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Abstract: Battery electric vehicles offer many advantages in terms of performance and zero-emission
pollutants, but their limited range for long-distance trips compromises their large-scale market
penetration. The problem of range can be solved with a dense network of fast-charging stations and
an increase in embedded battery capacity. Simultaneously, improvements in high-power charging
point units offer range gains of hundreds of kilometers in a mere 20 min. One risk remains: The
travel time depends on the availability of charging stations, which can drop during rush hours,
due to long queues, or power grid constraints. These situations could significantly affect the user
experience. In this paper, we presented an approach to coordinate EV charging station choices in the
case of long-distance trips. This system relies on vehicle-to-infrastructure communications (V2X).
The objective is to enhance the use of the infrastructure by improving the distribution of vehicles
between the different charging stations, thus reducing waiting time. Our target is to build an efficient
and easily deployable system. The performance of this system is compared to an uncoordinated
situation and an offline optimization. We conducted a case study on a 550-km highway with heavy
traffic. With this system, the results showed a 10% reduction in time spent in charging stations.

Keywords: electric vehicle; fast charge; simulation; optimization

1. Introduction

In the IPCC (Intergovernmental Panel on Climate Change) special report “Global
warming of 1.5 ◦C” [1], the first chapter highlights the consequences of global warming of
more than 1.5 ◦C and links it to greenhouse gases. The second chapter demonstrates the
need to return to a zero-carbon footprint as soon as possible and estimates the remaining
carbon credit for the temperature to exceed preindustrial temperature by no more than
1.5 ◦C. This emission-reduction requirement is to be applied in all emitting sectors, in
particular in the transport sector [2].

Within this sector, we must consider several strategies: the optimization of existing
solutions, as well as the use of alternative energy storage and propulsion systems. The
promotion of battery electric vehicles, which do not emit any gas when driving (for a
tank-to-wheel evaluation), appears promising. However, a broad approach is needed
through life-cycle analysis and well-to-wheel studies. This type of study, presented in [3,4],
clearly shows the potential reduction in greenhouse gas emissions, while pointing to the
battery production phase and the electricity production mix used, as having a substantial
impact on the final balance.
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The advantage of EV (Electrical Vehicle) in terms of greenhouse gas emissions de-
mands a further study of its acceptability and economic viability. First, EVs are adapted
to city trips, with high efficiency, and lower noise and air pollution than ICE vehicles [5].
Major global cities are promoting its use by delineating low-emission areas. Vehicle-to-grid
(V2G) technologies enable the use of the EV batteries for power grid services: Electric
vehicle fleets can offer a frequency or voltage regulation service by extracting or supplying
electrical power to the grid in a pilot-controlled way [6].

However, the main barrier to the large-scale deployment of EVs is the low energy
capacity of batteries in comparison with the gasoline of ICE (Internal Combustion Engine)
vehicles. Batteries remain expensive, heavy, and bulky (even if the mass and volume energy
densities are increasing), resulting in high purchasing costs and low inherent autonomy
for use over long distances. Fast charging, with powers between 50 and 150 kW, provides
a solution to compensate the lower energy capacity, thus enabling the growing number
of vehicles. During these long trips, the autonomy depends mainly on the driving style
(maximum speed, acceleration profile), the weather (outside temperature, wind), the road
profile, and the traffic [7,8]. We decided not to consider these factors in this study, as we
will see later that they can be integrated without changing the conclusions.

The deployment of charging infrastructure is hence the prerequisite for the spread of
electric vehicles. A well-established charging network increases effective electric vehicle
range, relieving range anxiety, and reducing inconvenience in the charging process. Csonka
and Csiszár [9] centered their research question around charging station positions to
facilitate long-distance travel while meeting local demands on both the existing stations
and the forthcoming installations. They put forward multi-criteria weighted methods for
both the national roads and the districts. A system approach revealed criteria that affect
charging stations’ popularity: demographic, economic, environmental, and transportation-
related attributes, and available services (points of interest). In [10], Funke et al. compared
the utility of investing in fast-charging infrastructure or longer battery ranges, pointing out
the cost efficiency of an infrastructure increase. In [11], Kosmanos et al. discussed on the
potential interest of mobile charging stations, using vehicle-to-vehicle power transfer. As it
is intended to city drive, we did not include it in our study.

