performance for engineering application” [52].

Analytical solutions were also proposed [53–55] for different geometrical configura-
tions. As an example, in Bartolozzi, et al. [56], a general analytical formulation is proposed
to model every core-geometry, overcoming the main limitation of existing analytical for-
mulations (availability of analytical formulations for specific geometrical configurations).
Moreover, researchers in this field recommend using graded layers (nonuniform thick-
nesses) that allows energy absorption for different impact/blast loading scenarios [9,45].
Li, et al. [57], moreover, praise graded-core usage and state that, “graded sandwich panels,
especially for relative density descending core arrangement, would display a better blast
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resistance than the ungraded ones”. Therefore, in this research, a graded system will be
considered.

To the authors’ knowledge, the impact/blast behavior of sandwich panels with
welded/bolted/riveted corrugated layers has been well covered in literature. The con-
nections between the core layers give integrity to the whole panel to work as one unit.
However, the plastic deformation of a single layer may get affected by the adjacent layers;
hence, reducing plastic dissipation energy. Therefore, this study proposes a new panel
configuration with “unconnected” graded corrugated layers encased in a steel frame. The
study compares numerically the air blast response (reaction forces, peak deformations, and
plastic dissipation energy) of aluminum sandwich panels with four different unconnected
layer topologies, namely, trapezoidal, triangular, sinusoidal, and rectangular. The directions
of the corrugated layers will be cross-arranged (0◦/90◦), as it gives better energy absorption
than the regular-arranged [58]. The most efficient topology is then thoroughly investigated
for other blast loading scenarios. This is mainly to achieve a unique graded sandwich
panel as a multipurpose sacrificial protective structure. The new unconnected/nonwelded
configuration proposed here, may also simplify the production process and may lead to a
more cost-effective sandwich panels.

2. Geometrical and Material Properties

As mentioned earlier, this study proposes a new panel configuration with “un-
connected” corrugated layers encased in a steel frame. The comparative performance-
based study is for four different topologies, namely, trapezoidal, triangular, sinusoidal,
and rectangular. The geometry and dimensions of the four topologies are shown in
Figure 1. To achieve a valid energy dissipation comparison between the topologies, the
mass should be the same. Therefore, all topologies were designed so that the profile total
length (before corrugation) is unified (386 mm) with a uniform aluminium plate thickness
of 1 mm. Therefore, as shown in Figure 2a–c, the length of the trapezoidal, triangular
and sinusoidal topologies (after corrugation) is 320 mm, while the rectangular topology
(Figure 2d) has a 310 mm length. It is also important to highlight that all 4 topologies has
the same height of 20 mm (21 mm with the 1 mm plate thickness) and extrusion depth
of 320 mm. Moreover, all four topologies have the same aluminium grade (AL6063-T4).
Hence, the mass of one layer of any topology would be equal (0.34 kg).

The AL6063-T4 is a low strength aluminum (yield point of 90 MPa) that is commonly
used for door, windows, and furniture. It has lower strength, high ductility, and less rate
dependency than other high strength grades (such as 7075-T6). The selection of this grade
(AL6063-T4) was based on the conclusions of Al-Rifaie and Sumelka [9] that compared the
energy absorption of three cores of different aluminum grades. The study highlights that
the use of relatively weak grade, such as AL6063-T4, allows more deformation in the core,
greater energy absorption, and lower reaction forces in the supports [9]. Further details on
the material model of AL6063-T4 will be shown in Section 4.

