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Abstract: A prototype of a new physics-based wind resource assessment method is presented, which
allows the prediction of upper limits to the performance of large wind farms (including the power
loss due to wind farm blockage) in a site-specific and time-dependent manner. The new method
combines the two-scale momentum theory with a numerical weather prediction (NWP) model to
assess the “extractability” of wind, i.e., how high the wind speed at a given site can be maintained
as we increase the number of turbines installed. The new method is applied to an offshore wind
farm site in the North Sea to demonstrate that: (1) Only a pair of NWP simulations (one without
wind farm and the other with wind farm with an arbitrary level of flow resistance) are required to
predict the extractability. (2) The extractability varies significantly from time to time, which may
cause more than 30% of change in the upper limit of the performance of medium-to-high-density
offshore wind farms. These results suggest the importance of considering not only the natural wind
speed but also its extractability in the prediction of (both long- and short-term) power production of
large wind farms.

Keywords: actuator disc theory; momentum theory; numerical weather prediction; wind farm
blockage; wind resource assessment

1. Introduction

The global wind power capacity has increased significantly over the last decade. In
the UK, for example, the total wind capacity has grown from 5.4 GW in 2010 to 24 GW in
2019 [1]. Whilst this trend is very likely to continue in the foreseeable future, the upper
limit to the growth of wind capacity is still unknown. This is partly because this limit
will depend on the growth of our future economy and society in general, which is hard to
predict, but also because existing theories and models of wind power generation are still
inaccurate, especially for large wind farms.

One of the main difficulties in predicting the performance of large wind farms is to
account for the power loss due to the so-called “wind farm blockage” [2]. For example, in
2019, a Danish wind farm developer Ørsted downgraded their prediction of power genera-
tion partly because this negative blockage effect had been previously underestimated [3].
Traditionally, wind farm models employed in the wind energy industry assumed that the
wind speed upstream of an entire wind farm was unaffected by the presence of the wind
farm itself. Now this assumption is known to be incorrect, and several correction methods
to account for the wind farm blockage have been proposed in the last few years [4,5].
However, none of the existing correction methods are universal or robust enough to predict
the wind farm blockage effect accurately under different conditions. This is essentially
because, to correctly predict the wind farm blockage effect, we need to consider combined
effects of many influential factors across a very wide range of scales, including not only
“turbine-to-array-scale” factors, such as the layout, design and operating conditions of
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turbines, but also “farm-to-atmospheric-scale” factors, such as the size and location of the
farm, nearby farms, and perhaps most importantly, atmospheric/weather conditions [6].

With wind energy at the forefront of the proposed “green economy”, being able to
predict the performance of large wind farms is essential. For the assessment of wind farm
performance, power density is often a more useful metric than total power as it allows for
comparison between different sized wind farms. Moreover, for better planning of future
energy policies, it is crucial to predict upper limits to the power density of large wind
farms. Miller et al. [7] employed a numerical weather prediction (NWP) model with a wind
farm parameterization of Fitch et al. [8] over a very large onshore area of 105 km2 in the
central United States, and estimated the maximum power density to be about 1 W/m2.
Although this estimation agrees fairly well with their simple theoretical prediction and
some other studies [9,10], typical power densities of existing wind farms are higher than
this estimation, mainly because their footprint areas are much smaller. Borrmann et al. [11]
conducted a survey of existing wind farm data to empirically predict a realistic value of the
output power density (or the “rated” power density multiplied by the capacity factor) of
future offshore wind farms in the North Sea and Baltic Sea regions. Their survey suggests
that a typical value would be around 3 W/m2 until 2050, but the exact value would be site
specific. More recently, Enevoldsen and Jacobson [12] also conducted a data investigation
and reported that the output power densities of existing offshore wind farms in Europe
were in the range of 1.15 to 6.32 W/m2 (with a mean value of 2.94 W/m2).

In this paper, we will present a prototype of a new physics-based approach to predict
upper limits to the performance of large wind farms in a site-specific and time-dependent
manner, including the wind farm blockage effect. This approach is based on the two-scale
wind farm momentum theory proposed recently by Nishino and Dunstan [6] with the use
of an NWP model. This theory allows us to predict, for example, the maximum power
coefficient of ideal wind turbines in a large wind farm as a function of the effective array
density (λ/C f 0), bottom friction exponent (γ) and the momentum response parameter
for the atmosphere (ζ), as shown in Figure 1. As can be seen from the figure, the maxi-
mum power coefficient of ideal wind turbines decreases from the well-known ‘Betz limit’
(16/27 ≈ 0.593) to a lower value as the array density increases from zero to a larger value.
However, the rate of decrease depends significantly on the value of ζ, which represents
how strongly the atmosphere can sustain the wind against the resistance caused by the
wind farm (as will be explained later). In this paper, we will demonstrate how this time-
dependent parameter ζ can be estimated using an NWP model. This will then allow us to
predict the maximum power density of a given wind farm (with an arbitrary array density)
in a time-dependent manner.

