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Abstract: We present a numerical study of viscous fingering occurring during the displacement of
a high viscosity fluid by low viscosity fluid in a circular Hele-Shaw cell. This study assumes that
the fluids are miscible and considers the effects of inertial forces on fingering morphology, mixing,
and displacement efficiency. This study shows that inertia has stabilizing effects on the fingering
instability and improves the displacement efficiency at a high log-mobility-viscosity ratio between
displacing and displaced fluids. Under certain conditions, inertia slightly reduces the finger-split
phenomenon and the mixing between the two fluids.

Keywords: miscible fluids; safman instability; Hele-Shaw

1. Introduction

Enhanced Oil Recovery (EOR) is one of the first responses to the increasing global
demand for energy. However, EOR operations including water flooding and gas injection
suffer from poor sweep efficiency, particularly in highly heterogeneous reservoirs. The
sweep efficiency becomes even worse in the presence of heavy oils. The poor sweeping effi-
ciency in EOR operations is the result of the development of so-called viscous fingering [1].
Understanding the fingering phenomenon is of primary importance.

The viscous fingering phenomenon goes back to the pioneering work of Saffman
and Taylor in 1958 [2]. This instability occurs at the interface between two fluids when
a less viscous fluid displaces a more viscous fluid and appears as finger-like patterns.
Fingering instability occurs at various scales ranging from micro-scale to several kilometers
in fractured reservoirs [3], in chromatography separation [4,5], Enhanced Oil Recovery [6,7],
CO2 sequestration [8,9], and pollutant removal processes [10].

The pioneering work of Saffman and Taylor is the starting point for many theoretical,
experimental, and computational studies [11–13]. These studies explored the onset of
instability or finger-like patterns, their shape and tip-splitting [14–16]. Studies also investi-
gated the effects of the fluid rheology of geometrical disturbances on the development of
fingering instability [17–22].

The Hele-Shaw cell is a canonical setup used to comprehend fingering instability
occurring during fluid displacement in porous media. Most numerical studies were
conducted in semi-finite rectilinear configurations using Darcy’s Law. These studies
showed that viscous fingering was found in miscible fluid flows because of the change
in effective viscosity during mixing [23,24]. The viscosity contrast between the two fluids
together with a non-homogeneous spatial distribution of permeability and fluid speed
control the morphology of the finger patterns [25]. A Positive log-mobility–viscosity ratio is
found to produce instabilities at the rear section of the fluid interface, while a negative log-
mobility–viscosity ratio generates forward-directed fingers [26]. Studies have explored the
possibility of controlling fingering dynamics and morphology using a circular Hele-Shaw
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cell [27–29]. For instance, some studies explored the control of fingering instability with
the variation in time of the gap between the plates constituting the Hele-Shaw cell [27,28].
Other studies examined the suppression of fingering instability using a tapered Hele-Shaw
cell [29]. It was also shown that fingering instability can be controlled by replacing the
upper plate in the Hele-Shaw cell with an elastic membrane. It has been found that the
resulting fluid–structure interaction changes the interfacial patterns and delays the onset
of fingering instabilities [30].

The effects of inertia on finger instability received little attention. Almost all of the
numerical and theoretical studies were based on Darcy’s law, which dates back to 1856 [31].
Darcy’s model neglects inertial forces; it only involves viscous effects. However, inertia
can become non-negligible with the increase in the flow speed. This situation can be
encountered during gag injection in the reservoir. It has been found that the finger width is
the result of a balance between viscous and inertial forces and that the finger width can
increase with increasing inertia or flow speed [32]. To rationalize their observations, the
authors in [32] conducted numerical simulations using a modification of Darcy’s law which
includes inertia. The authors only found qualitative agreement with the experimental
data [32]. In the literature, one can find several empirical attempts to include inertial forces
in the flow in porous media [33,34]. For example, to consider inertial effects in porous
media, Forchheimer included an empirical parameter β in Darcy’s equation [35]. However,
finding a correct value of β to distinguish Darcy and post-Darcy regions where inertial
effects are important is not a trivial task. The researcher used the Reynolds number to
distinguish between these two regions [36–40]. Recently, a criterion to consider inertial
effects was defined in terms of a Forchheimer number; Fo ≥ 0.11. β in the definition of
a Forchheimer number, which was earlier considered as independent of the flow speed,
is now considered varying with the speed of the flow. This makes the application of this
empirical criterion difficult [38]. Two other empirical formulations, such as the Hagen–
Poiseuille and the Ergun models, were introduced. Both models rely on one or more
empirical constants.