Six layers were implemented for each corrugated core topology. Table 1 shows the
side and 3D views of the six layers per core that has a total thickness of 131 mm (including
the 1 mm material thickness and 1 mm gap between the layers). As mentioned earlier, the
directions of the corrugated layers are cross-arranged (0◦/90◦). The last column of Table 1
illustrates how the corrugated core is positioned in a specifically designed steel frame that
will be described below.
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A steel frame was required to hold the corrugated core of the sandwich panel in place
before and after blast pressure. The “easy to build” steel frame proposed here substitute
the standard known sandwich panel configuration composed of (frontal plate, corrugated
core, and back steel plate) that are all laser welded to keep them integrated together. The
frontal and rear views of the steel frame are shown in Figure 3. The steel frame was first
designed as a cuboid with one frontal opening. Then, analysis revealed that the four sides
could also be open to reduce its mass and material cost. The overall dimensions of the steel
frame are 330 × 330 × 150 mm, with a frontal clear opening of 300 × 300 mm, allowing
blast pressure to impact the corrugated core (Figure 3a). The rear plate was strengthened
with extra stiffeners of 16 mm depth (Figure 3b). This was to reduce certain rear plate
deflections due to the crushing impact of the corrugated core. All the components of the
steel frame have a unified material thickness of 2 mm. The total mass of the steel frame
is 4 kg. As shown in Figure 3a and Table 1, the inner space of the steel frame (330 × 330
× 134 mm) accommodates the core (320 × 320 × 131 mm) with a few millimetres gap in
each side. This is to keep the layers free to deform/move within the frame’s space without
connection neither between the layers, not between the layers and the frame. Weldox 460E
steel grade has been used for the steel frame because of its ductility and high strength.
Further information on Weldox 460E Steel material model will be given in Section 4.
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Table 1. Side and 3D views of the six corrugated layers composing the aluminium cores of different topologies, positioned
in a steel frame. (a) Trapezoidal; (b) Triangular; (c) Sinusoidal; (d) Rectangular.

Topology Side View of the Core 3D View of Core Aluminum Core + Steel Frame

(a) Trapezoidal
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3. Blast Loading

The new sandwich panel configuration proposed in this study, is supposed to work as
a sacrificial protective structure that can absorb high impulsive blast loading generated
from accidental or intentional explosion. As known, angle of incident, mass of explosive
material (M), and stand-off distance (R), are the principal factors to examine. Peak reflected
overpressure can be achieved when the angle of incident is equal to zero (the angle between
the wave propagation vector from the explosive centroid towards the target and the
outward normal of the reflecting surface) [59,60]. Therefore, the angle of incident is
assumed to be 0◦ in this study. In terms of the mass (M) of the Improvised Explosive
Device IED (the 2nd factor), the US Department of Homeland Security, in FEMA report [61],
provide a range for it, in TNT equivalency. The range is dependent on the transport form,
which may be luggage, a car, or a van with a maximum potential carrying weight of 45 kg,
200 kg or 2000 kg, respectively. The value of the last factor, stand-off distance (R), should
be more than the longest dimension of the target, to prevent localized effect and to receive
a relatively uniform blast pressure. Yuen, et al. [62], mention that, “when the stand-off
distance exceeds the largest plate dimension, loading could be considered to be uniform”.
Moreover, the following points were assumed in this research:

• The sandwich panel is outside fireball of explosion with no afterburning effect. Hence,
it is possible to ignore the interaction with the gases created.

• The blast occurs at sea level (the altitude of the location affects the atmospheric
pressure, which is an important factor for blast wave propagation).

• Additional loading from fragmentation is excluded (for more details, refer to [63–66]).

In this paper, five blast intensities denoted here as BI-1 to BI-5, are taken into consid-
eration. Table 2 lists the five blast intensities, the chosen M-R combination in this study
and their equivalent real-life M-R combinations. The mass is in kg of TNT or its equivalent
while the stand-off distance R is in m. A scaled distance, Z in m/kg1/3, can link the mass
M to the standoff distance R as follow:

Z =
R

3
√

M
. (1)
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Table 2. The five blast intensities considered in this study, their scaled distances Z, and equivalent real-life M-R combinations
(Mass is in Kg of TNT or its equivalent, stand-off distance R is in m). The highlighted column represents the considered
M-R combination in this study.