Figure 1. Maximum power coefficient of ideal turbines (actuator discs) in a large wind farm predicted
by the two-scale momentum theory [6] with C∗T = 4α(1− α) and M = 1+ ζ(1− β). Solid and dashed
lines are for γ = 2 and 1.5, respectively.

The significance of this new approach is that it may change the practice of wind
resource assessment in the future. Unlike many traditional methods, this approach will
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allow us to assess the true wind resource that is determined not only by the natural wind
speed but also by the quality or “extractability” of wind (at a given place and time).

2. Theory

The two-scale momentum theory [6] uses the assumption of scale separation between
large-scale fluctuations of the atmospheric flow (with periods of more than about an hour)
and small-scale fluctuations due to turbulence (with periods of less than a few minutes).
This assumption allows us to split the problem of wind-farm aerodynamics into “internal”
(turbine/array-scale) and “external” (farm/atmospheric-scale) sub-problems; the former
may capture the small-scale fluctuations and the latter the large-scale fluctuations. Even
with the scale separation assumption, the two sub-problems are still loosely coupled to each
other, and the relationship between the two can be derived from the law of momentum
conservation as:

C∗T
λ

C f 0
β2 + βγ = M (1)

where C∗T is the (average) local thrust coefficient of all turbines in the farm (defined using
the “farm-average” wind speed, UF, instead of an upstream wind speed), λ is the array
density, which is the ratio of the total rotor swept area to the farm area, C f 0 is the natural
bottom friction coefficient (defined using the natural or “undisturbed” farm-average wind
speed that would be observed without the farm, UF0), β = UF/UF0 is the farm wind-speed
reduction factor, γ is the bottom friction exponent, and M is the momentum availability
factor defined as:

M =
Momentum supplied by the atmosphere to the farm site with turbines

Momentum supplied by the atmosphere to the farm site without turbines
(2)

In general, C∗T and γ can be obtained from the internal sub-problem (using CFD or
reduced-order wake models, for example) whereas M can be obtained from the external
sub-problem (using an NWP model), but the two sub-problems need to be solved simulta-
neously in such a way that the values of β observed in the two sub-problems agree and
satisfy Equation (1). However, for the assessment of wind resource (or the maximum power
of an “unknown” wind farm) it is convenient to use the following two approximations:

C∗T = 4α(1− α) (3)

M = 1 + ζ(1− β) (4)

where α = UT/UF is the local wind-speed reduction factor, UT is the average wind
speed over the rotor swept area, and ζ is the momentum response parameter. The first
approximation was originally proposed in [13] using an analogy to the classical actuator
disc theory, and this seems to provide a good approximation to the upper limit of C∗T for
wide ranges of α and λ [6,14]. The second approximation was proposed in [6] with limited
information on its validity, and this is properly investigated for the first time in this paper.
The point of this approximation is that M is a function of β but ζ is not. This means that
now the external sub-problem can be solved to obtain ζ (instead of M) without solving
the internal sub-problem simultaneously, to assess the wind resource at a given site. By
substituting Equations (3) and (4) into Equation (1), we obtain:

4α(1− α)
λ

C f 0
β2 + βγ + ζβ− ζ − 1 = 0 (5)

which can be solved to obtain β for a given set of parameters α, λ/C f 0, γ and ζ. If we
define the power coefficient of ideal wind turbines (or actuator discs) in the farm as:

CP =
Power

1
2 ρU3

F0 A
= αβ3C∗T = 4α2(1− α)β3 (6)
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then, together with Equation (5), we can obtain CP as a function of α, λ/C f 0, γ and ζ.
Hence, by calculating CP for a range of α between 0 and 1, we can find the maximum
power coefficient, CPmax, for a given set of λ/C f 0, γ and ζ as shown earlier in Figure 1.
Note that the exact value of γ is unknown without solving the internal sub-problem for a
given wind farm; however, γ = 2 is deemed a good approximation for the prediction of
upper limits of power production [13,15]. It is also worth noting that the aforementioned
simple theoretical prediction of the upper limit by Miller et al. [7] can be reproduced by
the present model with λ/C f 0 → ∞, γ = 2 and ζ = 0 (corresponding to an infinitely large
and dense wind farm; see [16] for further details). We therefore assume γ = 2 in this study
for simplicity.