There are very few theoretical models taking into account inertial effects in the problem
of fluid displacement in Hele-Shaw cells. Rabaud et al. introduced a new equation where
viscous effects are added to the Euler equation and inertia is included as a drag term [41].
An inertial correction to the Darcy law in a Hele-Shaw cell was proposed by Ruyer-Quil [42],
who used a perturbation method and a polynomial approximation for the velocity field.
The obtained equation is optimal in the sense that every method of weighted residuals
will converge to it. Using this model, Ruyer-Quil showed good agreement with the
experimental data, given in Rabaud et al. [41]. To the best knowledge of the authors, there
are no numerical studies that considered the effect of inertia on displacement efficiency, and
fluid mixing [42–45]. Our group has been involved in multiphase flow in porous media,
both at high and low interfacial velocities [46–48].

In this work, we investigate the dynamics of the fingering phenomenon in the case
of miscible fluids within a circular Hele-Shaw cell. This work parallels, to some extent,
our previous work on viscous fingering in the case of immiscible fluids [49]. The present
study includes the effects of inertia on finger morphology, displacement efficiency, and
fluid mixing. We used the Finite Element Method (FEM) to solve the problem at hand. To
depict the effects of inertia, we used both Darcy’s and modified Darcy’s laws based on the
Ruyer-Quil model.

2. Mathematical Modeling

We consider a 2D flow between two circular plates that form a circular Hele-Shaw cell,
where a less viscous fluid displaces more viscous fluid. The outer cell radius is assumed to
be fifty times the inlet radius of the central injection; see Figure 1. We believe that a ratio
of fifty is a reasonable one. With a smaller ratio, fingers may not have enough distance
to develop and reach their stable pattern. On the other hand, a large ratio will result in
alengthy computational time.
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Figure 1. Schematic of the flow domain where less viscous fluid displaces more viscous fluid.

Fluid I enters from the center and spreads radially to displace Fluid II towards the
peripheral outlet of the flow domain or Hele-Shaw cell. We assume that both fluids are
Newtonian, miscible, non-reactive, and incompressible. We also assume that the dynamic
viscosity of Fluid II is a function of solute concentration c, contained in Fluid I. The solute
concentration disperses in Fluid II such that c = 0 and c = 1 correspond to Fluid I and
Fluid II, respectively. The flow configuration is assumed to be horizontal, hence the effect
of gravity is neglected. The governing equations are given as follows:

→
∇·→u = 0 (1)

→
∇p = −µ(c)

k
→
u (2)

φ
∂c
∂t

+

(
→
u ·
→
∇
)

c−
→
∇·

(
Dm
→
∇c

)
= 0 (3)

Equation (1) indicates the incompressibility of the fluids. Equation (2) is Darcy’s law,
where p, µ, k indicates the pressure, dynamic viscosity, and absolute permeability of the
medium, respectively. Dynamic viscosity is considered as a function of solute concentration
such that [50]:

µ(c) = µ1eRc (4)

Here, R is the log-viscosity ratio of the dynamic viscosities,

R = ln
(

µ2

µ1

)
(5)

Equation (3) is the transport equation of solute concentration c, where φ indicates the
porosity of the medium and D is the molecular diffusion coefficient. The concentration of
the species is defined as c = c1 = ρ1S1, where ρ1 and S1 are the density and fluid saturation
of Fluid I, respectively. Since the effects of gravity are not included in our model, arbitrary
values can be assigned for density without affecting the solution. For the sake of simplicity,
we assume ρ1 = ρ2 = 1. The governing equations become,