Chosen M-R Combination in This Study Equivalent Real-Life M-R Combinations

Blast Intensities Scaled Distance
Z m/kg1/3

Person-Borne TNT
R = 0.5 m

Luggage-Borne TNT
M = 45 kg

Car-Borne TNT
M = 200 kg

Van-Borne TNT
M = 2000 kg

BI-1 Z = 1.08 M = 0.1 kg R = 3.85 m R = 6.35 m R = 13.60 m
BI-2 Z = 0.85 M = 0.2 kg R = 3.00 m R = 5.00 m R = 10.70 m
BI-3 Z = 0.75 M = 0.3 kg R = 2.65 m R = 4.40 m R = 9.50 m
BI-4 Z = 0.68 M = 0.4 kg R = 2.40 m R = 4.00 m R = 8.60 m
BI-5 Z = 0.63 M = 0.5 kg R = 2.25 m R = 3.70 m R = 7.90 m

The selected M-R combinations in this paper are 0.1–0.5 kg of TNT at R = 0.5 giving
scaled distance Z of 1.08–0.68 m/kg1/3. The relatively small mass selected here makes
future experimental testing easier to accomplish. The selected M-R combination represents
possible person-borne TNT, which is equivalent to a luggage, car, or van—borne TNT
with bigger stand-off distances (Table 2). For example, the peak reflected over-pressure
of blast intensity BI-5 (Z = 0.63), can be the same for (M = 0.5 kg at R = 0.5 m) and
(M = 2000 kg van at R = 7.90 m), providing that there is no reflection/afterburning/debris.
However, the detonation energy released and the pressure-time history of those different
M-R combinations may vary. It is important to mention that all the M-R combination in
Table 2 have scaled distances Z more than the minimum scaled distance of 0.4 m/kg1/3

required to avoid close-range detonations [67,68].
Using ConWep, a Conventional Weapons effects calculation built-in tool in Abaqus,

the “peak reflected overpressure” and the “reflected impulse” time histories of the five
blast intensities were calculated (as presented in Figure 4). The peak reflected over-pressure
values are 3.83, 7.25, 11.02, 13.29, and 15.86 MPa for BI-1 to BI-5, respectively. The arrival
time for the frontal shock wave is fluctuating about 0.2 ms (Figure 4a). The peak reflected
impulse values range from 0.29 for BI-1 to 1.2 for BI-5. Figure 5 shows ConWep peak
reflected overpressure of the blast intensity BI-5 on the trapezoidal sandwich panel at
certain time frames.
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4. Numerical Model

Numerical modelling and FE codes are cost-effective tools used widely in the field
of blast protective design [69,70]. Therefore, the new sandwich panel configuration pro-
posed in this study was modelled by Abaqus (Version 2019, Dassault Systèmes, Vélizy-
Villacoublay Cedex, France) and analysed by its explicit numerical solver. The steel frame
and the aluminium corrugated core were simulated using 3D deformable shell elements
(using five points of integration within its thickness). Two homogeneous isotropic sections
were defined for both of them.

An elasto-plastic material model was used with Johnson–Cook strain hardening and
damage initiation. Johnson–Cook material model is a constitutive model that can replicate
the material plastic behaviour at high temperatures and high strain rates. The yield stress
σy can be described, in Equation (2), with taking into account the thermal softening effects
and the strain rate hardening [71–74]. The dimensionless temperature parameter T̂ is
defined in Equation (3).

σy = (A + B εn)

[
1 + C ln

( .
ε
.

ε0

)] [
1−

(
T̂
)m
]

, (2)


T̂ = 0 for T < T0

T̂ = T−T0
Tm−T0

for T0 < T < Tm

T̂ = 1 for T > Tm

, (3)

where, ε is plastic strain,
.

ε0 is reference plastic strain rate,
.
ε is plastic strain rate, T is

current material temperature, T0 is transition/room temperature and Tm is melting point
of the material. The material parameters measured at or below T0 are A (yield stress),
B (pre-exponential factor), C (strain rate factor), n (work-hardening exponent), and m
(thermal-softening exponent).