In the present paper, we are motivated by the solutions that must be implemented
to coordinate the choices of EV quick charge, especially for long-distance trips. Allowing
electric vehicle drivers to avoid queues is potentially timesaving for users in addition to
improve the usage of the charging infrastructure, consequently optimizing the required
investments. However, the smart charging solutions must be designed to be easily imple-
mented. Razo and Jacobsen, in [12], offered a model that guarantees the confidentiality of
user data, in particular their vehicle condition and destination. It is based on reservations,
transmitted by mobile networks, which allow charging stations to estimate waiting times
and vehicles to choose stations based on these data. Gusrialdi et al., in [13], offered a solu-
tion that only requires vehicle-to-vehicle communications (V2V), including a cooperative
exchange between vehicles, to determine who should stop at the next charging station.
They based their work on Qin and Zhang [14], who showed that the optimal solution
to this relaxed problem is achieved when the occupancy rate is constant, meaning when
the vehicles are equally distributed at different charging points. Tan and Wang [15], on
the other hand, used game theory tools to allow users to optimize travel costs and allow
charging stations to maximize their revenues. They assumed hourly prices were freely set,
and this resulted in a non-collaborative game. Overloading of the electricity grid was also
considered. A cooperative approach to game theory was developed by Yang et al. [16],
which allowed the convergence speed and robustness to be improved. However, these
papers did not compare the performance of their solutions against optimal repartition. This
approach did not allow for the evaluation of the room for improvement.

We proposed an approach with new communication scheme privacy which is com-
putationally friendly. To compare it to the best solution, we use a differential evolution
algorithm to find the offline optimal solution to this problem.
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This communication schema is meant to be easy to deploy and allows vehicles to be
coordinated while reducing waiting times at charging stations during long-distance trips.
The novelty of this article is the comparison of the interest between an achievable and
affordable communication system, and the optimal solution.

In Section 2, we first present the methodology, the model, and the assumptions. We then
detail the algorithm used for optimal-solution research in Section 3. Then, in Section 4, we
describe the proposed communication scenario, with its structure and its calibration. Lastly, in
Section 5, we apply this methodology to an EVs-flow simulation on a 550 km highway. This
flow was composed of three types of EVs, with different battery sizes and charging powers of
50, 100, and 125 kW. The highway has several quick-charging stations with different charging
powers. This article was an extension of a previous article in a conference [17].

2. Methodology
2.1. Model

To compare users’ recharging choice strategies, we developed in this paper a model to
calculate the total time (trip, charging, and waiting) spent by a flow of electric vehicles on a
highway. This function takes as its inputs, as shown in Figure 1:

• A highway layout, specified by its entrances, exits, and charging station characteristics
(position, number of charging points, available power);

• A fleet of NEV vehicles, defined by their intrinsic attributes (battery capacity, maximum
charging power, consumption) and their trip characteristics (start time, state of charge
(SoC) at entrance, entrance, and exit points on the highway);

• The vehicle charging schedules, noted as Ej,n, the energy charged by EV n at charging
station j (null if the vehicle does not stop).
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Figure 1. Structure of the simulation.

The function then computed travel times for all vehicles, considering queues at
charging stations. Travel times, TTrip,n, are composed of driving time TDriving,n and N times
in charging stations TStation j,n, as described in Equation (1):

Ttrip,n = TDriving,n +
n
∑

j=1
TStationj,n

TStation j,n = TWait j,n + TCharge j,n + TOther j,n

(1)

where TWait j,n = waiting time for an available charging point when the station is full (in
minutes), TCharge j,n = time required to store the intended amount of energy (in minutes),
TOther j,n = constant, set here to 5 min, representing time needed for all other operations:
decelerating, accessing the station, launching the charging session, and leaving.
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2.2. Assumptions

We assumed in this article that the energy consumption was constant during the
drive. This assumption led to the approximations of a few percent of the traveling and
charging time.

We also assumed that all cars could charge at all charging stations. This hypothesis is
not always correct: Several standards coexist depending on the region and some charging
networks are proprietary and closed to other brands. However, an initiative is underway
to converge the standards [18]. Further, the following work may apply to each of the CS
and EV sets that are compatible with each other.