Once the value of CP(max) has been obtained from the above, we can also calculate the
(maximum) power density of a wind farm immediately as

(Maximum) power density =
(Maximum) total power

Wind farm area
=

1
2

ρU3
F0CP(max)λ (7)

Hence, if we obtain UF0, C f 0 and ζ from an NWP model in a time-dependent man-
ner, the above theoretical model, namely Equations from (5) to (7), will provide a time-
dependent (and array-density-dependent) upper limit to the power density at a given
site. As this new approach accounts for the power loss due to wind farm blockage, the
maximum power density predicted by this approach is a better indicator of the true wind
resource than traditional predictions using UF0 only.

All non-dimensional parameters used in the original and approximated farm momen-
tum equations are summarized in Table 1 and Table 2, respectively.

Table 1. Summary of the non-dimensional parameters used in the original farm momentum
Equation (1); see [6] for further details.

Parameter Definition

Array density λ = nA/SF
Average local thrust coefficient C∗T = (∑n

i=1 Ti)/(0.5ρU2
FnA)

Bottom friction exponent γ = logβ(〈τw〉/〈τw0〉)
Farm wind speed reduction factor β = UF/UF0
Momentum availability factor M = (〈τw〉SF + ∑n

i=1 Ti)/(〈τw0〉SF)
Natural bottom friction coefficient C f 0 = 〈τw0〉/(0.5ρU2

F0)

Table 2. Summary of the non-dimensional parameters in the approximated farm momentum
Equation (5).

Parameter Definition Note

Array density λ = nA/SF Input parameter
Bottom friction exponent γ = logβ(〈τw〉/〈τw0〉) Empirical (1.5–2.0)
Farm wind speed reduction factor β = UF/UF0 Output parameter
Local wind speed reduction factor α = UT/UF Input parameter
Momentum response parameter ζ = (M− 1)/(1− β) Obtained from NWP
Natural bottom friction coefficient C f 0 = 〈τw0〉/(0.5ρU2

F0) Obtained from NWP

3. Methodology

In this section, the methodology of the study is presented, including the setup of
an NWP model and how UF0, C f 0 and ζ are computed. In this study, we consider an
offshore wind farm site in the North Sea as an example to demonstrate how the new
approach works.
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3.1. Setup of NWP Simulations

The NWP model used in this study is the UK Met Office’s Unified Model (UM). The
simulations were carried out using its nesting suite, which allows a high-resolution local
area model to be nested in a lower resolution global model. The global model configuration
used is GA6.1 [17] at n768 resolution (∼15 km). The local area model is a 200 km × 200 km
domain on a rotated-pole lat-lon grid with uniform horizontal (x and y) grid spacing at
∼1 km resolution. In the vertical (z) direction, 70 grid points are used non-uniformly
with the first point at z = 5 m and the 70th at z = 40 km. The center of the local area
model is at 56.44035 N, 2.241083 W, corresponding to a region approximately 15 km off
the east coast of Scotland. The science configuration for the inner domain is RA1M [18].
The sea surface roughness length z0(sea) has a squared dependence on the surface friction
velocity u∗, following Charnock’s formula [19]. Following initialization the local model is
free-running, meaning it is only constrained by the lateral boundary conditions taken from
the global model.

The NWP model is used to run “twin” simulations or a pair of simulations that have
identical initial and boundary conditions, with the only difference being that one accounts
for the effect of a wind farm and the other does not, as shown in Figure 2. In this study we
model the effect of an offshore wind farm by increasing the bottom (sea surface) roughness
length for the entire farm area. We employ this simple wind farm parameterization since
our main aim is to demonstrate how ζ can be computed from twin NWP simulations to
predict the maximum power density in conjunction with the two-scale momentum theory.
A more sophisticated farm parameterization, such as [8,20], may yield better predictions of
ζ in future studies.

Figure 2. Examples of contour maps of the wind speed at the lowest model level, obtained from
“twin” simulations: (a) without farm; (b) with farm.

We consider a hypothetical offshore wind farm located at the center of the 200 km
× 200 km domain. The farm has a circular footprint area (which is expected to simplify
the effect of wind direction on ζ) with a diameter of 20 km, covering a large offshore area
of 314 km2. To put this into context, two existing large wind farms in the North Sea, the
London array (630 MW) and Gemini Wind Farm (600 MW) cover areas of approximately
100 km2 and 68 km2, respectively. Comparing the surface areas, the wind farm considered
in this study is substantially larger. However, this is still much smaller than the scale of a
typical atmospheric circulation, which usually has a horizontal length scale of much larger
than 20 km. This farm size is also smaller than the scale above which the maximum power
density is expected to start decreasing due to the farm-size effect that is governed by a
timescale inversely proportional to the Coriolis parameter [21]. We therefore speculate
that the effect of farm size on ζ is relatively minor in this range, although this needs to be
investigated further in future studies.