Moreover, Abaqus provides built-in Johnson–Cook dynamic failure model [75]. When
the damage parameter ω is more than 1, failure is assumed to occur. The damage parameter
ω is:

ω = ∑
(

∆ε

ε f

)
, (4)

where, ε f is plastic strain at failure, ∆ε is an increment of plastic strain and the summation
is conducted for all increments of the analysis. The plastic strain at failure ε f depends on
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pressure to Mises stress ratio p
q , nondimensional plastic strain rate

.
ε.

ε0
, and dimensionless

temperature parameter T̂. Hence, the strain at failure ε f can be defined as follow:

ε f =

[
d1 + d2 exp

(
d3

p
q

)][
1 + d4 ln

( .
ε
.

ε0

)] (
1 + d5 T̂

)
, (5)

where d1 − d5 are the failure parameters. All material parameters for the J–C material
model are listed in Table 3. The material parameters are based on Børvik, et al. [76] for
Weldox 460E Steel and ASM Specification Aerospace Metals [77] for AL6063-T4 aluminium.
The references include not only mechanical properties, but also chemical composition of
those materials.

Table 3. Material parameters for Weldox 460E Steel [76] and AL6063-T4 aluminium [77] used for the frame and the
corrugated core, respectively.

Category Constant Description Unit Weldox 460E Steel AL6063-T4

Elastic Constants
E Modulus of Elasticity GPa 200 68.9

ν Poisson’s ratio - 0.33 0.33

Density ρ Mass density kg/m3 7850 2703

Yield stress and strain
hardening

A Yield Strength MPa 490 89.6

B Ultimate Strength MPa 807 172

n Work-hardening exponent - 0.73 0.42

Strain-rate hardening
.

ε0 Reference Strain rate S−1 5 ×10−4 1 ×10−4

C Strain rate factor - 0.0114 0.002

Damage evolution
Dc Critical Damage - 0.3 0.3

pd Damage threshold - 0 0

Adiabatic heating and
temperature softening

Cp Specific heat mm2 ·K/S2 452 ×106 910 ×106

χ
Taylor Quinney empirical

constant/inelastic heat
fraction

- 0.9 0.9

Tm Melting Temperature K 1800 616

T0 Room Temperature K 293 293.2

m Thermal-softening exponent - 0.94 1.34

Fracture Strain
Constants

d1 - - 0.0705 −0.77

d2 - - 1.732 1.45

d3 - - −0.54 0.47

d4 - - −0.015 0.00314

d5 - - 0 1.6

The frame and the corrugated core were numerically modelled in such a way that the
length of the sandwich panel is parallel to x-axis, the height is parallel to y-axis and the
blast pressure and relative deformations follow z-axis, Figure 3a. A nonlinear dynamic
explicit step was implemented that have a total time of 0.01 s (10 ms). To add the effect
of heat generated from plastic strains, the “Adiabatic heating effects” were also included,
assuming inelastic heat fraction χ = 0.9.
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A general contact (explicit) was also assigned for the whole assembly, including
tangential and normal contact options. A “penalty” friction formulation was selected for
the tangential behaviour with coefficient of friction = 0.3 while a “hard” contact was chosen
for the normal behaviour. As discussed earlier in Section 3, ConWep was used for the blast
loading with “air blast” option.

In terms of boundary conditions (BC), the proposed sandwich panel can be attached
to the structure (required to be protected) in different ways. As shown in Figure 3b, the
stiffeners on the rear side of the steel frame can be all connected to the structure, or only
the external perimeter/edges or only the corners. The 3rd option was chosen here, as it is
the most critical in terms of expected deformations/plastic strain in the sandwich panel.
The four nodal BC at the corners (restraining the Z-direction) provide concentrated nodal
reactions forces. All other translational and rotational degrees of freedom are left free.