2.3. Charging Power

Figure 2 shows the exchanges of energy and information between an electric vehicle
and a quick-charging point. The charging point performs the AC/DC conversion, and
a DC cable transfers the power to the battery. The battery management system (BMS)
monitors the battery status and sends a voltage and current setpoint to the charging point.
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Figure 2. Information exchange and power flow chart between fast charging point and electric vehicle.

Effective charging power depends on the following parameters:

• The power that can be supplied by the network, which can become limiting when one
network connection serves several terminals. Later in the article, we assumed that this
portion was not narrowing;

• Maximum power of the charging station, depending on its design;
• Batteries’ maximum charging power, which is detailed afterward.

Batteries’ charging power depends mainly on its design, temperature, state of charge,
and state of health.

We used the approach developed in [19]. This model furnishes the charging power as
a function of the maximum charging power and the SoC. This charging power model is
applicable for SoC between 0 to 80%. For all cars, the charging power, when the SoC is 0%,
is equal to the maximum charging power. It then slowly and linearly decreases when the
SoC increases. The slope depends on the vehicle type. Figure 3 shows the recharge powers
as a function of the SoC for the three vehicles considered in this article: sedan, luxury, and
urban. We also assumed that users recharged only up to 80% of SoC (power was drooping
above this threshold) (SoCmax, n = 80%).
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Figure 3. Charging power during quick charge for three types of vehicles.

2.4. Model Application

In the rest of this paper, we used this model in the following manner: Considering
the characteristics of the motorway and the vehicle fleet of the day as fixed, we looked for
charging schedules

(
Ej,n

)
that minimized the sum of all travel times. We searched for these

schedules with three algorithms:

(1) Without coordination: This was the reference case, for which there was no communi-
cation. It was the upper bound of the problem;

(2) Overall optimization: This was an offline search for the optimal solution. The algo-
rithm considered all the journeys over a day. It then looked for the best distribution
of vehicles between the different stations. This solution constituted a lower bound to
the problem, for development purposes, and was not meant to be deployed;

(3) Coordination: It was a proposal for a communication structure between vehicles and
stations. It was an online and deployable algorithm. Trips were known by the drivers
but not by the system (charging stations).

Sections 3 and 4 present algorithms (2) and (3), respectively.

3. Optimal Solution
3.1. Problem Characterization

In this section, we introduce a method to find the best charging distribution over a
day, which minimizes the sum of the fleet total trip time. For a given highway and fleet,
we introduced the function f as:

f ({E}) =
NEV

∑
n=1

TTrip,n (2)

with {E} a set of charging plans (En,j).
Then, we summed up the optimization definition by the minimization of this function

under the constraints of SoC:

min
{E}

f ({E})

u.c. ∀t, ∀n, SoCmin,n ≤ SoCn(t)
∀n, SoCn(t) ≤ SoCmax,n after recharge
∀n, SoCexit,n ≤ SoCexit required,n

(3)

SoCn(t), SoCmin,n, and SoCmax,n respectively, represent the state of charge of vehicle n at
time t, its minimum and its maximum values. SoCexit,n and SoCexit required, n represent the
SoC respectively at the highway exit obtained and required.

The optimal solution is the one that offers the best tradeoff in minimizing:
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• The number of stops, as it saves Tother;
• Waiting times, by finding the best distributions of EV between all charging stations;
• Charging times, by charging at the higher charging power and only the required energy.

3.2. Resolution

To solve this multiple-variable problem, we chose to use a differential evolution
algorithm. This kind of algorithm uses a population of solutions and repeats a process of
mutation, crossover, and selection [20]. At each iteration, each element incurs a mutation
that is considered only if it permits to improve the solution. The mutations used are various
classical vectorial combinations of randomly selected elements. However, this algorithm
is not efficient in minimizing the number of EV stops. We therefore developed two other
mutations that helped to test solutions with fewer stops. Figure 4 shows the mutations
principle. The first one, mutation Move, transfers the full charge from one station to another
on the vehicle route, whether it intended to stop or not. The second one, Distribute, spreads
the charge from one station to other random stations where this EV already intended to
stop. Through tests, we found that they do, indeed, accelerate the speed of convergence.
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charging station j − 1, j, and j + 2.