3.2. How to Compute UF0, C f 0 and ζ

To compute UF0, C f 0 and ζ, we need to decide on the nominal farm-layer height,
HF, across which the farm-average wind speed is computed. Choosing the value of HF
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is similar to choosing a reference wind speed for non-dimensionalization; i.e., we can
choose the value of HF arbitrarily as long as the same HF value is used in both internal
and external sub-problems to calculate C∗T , γ, C f 0 and ζ [6]. In the present study we do
not solve the internal sub-problem but employ Equation (3) instead, which means that the
value of HF needs to be decided in such a way that Equation (3) is approximately valid.
This height is usually about 2–3 times the turbine hub-height (depending on the turbine
design and the wind profile) and we use 2.5 times the turbine hub-height as recommended
in [6]. We also assume that the turbine hub-height is 100 m, which is similar to many of the
offshore wind turbines currently used in the North Sea. Hence, HF = 250 m in this study.

It should be noted that the exact value of HF with which Equation (3) is satisfied
depends (only moderately) on the stability condition of the atmosphere [22]. This means
that using a fixed HF value would result in an over- or under-prediction of the wind
resource at a given time (depending on the stability condition at that time). However, this
is not a major concern as the results are not very sensitive to the exact value of HF. For
example, we tend to observe only less than 2% of changes in the farm-average wind speeds
as we change the assumed value of HF by 10%.

To compute the farm-average wind speeds (UF and UF0 for the cases with and with-
out wind farm, respectively) we first calculate the farm-average wind direction or the
“streamwise” direction using a horizontal average over the entire farm area at the turbine
hub-height, z = 100 m. Note that this “streamwise” direction may change in time and may
also differ slightly between the two cases; hence, this direction needs to be calculated at a
given time instant in each simulation. Then UF and UF0 can be computed from a volume
average (i.e., average horizontally over the entire farm area and vertically from z = 0 to
250 m) of the “streamwise” velocity in the corresponding simulation. The natural bottom
friction coefficient C f 0 can also be computed immediately as

C f 0 =
〈τw0〉
1
2 ρU2

F0
(8)

where 〈τw0〉 is the bottom shear stress averaged over the entire farm area (for the case
without wind farm).

The momentum response parameter ζ can be obtained from Equation (4) with M and
β computed from the twin simulations (at each time instant, as both M and β may change
in time). Since the effect of the wind farm is modelled in this study using an enhanced
bottom roughness length, we can compute M simply as

M(NWP) =
〈τ+

w 〉
〈τw0〉

(9)

where 〈τ+
w 〉 is the farm-average bottom shear stress computed from the simulation with

the wind farm model (i.e., this 〈τ+
w 〉 represents the sum of the actual bottom shear stress

on the sea surface and the resistance due to wind turbines). It should be noted that both
M and β depend on the roughness length (z0) given to represent the wind farm, and the
exact relationship between z0 and the wind farm conditions (such as the array density and
turbine operating conditions) is not known a priori. However, as will be shown in the
next section, our simulation results for a wide range of z0 values suggest that the linear
approximation of M given by Equation (4) is satisfactory for most of the cases tested. This
means, importantly, that only a single set of twin simulations (with only a single z0 value to
represent an “unknown” wind farm) needs to be conducted to compute ζ approximately;
then, together with computed UF0 and C f 0, we can theoretically predict the power density
of any wind farms (i.e., with an arbitrary array density λ and an arbitrary local wind-speed
reduction factor α) by solving Equations from (5) to (7).
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4. Results

In this section, we first present NWP simulation results for a selected day with five
different wind-farm z0 values, to investigate the validity of the linear approximation of M
and to assess the amount of error in ζ due to this approximation. We then present results
for 10 different days with a single z0 value of 0.1 m, to demonstrate how this approach
may be used in future studies to develop a dataset (histogram) of ζ for the assessment
of true wind resource at a given offshore site. Finally, we demonstrate, using computed
data of UF0, C f 0 and ζ for two different days, how this approach can be used to predict
time-dependent upper limits to the power density of three hypothetical offshore wind
farms with low, medium and high array densities.

