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Abstract: In 2020, China proposed the goal of achieving carbon emission peaks by 2030 and carbon
neutrality by 2060. For China, whose energy consumption structure has long been dominated by
fossil energy, carbon trading and new energy are crucial for the realization of the emission target. By
establishing a connectedness network model, this paper studies the static and dynamic spillovers
between the Hubei carbon trading market, new energy stock market, crude oil market, coal market,
and natural gas market in China, and draws the following conclusions: (1) the static spillover index of
the carbon–energy–stock system is 3.57% and the dynamic spillover index fluctuates between 7.67%
and 22.62%, indicating that the spillover effect of the system is low; (2) for the whole system, whether
from a static or dynamic perspective, the carbon market always plays the role of net information
receiver, while new energy is the net information transmitter; (3) the new energy stock market and
the coal market always act as net information transmitters to the carbon market; and (4) the spillover
effect of the system is asymmetric, wherein the system is more sensitive to negative information
about price returns, and this asymmetry is much greater when the system is active.

Keywords: carbon emission trading; carbon emission allowance price; new energy; crude oil price;
coal price; natural gas price; connectedness network; asymmetric spillover effect

1. Introduction

In recent years, climate change and energy shortages have become global problems.
To better control greenhouse gas emissions and improve energy efficiency, the European
Union (EU) took the lead in introducing the Emission Trading Scheme (ETS) in 2005 [1].
ETS is a cap-and-trade scheme in which the regulated companies trade carbon allowances
based on the caps set by the ETS and their own emissions [2]. After years of operation, ETS
has been recognized as a cost-effective way to promote both carbon emission reduction
and the development of renewable energy technology, and is gradually being adopted
by regions and countries outside of Europe. It is worth mentioning that China’s ETS
has rapidly developed in recent years and the role of China’s carbon trading market in
promoting global carbon emission reduction has gradually emerged.

As the world’s largest developing country and second largest economy, China is
the world’s largest consumer of energy production and has been working hard in recent
years to fulfill its carbon emission reduction commitments. In 2009, China promised at the
Copenhagen Climate Conference that by 2020, China’s carbon emission intensity would be
reduced by 40–45% compared to 2005 [3]. By the end of 2020, China has achieved a 48%
reduction in carbon emission intensity compared with 2005 [4]. In 2016, China signed the
Paris Agreement, promising to reduce carbon emissions per unit of GDP by 60–65% by
2030 compared to 2005 and to increase the proportion of non-fossil fuels in primary energy
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consumption to 20% [5]. In order to achieve the emission reduction target, China has been
actively exploring the construction of a carbon trading market in recent years. In 2013,
China established its first carbon trading pilot market in Shenzhen. In the next few years,
pilot markets such as in Beijing, Shanghai, Guangdong, Tianjin, Hubei, Chongqing, and
Fujian have been established, and the construction of a national carbon trading market
began. By 2017, China had established eight pilot carbon trading markets across the country.
As of the end of August 2020, the cumulative transaction volume of China’s carbon trading
pilots reached 406 million tons and the cumulative turnover reached 6.8 billion yuan [6]. In
September 2020, China announced at the UN General Assembly that it will strive to reach
the peak of carbon emissions by 2030 and achieve carbon neutrality by 2060 [7]. So far,
China has become the first developing country among the world’s major emitters to set a
carbon neutral deadline. This is a huge challenge for China, who has ranked first in total
carbon emissions since 2006. Therefore, the further improvement of the construction of
the carbon trading market is not only essential for China to achieve its emission reduction
goals but also for the global carbon emission reduction process.