This methodology permitted us to obtain what we assumed to be the best-found
solution for this offline problem as there was no certainty that this algorithm converges to
the global minimum (we tested its convergence on a limited set of vehicles and charging
station). But this algorithm took time to find the solution, as complexity increased expo-
nentially with the number of vehicles (15 min on a 16 cores processor with 64 Go of ram for
100 EVs) and was not privately friendly, as the centralized system where the computation is
done has to know the travel path and the SoC of each vehicle. We propose a new approach
to address these issues in Section 4, and we used this best-found solution to compare its
performances.

4. EV-CS Communication Scenario
4.1. Communication Issues

In this section, we propose a coordination system relying on V2I communication. The
primary constraint was that the deployment of this system had to be feasible in practice. It
had several impacts on the architecture.

First, such a system relies on wireless connections between vehicles, charging stations,
and a central server. These connections are based on mobile networks, the former tech-
nology operating for long distances, the latter for near communication (less than a few
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kilometers). The risk of dead zones and the latency of these communications demands that
we set apart solutions requiring continuous or rapid exchanges.

Second, computing power must remain low to enable a large-scale deployment of the
solution. Thus, a distributed system, without a centralized server, was chosen. Indeed,
a centralized server gathering the requests of all users would allow for finding optimal
solutions (Section 3). But its implementation, reliability, and required computing power
could be a significant hurdle.

Third, users can be reluctant to share personal data, such as destination, average
speed, or state of charge of the vehicle, for privacy and security reasons. Finally, constraints
of robustness and cohabitation with other systems must also be considered.

Figure 5 shows the adopted architecture: communication only occurs between EV and
CS (V2I: vehicle-to-infrastructure).
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4.2. Proposed Coordination Schema

Considering all the constraints mentioned in the Section 3.1, Figure 6 describes the
original communication schema that was proposed. Communications between EVs and
charging stations (CS) use mobile networks. This process, from the vehicle point of view,
followed six steps:

1. The EV calculated several possible combinations of stops, with different stations and
amounts of energy to be stored to guarantee to reach its destination. This computation
was done on the vehicle calculator resources. Details of calculations are given in
Section 4.3;

2. The EV requested the expected waiting time at charging stations at a specific arrival
time, for all combinations;

3. CS responded to this request due to an updated arrivals list;
4. The EV could now choose the quickest charging plan, and it then sent a notification

to the selected stations, including a given arrival time with an estimated charging
duration;

5. The EV removed solutions that did not correspond to what it already did. For example,
if it had already passed by station j without stopping, it could remove solutions where
Ej,n 6= 0;

6. The vehicle repeated the cycle composed of the steps 2 to 5, every period T.

The vehicle first ran this cycle when starting the trip, between the start and the
highway entrance: allowing an anticipation of the schedule. It then refreshed according to
period T. We noted Tadv the time between the beginning of the trip and the moment when
the vehicle entered the highway. It had the same value for each vehicle. This system thus
allowed each user to choose their best path according to the choice of others. This choice
was built iteratively.
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Therefore, three types of messages were exchanged:

• Waiting time requests sent at each period T;
• Expected arrival notification sent (from EV to CS) on the first cycle and whenever a

faster route was found. It contained arrival time and charging duration;
• In the same way, notification of cancelation to CS that were no longer part of the schedule.

From the station point of view, the system was composed of a device that had to
receive requests of waiting time estimation and notification of recharge, to then compute
scheduled waiting times. This process followed these steps:

1. The station received arrival times and charge times of EVs planning to stop. It there-
fore calculated charging point usage and potential queuing;

2. In the event of a change on the EV side (change of plan in favor of another CS, slow
down on the road, longer time spent at another station . . . ), the EV notified the CS at
the next T period, allowing it to update its list;

3. If this change affects the waiting time for other EVs, they would be notified at the
next T-period, allowing them to change their plan if necessary.