4.1. Linearity of the Atmospheric Response

Five roughness lengths (z0 = 0.05, 0.1, 0.35, 0.7 and 1.4 m) are tested to investigate the
linearity of M against β. As will be shown below, the highest roughness length (z0 = 1.4 m)
tends to yield a low β value of about 0.75, i.e., about 25% reduction in the farm-average
wind speed, which could be achieved only by a very dense wind farm. For example, the
CFD simulation results presented in [2] for three existing wind farms suggest that the
hub-height wind speed reduction in these wind farms may be up to about 16%. Hence, we
consider that the range of z0 tested here is wide enough.

We also test three different data-sampling methods here, referred to as “one-day
instantaneous”, “two-day instantaneous” and “two-day hourly average” methods. In the
first method, only the selected day of interest (23 March 2015) is simulated by the UM
local area model (with the initial flow conditions obtained from the UM global model) and
instantaneous flow field data are used to compute M and β at a given time instant over the
24 h. This is the simplest method requiring the minimum computational resources, but
two potential issues are: (i) there is no spin-up time for non-physical initial effects (such
as those due to the wind farm roughness added abruptly at the beginning of the selected
day of interest) to disappear; and (ii) instantaneous flow data may contain small-scale
fluctuations that should be averaged out for the computations of M and β. Hence, in the
“two-day instantaneous” method, we introduce a spin-up time of 24 h, i.e., we start the
local area model simulation 24 h ahead of the selected day of interest, and in the “two-day
hourly average” method we also perform time-averaging of results to use hourly averaged
flow field data to compute M and β. The choice of this filter size (one hour) is based on
the assumption that a typical time scale for the atmosphere to respond to the resistance
of a large wind farm should be within a range from 10 min to an hour, i.e., smaller-scale
fluctuations should be irrelevant to the response characteristics of the atmosphere that we
aim to quantify here.

Figure 3 shows the time variations of β values computed with the five different
roughness lengths, using the “one-day instantaneous” and “two-day hourly average”
methods. Overall, the two methods (and also the “two-day instantaneous” method not
shown here for brevity) capture the general trend that β decreases as we increase z0.
However, the “one-day instantaneous” method yields some noticeable abrupt changes in β
from 12:00 to 16:00, whereas such abrupt changes are largely eliminated by the “two-day
hourly average” method. Moreover, the “two-day hourly average” method yields similar
patterns of the time variation of β for all five roughness lengths.

Next, we present in Figure 4 the relationship between the values of (M − 1) and
(1− β) computed using the “two-day hourly average” method. Note that there are five
data points at each hour, taken from the five separate simulations with the five different
roughness lengths. It can be seen that, at each time instant, the relationship between
these two parameters is approximately linear for a wide range of (1− β) from 0 up to
about 0.25 at least. This suggests that the linear approximation model of M given by
Equation (4) is useful for most practical cases. As discussed in [6] and confirmed in [23],
the main reason why M becomes above 1 is because the pressure difference between the
upstream and downstream of the entire wind farm tends to increase as the farm-average
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wind speed decreases. However, it can also be seen from the figure that the relationship
between (M− 1) and (1− β) is not perfectly linear, especially for a short period of time
between 14:00 and 16:00. Hence, we now assess the amount of errors resulting from the
linear approximation.

Figure 3. Effects of wind-farm roughness length (z0) on the farm wind-speed reduction factor (β) computed using two
different data-sampling methods: (left) one-day instantaneous (right) two-day hourly average. Dashed lines show the daily
average value for each case.

Figure 4. Hourly relationship between the momentum availability factor (M) and the farm wind-
speed reduction factor (β) over the 24 h, computed using the “two-day hourly average” method. Five
data points along each line correspond to the five roughness lengths tested, and the gradient of each
line corresponds to ζ = (M− 1)/(1− β).

Figure 5 demonstrates how large the error in ζ would be if the (time-dependent) value
of ζ obtained for z0 = 0.05 m was used for the cases with z0 = 0.1 m and 1.4 m. Here the
results are presented for the three data-sampling methods, i.e., these errors represent the
discrepancies of the values of ζ for z0 = 0.05 m from the “correct” ζ values for a higher
z0 (computed using the same data-sampling method). For z0 = 0.1 m, the errors are very
small (less than a few percent) for most of the time, especially with the “two-day hourly
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average” method, which gives a large error only at 15:00 (under-prediction of about 15% as
can be visually confirmed from the first two data points for 15:00 in Figure 4). This large
error at 15:00 suggests that a certain type of short-time weather event responds non-linearly
to different roughness lengths. Nevertheless, these results largely support the validity of
the linear approximation of M across this range of z0.