φ
∂Si
∂t

+
→
∇·

(
Si
→
u
)
− D

∂2Si
∂x2 = 0 (6)

→
∇p = −µ(Si)

k
→
u (7)

∑
i=1,2

Si = 1 (8)

where i = 1, 2 denotes Fluid I and Fluid II, respectively. Equations (6) and (7) are new forms
of Equations (3) and (4), respectively. Equation (8) is the total mass conservation in terms of
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saturation of Fluids I and II. To include inertia, we used a modified Darcy’s law or Ruyer’s
model [40]. In this case, Equation (7) is replaced by the following equation:

6
5

∂
→
u

∂t
+

54
35

(→
u ·∇→u

)
= −1

ρ
∇p− µ(Si)

k
→
u (9)

Equation (9) is derived using perturbation and weighted residuals methods with a
polynomial approximation of the velocity field. This method is similar to the boundary-
layer integral method, where a parabolic velocity profile is used to determine the boundary
layer thickness. The difference between the two methods lies in the choice of test or
(weighted) functions. Equation (9) is optimal in the sense that every method of weighted
residuals will converge to it as the number of test functions is increased.

We use FEM-based commercial software, COMSOL Multiphysics 5.3, to solve the
above systems of equations. We solved Darcy’s model with Equations (6)–(8), and modified
Darcy’s with Equations (6), (8) and (9). The systems of partial differential equations were
solved with the appropriate initial and boundary conditions. Initially, we assume that the
whole domain is filled with motionless Fluid II. Fluid I enters from the inlet and radially
spreads in the domain and displaces Fluid II. The velocity and saturation at the inlet
(r = rinner) are:

(i)
→
n ·→u = Uinlet(ii) S2 = 1,

where
→
n is the radial normal unit vector.

At the outlet (r = router), we impose constant pressure and no-flux of the saturation
such that:

(iii) p = 0(iv)
→
n ·∇Si = 0.

3. Results

In this section, we summarize the results of the simulation conducted both with
Darcy’s law and modified Darcy’s law. The simulations were conducted in a COMSOL
environment. The numerical model and mesh size are validated qualitatively using experi-
mental observations by Chen et al. [51]. Figures 2 and 3 summarize the mesh sensitivity. The
mesh was gradually refined until the pattern became independent of the mesh size [6,52].
Figure 2 summarizes the mesh sensitivity. All the simulations were conducted using
the finest mesh that allowed us to recover the pattern observed experimentally in [51];
see Figure 2.
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R = 2 for (a,b), R = 4 for (c,d), R = 6 for (e,f) and R = 8 for (g,h).

In the simulations, we set k = 1 × 10−9 m2, φ = 0.5 and the initial viscosity of
Fluid II in the domain as µ2 = 1× 10−3 Pa.s. We performed numerical simulations with
and without inertial effects after setting the inlet velocities as Uinlet = 2× 10−4 ms−1,
Uinlet = 2 × 10−3 ms−1 and Uinlet = 2 × 10−2 ms−1. Similarly, to study the effects of
viscosity, we performed simulations for R = 2, R = 4, R = 6 and R = 8 for all the
above velocities with µ1 < µ2. So, in total, we performed twenty-four simulations with
twelve combinations of viscosity and three velocities each for Darcy and modified Darcy
models. In these conditions, the value of Reynolds

(
Re = ρUh

µ

)
and Peclet

(
Pe = Uh

D

)
numbers range from 2.2 × 10−5–2.2 × 10−3 and 0.015–1.5, respectively. In the following
sections, we discuss the effects of inertia on fingers morphology, displacement efficiency,
and mixing area.