It is worth noting that we assumed an information system, not a reservation system.
Thus, the rule was first come, first served. As a result, a vehicle joining the highway in the
middle, may arrive at a station before others who had planned to go there and increase
their waiting time. This may result in a change of plan for these vehicles and others in
a cascade. This risk of increased changes is dealt with in Section 4.4 when choosing the
parameters T and Tadv. If the reservation is considered, it leads to a decrease of flexibility
as when a vehicle takes a charging slot there is no opportunity for it to change later in time.
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4.3. Charging Plans Research

On the vehicle side, the search for the different charging plans, {E}, is carried out
according to the following process:

• With a logic of recharging at the last reachable station, we found the first solution;
• We found the solutions that require the same number of stops as the first solution

through a combinatorial search (or one more if the initial number of stops is one
or two);

• These solutions were selected if they did not induce a trip 10% longer than the fastest
route, to minimize the number of considered solutions.

The complexity of this calculation can significantly increase with the number of
recharges and CS on the road. However, as these two numbers remain limited during
an EV trip, this is not a limiting factor (computation time is always less than a minute).
Moreover, since each EV performs its own calculation, the number of vehicles on the road
does not impact the overall complexity.

Factors affecting range or speed, such as traffic or weather, could also be integrated
into the system at this level. This would enable real-time scheduling adjustments to
be made.

4.4. Technical Feasibility

The proposed coordination system can be easily implemented. First, the required
computing power is low. On the vehicle side, the complexity of the calculation is of the
same order of magnitude as the route search. It is, therefore, possible to use the same
computer resources as those of the navigation system. On the station side, the amount of
calculation to be performed depends on the number of vehicles on the road. However, as the
computational complexity is low, they can be performed by an affordable computer system.

Secondly, it is a distributed system. Thus, it can be deployed over vast territories and
vehicle fleets, without the risk of saturating a central server.

Moreover, this solution does not require sharing personal data such as localization,
destination, state of charge of the battery, or driving speed.

Further, this system requires frequent exchanges of data between EVs and CSs at
each time step T. However, the volume of this data (containing mainly timetables) is
minimal compared with the use of mobile networks for other applications, such as me-
dia streaming. For a value of T of a few minutes, the system should not overload the
communication networks.

5. Application
5.1. Case Study

The generated data represent the situation of a highway in a day with 100 electric
vehicles. The road is one way, 11 entrances and exits, and is 553 km long. It includes
six charging stations, each with three charging points of 50, 100, or 125 kW maximum
available power. Figure 7 displays its implantation. There are three types of vehicles in this
simulation: urban, sedan, and luxury. Table 1 gives their respective characteristics. The
consumption data come from the car manufacturers.
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Table 1. Studied vehicles.

Car Type Urban Sedan Luxury

Battery (kW.h) 50 60 100
Maximum charging power (kW) 50 100 125

Consumption (kW.h/km) 0.15 0.18 0.18
Driving Speed (km/h) 110 130 130

Frequency of occurrence 0.3 0.6 0.1

We based our daily highway flow modeling on the data found in [21]. Figure 8 shows
the average daily flow of vehicles entering the French A6 motorway in the Ile-de-France
region in the year 2017. These were the cumulative data of highway entrances equipped
with inductive counting loops (blue curve). It indicated an almost constant flow between
8 a.m. to 9 p.m. We also noticed that the night’s traffic was more than three times lower
than during the day. As we wanted to study crowded situations, we focused only on
the daytime scenario. Therefore, we used the simplified data shown in orange on the
figure. We chose vehicles’ entry and exit randomly, following a uniform distribution while
imposing a minimum travel distance of 250 km.
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We also used a uniform distribution for the SoC at departure, in the 50–100% range.
SoC at arrival (when the car exits the highway) is required to be above 30%, and SoC when
entering a charging station to be above 15%. EVs are charged to a maximum of 80% or
below. Table 2 lists the parameters selection method.

Table 2. Parameter selection.