For a much higher z0 value of 1.4 m, the errors are larger even with the “two-day
hourly average” method (around 10% for the majority of time, Figure 5). These results
suggest that a quadratic approximation (with two model parameters, such as ζ1 and ζ2)
may provide a better description of M with respect to β. However, we anticipate that the
linear approximation would be more useful in practical applications due to its simplicity.
It should also be noted that these percentage errors in ζ lead to smaller percentage errors
in the maximum power coefficient predicted. For example, an error of 10% in ζ tends to
result in only a few percent of error in CPmax (as can be estimated from Figure 1).

Figure 6 summarizes 24 h averages of the errors in ζ. It can be seen that the 24 h
average error also tends to increase with the roughness length, but the largest error is less
than 10%, and the “two-day hourly average” method always yields smaller average errors
compared to the other two methods. Hence, we employ “two-day hourly average” method
in the rest of the paper.

Figure 5. Percentage error in ζ when the values of ζ obtained for the case with z0 = 0.05 m are used as approximations for a
higher roughness case: (left) z0 = 0.1 m (right) z0 = 1.4 m.

Figure 6. Average error in ζ (over the 24 h) when the values of ζ obtained for the case with z0 = 0.05 m
are used as approximations for higher roughness cases.
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4.2. Histogram of the Response Parameter

Next, we demonstrate how this “twin simulation” approach can be used to obtain a
histogram of ζ. Such a histogram, if used together with a histogram of the natural wind
speed and the two-scale momentum theory, would allow a better estimate of the annual
energy production (AEP) of a large wind farm at a given site. Here we present a mini
case study with twin simulation results for 10 different days (i.e., 10 different two-day
twin simulations, generating 240 hourly averaged ζ values). These 10 days were selected
arbitrarily to cover different types of weather conditions from different seasons of the year,
so that the results provide a realistic histogram of ζ. However, for a proper prediction
of the AEP, it would be necessary to obtain a histogram of ζ from a much larger set of
twin simulations.

In the rest of the paper, we employ z0 = 0.1 m as a representative roughness length
for an “unknown” wind farm and thus compute ζ from twin NWP simulations. It should
be noted that the value of z0 for a “given” wind farm may be estimated using, e.g., an
analytical model of Calaf et al. [24], which shows that z0 = 0.1 m corresponds to a relatively
low array density of λ ≈ 0.006 (for a typical thrust coefficient of 0.75). Of importance here,
however, is that the current approach using ζ does not require the specification of the wind
farm (such as the array density) a priori. In other words, ζ is computed from twin NWP
simulations using a certain z0 value (0.1 m in this case), but the obtained ζ value can be
used to estimate the performance of different wind farms (with different z0 values) due to
the linear relationship between M and β as discussed in the previous subsection.

Figure 7a shows a histogram of all 240 hourly averaged ζ values obtained. It can be
seen that most of the ζ values lie between 5 and 25, but there are some outliers shown by
light-green bars (and there is an extreme outlier of ζ = −321, which is outside the range
of the graph). All these outliers (10 data points out of 240) were found at rare occasions
when β < 0.8 or β > 0.9, whereas a typical β value for the roughness length tested here
(z0 = 0.1 m) is about 0.85 (i.e., about 15% of reduction in the farm-average wind speed). If
we remove these outliers using the arbitrary cut-off conditions of β < 0.8 and β > 0.9, the
histogram will be as in Figure 7b. Another (slightly less arbitrary) method to remove these
outliers is to remove the data points that correspond to low wind speeds, since in reality
wind turbines can be operated to produce power only when the wind speed is above their
cut-in speed. If we remove the 27 data points at which UF < 5 m/s, for example, the
histogram will be as in Figure 7c. There is still one outlier (ζ = −39) but most outliers
were found to be removed by this method. This outlier, at which the value of β is 1.07, is a
consequence of the interaction of unstable air masses with subtle changes to the regional
pressure field induced by the wind farm. This causes complex non-local effects of the wind
farm on the regional flow field as shown in Figure 8b. For most cases, the effects of the
wind farm are localized, as shown in Figure 8a. In future studies, it would be beneficial to
develop a more systematic method to remove such rare anomalies from the data set.