China has actively developed new energy industries in recent years to reduce carbon
emissions, improve the energy consumption structure, and realize the low-carbon transition
of economic development. In the past few years, the new energy sector has become one
of the fastest growing sectors in China’s energy industry. According to the white paper
“Energy in China’s New Era”, released by China in 2020, as of the end of 2019, the installed
capacity of wind power, photovoltaic power, and biomass power had reached 210 GW,
204 GW, and 23.69 GW, respectively, all ranking first in the world [4]. Since 2010, China has
invested approximately USD 818 billion in new energy power generation, accounting for
30% of global investment in new energy power generation during the same period [4]. In
addition, new energy vehicles are developing rapidly. In 2019, the number of new energy
vehicles increased by 1.2 million and new energy vehicle ownership reached 3.8 million,
both accounting for half of the global total [4]. As of the end of 2019, China’s electric
vehicle charging infrastructures reached 1.2 million [4]. The development of the new
energy industry has also attracted a large number of financial market investors to invest in
some new energy listed companies, such as new energy vehicle companies, photovoltaic
cell companies, and power generation companies. These investments from the financial
market are very important for new energy companies because the development of new
energy often depends on the development and upgrading of technology, which requires
a great amount of funds, otherwise the development of the new energy industry will be
hindered. Therefore, studying the new energy financial market is of great significance for
the development of the new energy industry.

The construction of the carbon trading market and the development of new energy
are two important approaches to reduce the dependence on fossil energy and emissions of
greenhouse gases. Therefore, policy-makers pay great attention to the interactions between
carbon allowances, new energy, and fossil energy. In addition, investors in the market have
begun to pay more and more attention to this issue because understanding the interactions
between the three is conducive to investment portfolio optimization, risk management,
and hedging of different assets. At present, there are abundant research results in the field
regarding the relationship between the carbon trading market, fossil energy market, and
new energy financial market. The following is a review of the existing literature from
three aspects: interaction relationship between the carbon trading market and fossil energy
market; fossil energy and new energy stock market; and carbon trading market and new
energy capital market.

Fossil energy, as a carbon-intensive energy, is considered to be closely related to the
carbon trading market. Many existing studies have shown that the price of fossil energy is
an important factor affecting the carbon price. Alberola et al. found that in the early stages
of EU ETS, crude oil, natural gas, coal, and electricity will significantly affect carbon prices,
and this effect may be different before and after structural breaks [8]. Hammoudeh et al.
and Balcılar et al. expanded the sample period and obtained similar conclusions. They
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constructed a Bayesian structural VAR model and found that crude oil, natural gas, coal,
and electricity have different effects on the price of carbon allowances [9]. By building a
Markov regime-switching GARCH model with dynamic conditional correlations, Balcılar
et al. found that the price of carbon futures will be affected by the price volatility of natural
gas, electricity, and coal futures [10]. Some scholars believe that energy prices affect carbon
prices through switching prices. Creti et al. emphasized that in Phase II of EU ETS, crude
oil prices, stock price indices, and the switching price between coal and natural gas are
significant long-term determinants of carbon prices [11]. Boersen and Scholtens found that
the price of oil, natural gas, electricity, and the switching price of coal and natural gas will
affect carbon prices through building the GARCH model [12]. In addition, some studies
show that there is not only a unidirectional driving relationship between energy price
and carbon price. Keppler and Mansanet-Bataller conducted a Granger causality test for
EU ETS and found that there is unidirectional or bidirectional Granger causality between
temperature, coal, gas, electricity, and the stock market or carbon market [13]. Cao and
Xu used a Granger causality test on the relationship between carbon markets and energy
markets throughout the Phase II of the EU ETS. They found that in the long run, there
is a bidirectional Granger causality relationship between coal and carbon markets [14].
Wang and Guo also considered the interactions between the carbon market, crude oil,
and natural gas market, and investigated the return and volatility spillovers between the
markets. They found that the WTI crude oil market has a stronger spillover effect on the
system compared to the Brent and natural gas markets [15]. Lee and Yoon found that
compared with biofuels, the price of Brent oil has a stronger spillover effect on the price
of EU carbon allowances [16]. Wu et al. came to different conclusions from a non-linear
perspective. They stated that the impact of crude oil market volatility on the carbon market
is far less than the impact of the coal and natural gas markets on the carbon market [17].
Yu et al. believed that while there may be no correlation between crude oil and the carbon
market on a short-time scale, there is a strong linear or non-linear relationship between
the two markets on a medium-time scale and long-time scale [18]. It can be seen from the
above literature that although scholars have various conclusions regarding the relationship
between the energy market and the carbon market, it is generally believed that there is a
close relationship between the carbon market and the fossil energy market.