Parameter Value

Departure time Figure 8 simplified data distribution
SoCentrance Uniform distribution [50; 100]%

SoCexit required 30%
SoCMax 80%
SoCMin 15%

Entrance Uniform distribution [1; 6]

Exit Uniform distribution [EX1; 11], with EX1 first exit more than 250 km
away from the chosen entrance

5.2. Data Presentation: Trips Characteristics

In this section, we do not consider waiting times at CSs to illustrate only the driver’s
needs. The following figures present the characteristics of the EV trips generated by the
assumptions presented in Section 4.1. Figure 9 shows two histograms: the distribution
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of trip distances and trip times, considering recharge times. It shows the diversity of the
routes studied and the fact that they are mainly between 400 and 550 km.
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5.3. Preliminary Case Study

We performed this first simulation with 100 vehicles in one day. It represents 1% of a
long-distance highway traffic in France [22]. We compared three strategies:

• Without coordination: EV drivers have no information about choices made by other
EVs. Each driver optimizes their charging schedules individually to minimize their
charging time. This strategy reproduces the choices that a driver can make, with only
knowledge of charging stations position and power.

• Coordination: Strategy defined in Section 4, we supposed that all drivers use the
system. We set the period T and Tadv at 10 min.

• Global optimization: (Section 3) Situation in which all information is centralized and
choices are made in optimally, considering waiting times when making choices. This
strategy led to the best-found solution.

Figure 10 shows the average waiting time at the different stations for the three situa-
tions. The communication, and even more so the global optimization, can reduce average
waiting times. This improvement was made possible by a better distribution of vehicles
between stations. We noted that the decrease in waiting time at station 3, the busiest station,
did not induce a waiting-time increase at the other stations. The charging infrastructure
was, therefore, better used.
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5.4. Parametric Analysis

The coordination system had two parameters: the refresh period T, and the anticipa-
tion time Tadv. Before analyzing more of the results, we evaluated their impact on three
outcomes that characterized the operation of the communication system:

• The average waiting time in CSs;
• The average charging time;
• Nch, the average number of times a vehicle changed its reservations after finding a

combination of recharges that reduce trip time.

The last parameter reflects the system’s complexity and the need for communica-
tion: Each change can lead to modifications in waiting times for other users and other
cascading changes.

To assess this impact, we modeled the use of this communication scheme on a highway
with flows of 80 and 150 vehicles per day. We simulated the behavior over 1000 generated
days, following the case study presented in Section 4.1. This number of draws allowed the
results to converge to a stable solution.

Figure 11 shows the variation of Nch, in color scale, for T values in {3, 5, 10, 15, 20}
minutes and Tadv ranging from 0 to 40 min. It shows the progressive increase in Nch when
T decreases and when Tadv increases. The case where the number of changes is minimal is,
therefore, for T being 20 min and Tadv being 0 min. In this configuration, there was less
than one change per vehicle on average during their trip. This means that connection needs
were low compared to other situations. We also observed an increase in Nch by a factor of
more than seven between the simplest configurations and those with a short update period
and a large Tadv.
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Figure 12 shows the evolution of the average waiting time, according to the variables
above, for 80 and 150 EVs. These numbers of vehicles represent various use situations of
the studied infrastructure. It shows the impact of T and Tadv on Twait: The average waiting
time decreased as the T period decreased, and as the Tadv time interval increased. The
variation interval, of the order of 0.6 min for 80 EV and 2 min for 150 EV, represented a
4% variation.

This study, therefore, revealed that the choice of T and Tadv made it possible to optimize
the communication algorithm’s behavior by reducing the average waiting time of users.
However, since the decrease in Twait by decreasing T and increasing Tadv was of small
amplitude, and the increase in complexity, shown by Nch, was significant, we subsequently
decided to set these parameters to an intermediate value offering a good compromise:
5 min for T and 20 min for Tadv. Indeed, this set of parameters (5; 20), compared to T being
3 min and Tadv being 40 min, induced a 1% increase of Twait while dividing the number of
changes by a factor of two. Those parameters (5; 20) induced an average of less than three
reservation changes, as seen in Figure 11, which seemed technically feasible and not too
troubling for the EV user.
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5.5. Comparison

We performed the simulations with 100 vehicles a day and averaged them over 15 days.
To qualify a situation as satisfactory for users, we defined an arbitrary quality criterion. We
considered the infrastructure as sufficient if it met the following thresholds:

• 90% of EVs entering a charging station had less than 5 min to wait;
• All waiting times were less than 30 min.