A summary of the three data sets of ζ is presented in Table 3. It can be seen that whilst
the medians of the three data sets are very similar (within 0.3 of each other), the means vary
slightly more (within 1.6 of each other). The mean value of ζ obtained from the second and
third data sets is about 14, which is a little higher than (but still fairly close to) the value
of about 11 reported in [25] using Reynolds-averaged Navier–Stokes (RANS) simulations
of a steady neutral ABL flow over 625 actuator discs for an idealized offshore wind farm.
A more important finding here is that the values of ζ obtained from an NWP model are
time-dependent and wide-spread (between about 6 and 24 in this case). Such a large change
in ζ (which is much larger than the expected error in ζ due to the linear approximation
discussed earlier) results in a substantial change in the maximum performance of wind
turbines in a large wind farm (as can be expected from the large gap between the orange
and purple curves in Figure 1). This suggests the importance of taking into account the
variability of ζ in future wind resource assessments.
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Figure 7. Histograms of ζ obtained from 10 different sets of “two-day hourly average” twin simu-
lations: (a) With all 240 data points (b) with 230 data points where 0.8 < β < 0.9 (c) with 213 data
points where UF > 5 m/s.

(a) Commonly observed regional flow patterns

(b) Very rare occasion where UF exceeds UF0

Figure 8. Comparison of hourly averaged regional flow fields: (left) For the case with wind farm (center) for the case
without wind farm (right) wind speed difference between the two cases. The wind speed (V and V0 for the cases with and
without wind farm, respectively) has been averaged vertically from the lowest model level up to the 7th model level (233 m).
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Table 3. Comparison of the three data sets of ζ plotted in Figure 7.

All Data Points Only for 0.8 < β < 0.9 Only for UF > 5 m/s

No. of points 240 230 213
Max 49.3 23.9 23.6
Min −321 6.0 −39.1
Mean 12.7 14.3 13.7
Median 13.6 13.8 13.5
Std Dev 22.6 3.6 5.1

4.3. Time-Dependent Upper Limits to the Power Density

Now, we present some examples of how the variability of ζ affects the maximum
power density of a large wind farm in a time-dependent manner. Here, we select two
different days (2 January 2016 and 12 May 2016) as examples of windy and less windy
days, respectively. We also consider three different array density values (λ = 0.003,
0.012 and 0.027) as examples of low-, medium- and high-density wind farms. Note that
these three wind farms have average turbine-spacing (L) values of about 16.2, 8.1 and 5.4
rotor diameters, respectively, as the relationship between λ and L/D is given explicitly
(regardless of the rotor diameter D) by:

λ =
nA
SF

=
nπD2

4nL2 =
π

4

(
D
L

)2
(10)

where n is the number of turbines in the farm, and SF is the total area of the farm. These
three λ values were selected as most offshore wind farms in the North Sea have an average
array density within this range. Even with the highest λ value considered here (0.027), the
optimal value of β (that is required to maximize CP and the power density) is found to be
around 0.75, which suggests that the linear approximation of M discussed earlier is still
valid in this range of λ.

Figure 9 shows time-histories of ζ, CPmax (obtained theoretically for a given set of
λ/C f 0 and ζ at each hour), UF0, and the maximum power density (obtained theoretically
for a given set of λ, CPmax and UF0 at each hour) for the two selected days. In Case A
(windy day), ζ changes only moderately (between about 11.5 and 14) and thus the CPmax
of ideal turbines in a given wind farm also changes only moderately throughout the day,
i.e., CPmax depends mostly on the array density (Figure 9c). The natural (undisturbed)
farm-average wind speed UF0 is high throughout the day, varying between about 15 m/s
and 19.5 m/s (Figure 9e), and thus the theoretical upper limit to the power density of a
given wind farm (with ideal turbines, Equation (7)) also varies in a very similar manner
throughout the day (Figure 9g).

Note, however, that these high power density values predicted in Figure 9g are
unlikely to be achieved by real wind turbines, mainly because the rated wind speed of real
wind turbines is usually lower than the wind speed available in this example case. For
reference purposes, three dashed lines in Figure 9g show “rated” power density values
for the three hypothetical wind farms operating ideal “Betz turbines” with an assumed
rated wind speed of 12 m/s (i.e., power density calculated from Equation (7) with fixed
CPmax = 16/27 and UF0 = 12 m/s). It can be seen that, for the low- and medium-density
farms, the rated power density values (about 2 and 8 W/m2, respectively) are always below
the theoretical maximum power density predicted, implying that the output power would
be capped at the rated power, i.e., the capacity factor would be 100% throughout the day.
Interestingly, for the high-density farm, the theoretical maximum value becomes lower
than the rated value (about 17 W/m2) from 9:00 to 17:00 due to the high array density
causing reductions in β and thus CPmax, demonstrating that the capacity factor of such a
high-density farm may not reach 100% even on a very windy day.
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Figure 9. Time-histories of site-specific atmospheric conditions and how they affect the maximum
performance of large wind farms (over the 24 h of two separate days): (a,b) momentum response
parameter ζ (c,d) maximum power coefficient CPmax of ideal turbines with three different array
densities (with 24 h average values shown by dotted lines) (e,f) undisturbed farm-average wind
speed UF0 (g,h) maximum power density achieved by ideal turbines with three different array
densities (with ‘rated’ power density values shown by dashed lines).