The selected mesh type was a four node doubly curved shell (S4 elements). As widely
recognised, a key factor in numerical simulations is the computational cost. Hence, the
less expensive model with acceptable accuracy must be defined at early stages [78,79].
Therefore, a thorough analysis of mesh size was performed based on peak reaction forces
and plastic dissipation energy. The finite element size was varied from 10 mm, 5 mm, and
2.5 mm (Figure 6).
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Mesh analysis revealed that reaction force and plastic dissipation energy for mesh size
2.5 mm and 5 mm are approximately coincident (<5% difference), as shown in Figures 7
and 8 and in Table 4. However, results for 10 mm mesh size are deviated with more noticed
difference of 14% (in Plastic Dissipation Energy (PDE)) and 5.3% (in Reaction Force (RFz)).
So, the 5 mm mesh size was chosen for further simulations of the proposed sandwich panel,
as it is the less expensive model with acceptable accuracy.
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Figure 8. Variation of Reaction Force (RFz) in a single support with respect to mesh size 2.5 mm,
5 mm and 10 mm, for the trapezoidal sandwich panel subjected to 0.5 kg of TNT at R = 0.5 m (BI-5).

Table 4. The average difference in percentage (%) of a specific mesh size in relation to mesh size
2.5 mm.

Considered output Mesh = 10 mm Mesh = 5 mm

Plastic dissipation energy 14% 4.1%

Peak reaction force 5.3% 0.6%
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5. Panel Response-Comparative Study

This section aims to find the most efficient topology, namely, trapezoidal, triangular,
sinusoidal, or rectangular in terms of peak deformations, reaction forces, and plastic
dissipation energy. The core, at this stage, was nongraded, with 1 mm of plate thickness
for all corrugated layers. The mesh size was selected as 5 mm (Section 4) and the panels
were subjected to 0.5 kg of TNT at R = 0.5 m (BI-5 of Table 2).

5.1. Deformations

As known, there are three stages in the deformation/crushworthiness of corrugated
cores, namely, elastic stage, plateau stage, and densification stage [58]. These stages can be
seen within few milliseconds or even part of milliseconds. The elastic and densification
stages are short compared to the plateau stage, where plastic deformations mainly occur.
The deformation of the corrugated cores per time, for the four topologies studied here,
is shown in Table 5, for selected time steps (0, 0.5, 1, 1.5, and 2 ms). Moreover, Table 5
presents the 3D view of the panel with peak deformations. The last column shows the peak
deformation value d (the max. observed value of deformation between the 0–10 ms time
of analysis) and core compressive strain CS (peak deformation divided by the total core
thickness of 131 mm). It is important to highlight here that the last two columns of Table 5
are not necessarily at time 2 ms as this vary based on topology. The peak deformation value
d was not measured at a predefined specific loacation of the core, and was found based
on the Abaqus/Explicit output of a specific corrugation topology (mainly in the frontal
layer of the core). Looking at time 0.5 ms (3rd column of Table 5), all topologies reveal
progressive collapse (layer by layer). The frontal two layers were already compressed by
that time and the other four are still approximately nondeformed. At time of 1 ms, two
additional layers were deformed and the global behavior of the cores start to differ. At
time 2 ms, where peak deformations were almost achieved, some of the topologies reached
full densification while others did not.

It appears that the sinusoidal topology (last row of Table 5) has more local deforma-
tions in each layer in addition to concave shape to the whole core. A full densification was
also perceived with 111 mm peak deformation. This account for ~85% of the total core
thickness (which is 131 mm). This extreme response can be linked to the low out-of-plane
stiffness of arc-shaped topology. The results agree with the conclusions of Rong, et al. [52]
that “arc-shaped cores have lower compression stiffnesses”. In terms of rectangular topol-
ogy, large local buckling can be noticed that layers even penetrate each other. At time
2 ms, peak deformations of 112 mm can be seen, which is the highest compared to other
topologies. The reason is that, in rectangular topology, the exposed surface area that is
perpendicular to blast wave propagation is bigger (the area with angle of incident = 0◦).
The trapezoidal and triangular topologies showed more uniform progressive collapse with
no concave or extreme global or local buckling. The peak deformations (d) were 101 mm
and 94 mm, with compressive strain (CS) of 0.77 and 0.72, respectively. They both did not
reach full densification, i.e., no full impact is expected on the frame.