3.1. Fingers Morphology

Figures 3–5 depict finger patterns obtained for various values of Reynold, Peclet,
and the log-mobility–viscosity ratio. These figures confirm that the fingering instability is
related to the ratio of the viscosities of the two fluids. For instance, when the log-mobility–
viscosity ratio R is equal to 2, almost no instability is found. The instability starts to develop
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with the increase in R. Increasing the log-mobility–viscosity-ratio results in an increase in
the number of fingers and their split. However, at the onset of the stability when R is equal
to 4 and there are relatively low Reynolds and Peclet numbers, inertia reduces the splitting
of the fingers; see Figure 3c,d. These two figures compare the finger patterns obtained
with Darcy’s law and modified Darcy’s law when R = 4, Pe = 1.45× 10−2 Re = 2.2× 10−5

at the time t = 4000 s. Figures 3–5 show that with increasing R flow the effect of inertia
diminishes until it has almost no significant effect on the splitting of the fingers. The
nonlinearity of the inertia term seems to saturate the growth of the fingering instability.
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Figure 4. Temporal evolution of fingering for Darcy’s model (left column) and modified Darcy’s
model (right column) for Re = 2.2× 10−4 and Pe = 0.145 at different times: t = 30 s (blue), t = 120 s
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R = 2 for (a,b), R = 4 for (c,d), R = 6 for (e,f) and R = 8 for (g,h).
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Figure 5. Temporal evolution of fingering for Darcy’s model (left column) and modified Darcy’s
model (right column) for Re = 2.2× 10−3 and Pe = 1.45 at different times: t = 10 s (blue), t = 20 s
(red), t = 40 s (green), t = 70 s (grey), and t = 110 s (orange). Values are changed with rows as R = 2
for (a,b), R = 4 for (c,d), R = 6 for (e,f) and R = 8 for (g,h).

3.2. Displacement Efficiency

The displacement efficiency is an important factor in fluid displacement problems,
particularly in Enhanced Oil Recovery (EOR) and soil decontamination. Fingering instabil-
ity is responsible for the drop of sweeping or displacement efficiency during oil recovery
operations. The displacement efficiency is defined as the saturation of Fluid I displacing
Fluid II in the flow domain. The values of the displacement efficiency obtained for various
combinations of R, Pe, and Re with Darcy and modified Darcy models are compared in
Figure 6. This figure shows that the fluid displacement efficiency increases rapidly to
achieve its asymptotic value (100%) for R = 2 and high values of Reynolds and Peclet
numbers. This result is expected because when R = 2, no instability is found and Fluid I
advances as a circular front, entirely expelling Fluid II from the Hele-Shaw cell. Increasing
the log–viscosity ratio results in a decrease in the displacement efficiency because of the
development of fingering instability. Figure 6 also shows that the displacement efficiency
obtained with modified Darcy’s law starts to depart from the ones obtained with Darcy’s
law when R increases. At R = 8, the simulation with inertia indicates a high displacement
efficiency. This means that inertia reduces the effects of fingering instability. At the onset of
the instability, R = 4, inertia enhances fingering instability and reduces the displacement
efficiency. Inertia affecting the displacement efficiency is an important result for EOR using
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gas injection. This means that controlling the speed of gas injection in the oil reservoirs
can improve the sweeping efficiency of the gas injection by reducing the effect of fingering
instability through inertia. Some gases such as CO2 are miscible with oil and their log-
mobility–viscosity ratio, R, can be monitored in such a way that inertia alleviates fingering
instability and increases the sweeping efficiency.

Energies 2021, 14, x FOR PEER REVIEW 9 of 12 
 

 

reduces the displacement efficiency. Inertia affecting the displacement efficiency is an im-

portant result for EOR using gas injection. This means that controlling the speed of gas 

injection in the oil reservoirs can improve the sweeping efficiency of the gas injection by 

reducing the effect of fingering instability through inertia. Some gases such as CO2 are 

miscible with oil and their log-mobility–viscosity ratio, R, can be monitored in such a way 

that inertia alleviates fingering instability and increases the sweeping efficiency. 

 

Figure 6. Comparison of displacement efficiency for fluids with different viscosity ratios, R, Reyn-

olds number, Re, and Peclet number, Pe. 