In Case B (less windy day) the natural wind speed is around 12–13 m/s and does
not change substantially (Figure 9f). However, ζ increases substantially throughout the
day, from about 8 at 5:00 up to about 14 at 23:00 (Figure 9b). This leads to a noticeable
increase in CPmax towards the end of the day, especially for the high- and medium-density
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farms, for which the CPmax values at 23:00 are about 35% and 20% higher than their daily
average values shown by dotted lines, respectively. This change in CPmax also affects the
theoretical maximum power density plotted in Figure 9h, where the three dashed lines
again show the rated power densities of the three wind farms (same as those plotted in
Figure 9g). As can be seen from the figure, the theoretical maximum values for the high-
and medium-density farms are always much lower than their rated values in this case,
and only the low-density farm may achieve a capacity factor of close to 100%. A more
important observation here, however, is that the time dependency of the maximum power
density is a little different from that of UF0 in this case. For example, the maximum power
density for the high-density farm at 23:00 is about 25% higher than that at 17:00 (Figure 9h)
whilst UF0 values at 17:00 and 23:00 are identical (Figure 9f), highlighting the importance
of taking into account the time dependency of ζ (and thus CPmax) in this case.

5. Discussion and Conclusions

In this paper, we have presented a new type of approach to wind resource assessment
using the two-scale momentum theory [6] together with an NWP model. As noted briefly
in the introduction, the significance of this new approach is that it allows wind resources
to be assessed not only by the natural wind speed observed at a given site, but also by
the “extractability” of wind, i.e., how high the wind speed at the farm site tends to be
maintained as we increase the number of turbines installed. As described by the two-scale
momentum theory, this “extractability” can be predicted by modelling the momentum
availability factor M as a function of the farm wind-speed reduction factor β, and here we
have shown using NWP simulations that the simple linear approximation model given by
Equation (4) seems satisfactory for this purpose.

We have also shown that this “extractability” (represented by the momentum response
parameter ζ) seems to vary significantly from time to time, with a typical value of ζ lying
between 5 and 25 for an offshore wind farm site in the North Sea. As can be seen from
Figure 1, the impact of this variability is significant. For example, for a medium-density
offshore wind farm with a typical λ/C f 0 value of 5, the value of CPmax increases from about
0.28 to 0.37 (i.e., 32% increase) as ζ increases from 10 to 20. It has also been shown that such
a large change in ζ may occur even within a day, causing an hourly average CPmax value
to be more than 20% higher than the daily average CPmax for medium- to high-density
wind farms. As there is no strong correlation between ζ and the natural wind speed, the
maximum power density may also vary in a different way from the natural wind speed;
i.e., it is possible for the maximum power density to increase in time while the natural
wind speed stays constant or even decreases. These results highlight the importance of
considering the “extractability” of wind in any type of wind resource assessment (including
both long- and short-term power predictions) for large wind farms in the future.

In future studies, it would be useful to develop a more reliable histogram of ζ from a
much larger set of NWP simulations with a higher-fidelity wind farm parameterization.
Although our preliminary study using RANS simulations of a steady neutral ABL flow [25]
has shown that the value of ζ computed using a simple roughness model (as in the present
study) is similar to that computed using a large array of actuator discs (less than 2%
difference in ζ), this should be confirmed with an NWP model for further validation. It
would also be useful to investigate how the histogram of ζ changes with the location of
the wind farm (e.g., how it changes with the distance from the nearest coastline). Another
challenge would be to develop an empirical model of ζ, which would allow prediction of ζ
from existing metocean data (such as atmospheric stability parameters and ocean wave
heights) without running NWP simulations.

Looking further ahead, the proposed approach based on the two-scale momentum
theory may be extended in future studies such that the approach predicts not only the
theoretical maximum but also the actual power output of real large wind farms. To do
this, it will be necessary to develop a model of the local thrust coefficient C∗T for real wind
turbine arrays. In the present study we employed a simple analytical model of C∗T given
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by Equation (3) as an approximation to the upper limit [6], but in reality C∗T should be a
function of the layout, design and operating conditions of turbines as well as the wind
conditions, including the wind direction and atmospheric stability conditions. If such a
general C∗T model is developed to replace Equation (3), the proposed approach would
become a powerful tool not only for wind resource assessments as demonstrated in this
paper but also for the optimization of design and operating conditions of large wind farms
in the future.
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