The deformation time-history of the frame’s rear center point of the four topologies is
presented in Figure 9. The deformation of the steel frame is also critical as the frame may
be fixed to the target/building elevation in different ways. The trapezoidal-core revealed
the least deformation of max. 9 mm in the frame’s rear center point compared to those
when using other topologies. The rectangular-core had the highest deformation (~21 mm).
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Table 5. Comparison between deformations d (in mm) and compressive strains (CS) of the four topologies when subjected
to 0.5 kg of TNT at R = 0.5 m (BI-5).
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5.2. Peak Nodal Reaction Forces

The reaction forces, in general, are one of the vital parameters to be assessed when
using sandwich panels. Boundary conditions/supports transmit the unabsorbed blast
energy to the protected target that the sacrificial panel is attached to. The more energy
absorbed by the core, the less reaction forces are expected. Figure 10 shows the effect of
corrugation shape/topology on the nodal reaction force time-history (in one support) when
the sandwich panel is subjected to 0.5 kg of TNT at R = 0.5 m (BI-5). A simple solid plate
was initially modeled and the corresponding reaction forces per time to the same blast
intensity (BI-5) was recorded. Results showed that RFz of a solid plate goes as high as
44 kN compared to ~19 kN average peak reaction force when using sandwich panels as
energy absorbers (Figure 10). In other words, using those proposed sandwich panels, can
eliminate 57% of the reaction forces, leading to less loading on the target required to be
protected. These results agree with the findings of [60], where 49% of peak reaction forces
were diminished.
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The high compressive strains of the rectangular and sinusoidal topologies (Table 5)
led to higher nodal reaction forces (with peak RFz = ~20 kN). As expected, the trapezoidal
topology showed the least (with peak RFz = 17.5 kN). In other words, with choosing the
correct corrugation shape/topology, 13% of reaction forces may be eliminated (Trapezoidal
topology compared to rectangular one).

5.3. Energy Dissipation

As the aim of this study is to design a new efficient blast-absorbing sacrificial sandwich
panel, the plastic dissipation energy (PDE) of the whole numerical model (frame + core), is
the most important factor to assess. The comparison is valid as all compared topologies
have the same mass and material properties. Figure 11 shows the effect of corrugation
shape/topology on the plastic dissipation energy of the sandwich panel, when subjected
to 0.5 kg of TNT at R = 0.5 m (BI-5). It shows that the PDE of trapezoidal core was the
highest (4.90 kJ) compared to 4.45 kJ for the sinusoidal core. Keeping the sinusoidal PDE
as a benchmark, the rectangular, triangular, and trapezoidal topologies had 2.7%, 7.1%,
and 10% more PDE than the sinusoidal, respectively. The number of bends/corrugations
in a single trapezoidal or triangular corrugated layer is more than that of rectangular
and sinusoidal layer in addition to the stiffness differences. Hence, under impact, more
energy can be dissipated using trapezoidal topology. Rong, et al. [52], provide similar
conclusions that, “Sandwich panels with sinusoidal and arc-shaped cores caused lower
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energy absorption due to lower out-of-plane stiffness”. The high PDE of trapezoidal core
has dropped the kinetic energy (KE) of the numerical model faster than other topologies.
Figure 12 shows the effect of corrugation topology on the kinetic energy of the sandwich
panel, when subjected to 0.5 kg of TNT at R = 0.5 m (BI-5). The energy components (PDE
and KE) were achieved using Abaqus built-in history output requests.
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In short, results clearly highlight that the trapezoidal topology is the most efficient
option compared to other topologies, with uniform compression, lower reaction forces,
and higher PDE. Therefore, the trapezoidal topology was selected for further analyses, as
shown in the following section.