3.3. Mixing Area 

The mixing area is another important parameter; it is of fundamental importance in 

miscible fluids. This parameter estimates the diffusion of Fluid I within Fluid II. The mix-

ing area measures the ratio between the area of the mixed flow and the area of the whole 

flow domain. In other words, the mixing area is the total surface where the saturation is 

between 0 and 1. Saturation equal to 1 means only displaced fluid occupies the whole 

domain, while saturation equal to 0 means only displacing fluid occupies the whole do-

main. 

A high mixing area indicates good mixing and implies strong instabilities. Figure 7 

shows that the mixing area increases with time until it reaches its maximum value when 

fingers reach the outlet of the flow domain. At this moment, the width of the fingers starts 

to increase and facilitates fluid drainage through the fingers. The mixing area starts to 

decrease from the time at which the breakthrough of Fluid I occurs. Similarly, the dis-

placement efficiency increases rapidly until Fluid I reaches the peripheral outlet. From 

this moment on, the displacement efficiency increases slowly towards its asymptotic 

value. Inertia does not have a significant effect on the mixing area. Figure 7 compares the 

mixing areas obtained at different values of R for fixed values of Reynolds and Peclet 

numbers. Figure 8 indicates that inertia has very little influence on the mixing areas. 

Figure 6. Comparison of displacement efficiency for fluids with different viscosity ratios, R, Reynolds
number, Re, and Peclet number, Pe.

3.3. Mixing Area

The mixing area is another important parameter; it is of fundamental importance in
miscible fluids. This parameter estimates the diffusion of Fluid I within Fluid II. The mixing
area measures the ratio between the area of the mixed flow and the area of the whole flow
domain. In other words, the mixing area is the total surface where the saturation is between
0 and 1. Saturation equal to 1 means only displaced fluid occupies the whole domain, while
saturation equal to 0 means only displacing fluid occupies the whole domain.

A high mixing area indicates good mixing and implies strong instabilities. Figure 7
shows that the mixing area increases with time until it reaches its maximum value when
fingers reach the outlet of the flow domain. At this moment, the width of the fingers
starts to increase and facilitates fluid drainage through the fingers. The mixing area starts
to decrease from the time at which the breakthrough of Fluid I occurs. Similarly, the
displacement efficiency increases rapidly until Fluid I reaches the peripheral outlet. From
this moment on, the displacement efficiency increases slowly towards its asymptotic value.
Inertia does not have a significant effect on the mixing area. Figure 7 compares the mixing
areas obtained at different values of R for fixed values of Reynolds and Peclet numbers.
Figure 8 indicates that inertia has very little influence on the mixing areas.
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4. Conclusions

We investigated the effects of inertia on the onset and spreading of fingering instability
in a circular Hele-Shaw cell. We have considered miscible fluids and discussed the effects
of inertia on finger morphology, displacement efficiency, and mixing area for various
log-mobility–viscosity ratios, Reynolds, and Peclet numbers. Inertia is included using
modified Darcy’s model proposed by Ruyer-Quil [40]. Our simulations indicate that the
onset of fingering instability occurs when the log-mobility–viscosity ratio, R, is greater
than 2. The simulations show that inertia can alleviate the splitting of the fingers at
the onset of instability when Reynolds and Peclet numbers are small. Simulations also
show that inertia improves the displacement efficiency when the log-mobility–viscosity
ratio is high. However, at the onset of the fingering instability at small values of the
log-mobility–viscosity ratio, inertia reduces the displacement efficiency. Hence, inertia
enhances fingering instability at small values of R, while it reduces it at large values of R.
Simulations indicate that inertia does not affect the mixing area. Inertia has a significant
effect on the displacement efficiency when Reynold and Peclet numbers and the log–
viscosity ratio are high. This is an interesting result for the simulation of gas injection
EOR operations. Simulation with Darcy’s model can underestimate the recovery factor
of EOR operation when log-mobility–viscosity ratios are high or overestimate it when
log-mobility–viscosity ratios are small.
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