The following figures show the results of the comparison between the three strategies.
Figure 13 shows the cumulative distributions function of waiting times at the different
stations for the three strategies, the dotted line representing the quality criterion defined
above. The communication, and even more so the global optimization, could reduce
waiting times for all drivers entering charging stations. Thus, for station 3, the busiest, there
was a decrease in the maximum waiting time from 74 to 40 and then 20 min (respectively
for the three strategies) and an increase in the proportion of refills for which the waiting
time was zero from 41 to 60% and then 81%. We also noticed the balancing of waiting
times between stations. However, the quality criterion was not met in the communication
scenario for station 3. The best remedy for this would be to add a charging point to this
station, which was the most stressed one.
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Table 3 shows the average waiting and charging times for the three strategies. There
was a slight increase in recharging time and a decrease in waiting times. This changeover
showed the choices made by some people to recharge at lower power to reduce their
waiting time (low power stations were less demanded, resulting in a lower waiting time).
Thus, the implementation of the communication system could reduce total time spent
in stations by 9% compared to the situation without communication, out of a potential
decrease of 13% with overall optimization.

Table 3. Average charging and waiting time for the three scenarios.

Results No Coordination Communication Global Optimization

Average charging time (min) 46 47.3 47.7
Average waiting time (min) 15.6 8.8 5.8

Total (min) 61.6 56.1 53.5
Saving compared to No C. - 9% 13%

Figure 14 shows the same comparison in a more crowded situation. There was the
same number of cars per day, but only two charging points per station. The decrease
in the area above the curve was even more pronounced than in the previous situation,
particularly for charging station number 3. The time spent in stations was then reduced by
respectively 46% and 55% with communication and overall optimization, compared to the
uncoordinated scenario.
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In conclusion, we noted two things about the performance of the proposed communi-
cation solution: the improved distribution of vehicles, reducing the time spent in stations
to a level close to the ideal distribution, as well as the increased efficiency in the event of
high traffic.

We could thus extrapolate the use of such a communication system in more complex
situations, such as with several possible routes, traffic jams, variable speeds, and consump-
tion. Those more advanced functions could be added without modifying the system’s
structure, but only by refining the calculation of charging plans.
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6. Conclusions

In conclusion, the research question of this article was to explore how a system of
communication between EV and CS could reduce travel time during long-distance trips.
We presented an adapted differential evolution algorithm. By adding two mutations, we
improved the convergence speed. This algorithm enabled us to approach the optimal
distribution of the recharge session of the traveling vehicles on a given day. We also
presented a communication scheme between electric vehicles, which allowed them to
coordinate and limit their waiting times at charging stations. We worked to make this
system as easy to deploy as possible by minimizing communication needs and choosing a
distributed architecture. The parametric study showed us that it was possible to achieve
a good compromise between system performance and communication needs. Finally, a
comparison of its performance against an uncoordinated situation and one with overall
optimization showed a 9% gain in time spent in stations out of a potential of 13%. In
addition, the system was ever more useful in crowded situations, with a time gain of 46%
out of a potential of 55%. In the future, it is worth studying the robustness of such a system
when not all travelers use it or follow recommendations, as well as the tradeoff between
trip duration and cost, in the case where charging stations have different prices depending
on their maximum power. This study also raised the question of the cost–benefit analysis
of such a system.
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Abbreviations and Variables
EV Electric vehicle
SoC Battery state of charge (-)
CS Charging station
Ej,n Energy stored by EV n at charging station j (kWh)
ERequired,n Energy required by vehicle n to complete it trip (kWh)
Nch Number of changes of charging plans made by EVs (-)
SoCMax,n Maximum SoC during a charging session of vehicle n (-)
SoCMin,n Minimum SoC of vehicle n (-)
SoCexit,n SoC of EV n when leaving the highway (-)
SoCexit required, n Required SoC of EV n when leaving the highway (-)
T Refreshment period (min) of drivers requirements

Tadv,n
For EV n, time between the beginning of its trip (at home) and its entrance
on the highway (min)

TTrip,n Trip time (min) of EV n
TDriving,n Driving time (min)
TStation j,n Time spent by EV n in charging station j (min)
TWait j,n Waiting time for an available charging point, when the station is full (min)
TCharge j,n Time required to store the intended amount of energy (min)

TOther j,n
Duration needed for all other operations in a charging station: decelerating,
accessing the station, launching the charging session (min)
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