6. The ‘Graded’ Sandwich Panel

Based on literature review in Section 1, it was concluded that, “little work has been
done on the blast responses of sandwich plates consisting of graded corrugated cores” [44].
Moreover, core layers with nonuniform thicknesses (graded) outperform those with uni-
form thicknesses (nongraded). The main reason of using graded core is to account for
different loading scenarios. For example, the most efficient trapezoidal topology (selected
in Section 5) was successful in absorbing a blast intensity BI-5 (Table 2) or its equivalent.
However, the same core would be too stiff to deform/absorb other lower blast intensities
(e.g., BI-1 or BI-2). Hence, the uniform thickness (1 mm) of the six trapezoidal layers had to
be altered to three different thicknesses (one thickness for each couple of layers). Different
combinations were numerically studied, such as (0.3, 0.6, 0.9 mm), (0.4, 0.8, 1.2 mm), and
(0.5, 1.0, 1.5 mm). Based on the performance of the mentioned stepwise combinations to
all five blast intensities BI-1 to BI-5, the (0.4, 0.8, 1.2 mm) combination was selected for the
graded trapezoidal core (as shown in Figure 13).



Energies 2021, 14, 214 17 of 23

Energies 2021, 14, x FOR PEER REVIEW 17 of 23 

 

 

ferent combinations were numerically studied, such as (0.3, 0.6, 0.9 mm), (0.4, 0.8, 1.2 

mm), and (0.5, 1.0, 1.5 mm). Based on the performance of the mentioned stepwise com-

binations to all five blast intensities BI-1 to BI-5, the (0.4, 0.8, 1.2 mm) combination was 

selected for the graded trapezoidal core (as shown in Figure 13). 

 

Figure 13. The composition of the graded trapezoidal core. 

To check how effective is the graded trapezoidal core compared to the nongraded 

(selected in Section 5), the comparison between peak deformations/compressive strain is 

shown in Table 6 for all blast intensities (BI-1 to BI-5). It can be noticed that peak defor-

mations, and, hence, compressive strains, were generally higher when using a graded 

core. For instance, the total compressive strain was 65% when using a graded core com-

pared to only 23% of the nongraded core (for BI-1). This higher plastic deformation can 

positively increase the PDE and, hence, the efficiency of the sandwich panel. Figure 14 

shows the peak deformations of the graded sandwich panel when subjected to 0.5 kg of 

TNT at R = 0.5 m (BI-5). Only the frontal layer was severely damaged while 2nd–5th layers 

were plastically deformed and last layer revealed minor deformations. The compressive 

strain of the whole core was 88%, the highest among others (Table 6). The steel frame 

stays in elastic range, except near the supporting corners, where slight nonelastic defor-

mations were observed. 

 

(a) graded core and frame (b) graded core (c) front layer (d) last layer 

Figure 14. Peak deformations (mm) of the graded sandwich panel showing frontal layer damage and last layer minor 

deformations, when subjected to 0.5 kg of TNT at R = 0.5 m (BI-5). (a) graded core and frame; (b) graded core; (c) front 

layer; (d) last layer. 

  

Figure 13. The composition of the graded trapezoidal core.

To check how effective is the graded trapezoidal core compared to the nongraded
(selected in Section 5), the comparison between peak deformations/compressive strain is
shown in Table 6 for all blast intensities (BI-1 to BI-5). It can be noticed that peak deforma-
tions, and, hence, compressive strains, were generally higher when using a graded core.
For instance, the total compressive strain was 65% when using a graded core compared to
only 23% of the nongraded core (for BI-1). This higher plastic deformation can positively
increase the PDE and, hence, the efficiency of the sandwich panel. Figure 14 shows the
peak deformations of the graded sandwich panel when subjected to 0.5 kg of TNT at R
= 0.5 m (BI-5). Only the frontal layer was severely damaged while 2nd–5th layers were
plastically deformed and last layer revealed minor deformations. The compressive strain
of the whole core was 88%, the highest among others (Table 6). The steel frame stays in
elastic range, except near the supporting corners, where slight nonelastic deformations
were observed.

Table 6. Comparison between deformations d (in mm) and compressive strains (CS) of the nongraded and graded
trapezoidal cores when subjected to blast intensities BI-1 to BI-5.

BI-1 BI-2 BI-3 BI-4 BI-5
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Figure 14. Peak deformations (mm) of the graded sandwich panel showing frontal layer damage and last layer minor
deformations, when subjected to 0.5 kg of TNT at R = 0.5 m (BI-5). (a) graded core and frame; (b) graded core; (c) front
layer; (d) last layer.

Figure 15 shows the comparison between the PDE of the nongraded (red) and graded
(blue) trapezoidal cores when subjected to blast intensities BI-1 to BI-5. The gap between
the ‘red’ and ‘blue’ bars is sharply increasing revealing the superior PDE of graded core. It
is worth highlighting that the PDE is not the only, but the dominant energy component.
Figure 16 shows the energy components of the graded trapezoidal core, when subjected
to 0.5 kg of TNT at R = 0.5 m (BI-5). Results show that the internal energy (IE) in the
graded trapezoidal core is composed of PDE, frictional dissipation energy (FDE) and very
small damage dissipation energy (DDE) due to noticeable damage in the frontal layer. As
mentioned earlier, the energy components (IE, PDE, FDE, and DDE) were recorded based
on Abaqus built-in history output requests for the whole numerical model. It is worth
mentioning that the final numerical model has a size of 40,908 finite elements and 252,972
degrees of freedom.

The superior performance of the proposed sandwich panel with unconnected graded
layers (Figure 13) can be considered as a novel alternative to the costly connected/laser-
welded corrugated layers. The sacrificial system presented in this research can be used to
protect various blast-vulnerable structures, ranging from multistorey buildings to armoured
vehicles.
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7. Conclusions

The aim of this numerical study was to develop a unique, easy-to-build, non-expensive,
graded sandwich panel that can be used as a multipurpose sacrificial protective structure
against a wide range of blast threats. The proposed sandwich panel consist of “uncon-
nected” aluminium corrugated layers encased in a steel frame. The directions of the
corrugated layers were cross-arranged (0◦/90◦) based on literature recommendations. The
numerical study was conducted using Abaqus/Explicit solver and consists of two main
steps:

Step 1: Conducting a comparative study of the air blast response (reaction forces, peak
deformations, and plastic dissipation energy) of four different unconnected nongraded
layer topologies, namely, trapezoidal, triangular, sinusoidal, and rectangular topologies,
when subjected to one blast intensity (BI-5, Table 2):

Results showed that the trapezoidal topology is the most efficient option compared
to other topologies, with uniform progressive collapse, lower reaction forces, and higher
PDE. The peak deformations d were 101 mm, with compressive strain (CS) of 77%. The
trapezoidal-core also revealed the least deformation of max. 9 mm in the frame’s rear center
point compared to those when using other topologies. In terms of peak nodal reaction
forces, up to 13% of reaction forces can be reduced when using trapezoidal topology.
Keeping the sinusoidal PDE as a benchmark, the rectangular, triangular, and trapezoidal
topologies had 2.7%, 7.1%, and 10% more PDE than the sinusoidal, respectively. Based
on those outcomes, the trapezoidal topology clearly outperformed other topologies, and,
hence, was selected.

Step 2: Implementing the most efficient selected topology (in step 1) for developing a
‘graded’ sandwich panel that can absorb a wide range of blast intensities (BI-1 to BI-5,
Table 2):

Based on the performance of the three stepwise thickness combinations to all five
blast intensities BI-1 to BI-5, the (0.4, 0.8, 1.2 mm) combination was selected for the graded
trapezoidal core (Figure 13). Peak deformations, and, hence, compressive strains, increased
dramatically when using the graded core. When subjected to high blast intensity (BI-5),
the frontal layer was severely damaged and last layer revealed minor deformations with
compressive strain of 88%. Moreover, PDE of graded core was more than double that of
the nongraded core, showing superior blast absorption capacity.
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The sacrificial sandwich panel, with unconnected trapezoidal core layers presented
here, can be considered as a general purpose, easy-to-build, non-expensive protective
system against a wide range of far-field blast intensities (Table 2). The solution can protect
buildings’ frontal façade, bridge piers, armoured vehicles, blast doors, and other sensitive
structures. Manufacturing and field-testing of the proposed sandwich panel is the authors’
future interest.
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