The development of the new energy industry requires a large amount of innovation
and research investment, and thus the new energy stock market is very important as a
financing market for the industry. Meanwhile, the price of fossil energy is considered
an important factor influencing the profitability of new energy projects. Therefore, the
relationship between the investment in clean energy and the price of traditional fossil
energy has attracted more and more attention with the massive development and utilization
of clean energy worldwide. The relationship between crude oil and the new energy stock
market has become a hot topic in this field. Some of these scholars believe that fossil
energy such as oil is an important factor in the price of new energy stocks. Henriques
and Sadorsky stated that oil price is the Granger cause of the clean energy stock price [19].
Kumar et al. believed that clean energy stocks are affected by oil price, high-tech stock
price, and interest rates [20]. By introducing the Wavelet method, Reboredo et al. found
that the correlation between oil price and new energy stock price in the short-term is very
low and there is no Granger causality, but in the medium and long-term time scales, the
correlation is enhanced and Granger causality exists [21]. Through the research on the
energy sector implied volatility index (VXXLE) and clean energy exchange-traded funds
(ETFs), Dutta et al. found that the volatility of the energy sector has a negative impact on
clean energy price returns and that the energy sector plays an important role in the price
changes of clean energy ETFs [22]. In addition to oil, Reboredo and Ugolini also studied
the impact of natural gas, electricity, and coal price on new energy stock price. They found
that in the United States and Europe, oil and electricity prices are the main factors affecting
the price of new energy stocks in the United States and there is a positive dependence
between energy prices and the return of new energy stocks [23]. Song et al. stressed that
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compared with the coal and natural gas markets, the oil market has a greater impact on
the returns and volatility of new energy stock price [24]. Xia et al. found that different
fossil energies have varying degrees of impact on the price of new energy stocks and the
interactions between the oil and coal price and the return of the new energy stock price
are more active [25]. However, some other scholars believe that there is no significant
correlation between oil price and new energy stock market. By constructing the GARCH
model, Sadorsky found that the correlation between clean energy stocks and technology
stocks is higher than that between clean energy and oil price, and investing in crude oil
can effectively hedge the risks generated by investing in new energy stocks [26]. Similarly,
Ahmad stressed that the interdependence between crude oil and clean energy stocks is very
limited when considering technology stocks [27]. Taking the United States as an example,
Ferrer et al. found that crude oil price do not seem to be a key factor in the price volatility
of the stock price of clean energy companies [28]. It can be seen that previous studies have
different views on the relationship between traditional energy prices and the financial
performance of new energy companies, and this field is worthy of further study.

Although there are few studies on the carbon trading market and new energy finan-
cial market, existing studies have shown that there is a close relationship between the
carbon trading market and macroeconomic factors. The macroeconomic situation is closely
correlated to companies’ production activities and the production activities directly affect
the companies’ carbon emissions; therefore, economic factors will affect the supply and
demand of carbon allowances. Some studies suggest that carbon markets are related to
macroeconomic factors. Sousa et al. selected the European stock market FTSEurofirst 300
Index as an economic variable and found that carbon price is not only related to fossil
energy prices but also to economic growth trends [29]. Koch et al. came to a similar conclu-
sion that in Phase II and in the early Phase III of the EU ETS, economic factors have the
greatest explanatory power for carbon price changes among the fundamental factors [30].
Lutz et al. stated that the stock market and energy price are the most important drivers
of carbon price [31]. Yuan and Yang established a Gas-DCS-Copula and found that the
uncertainty of the financial market has a considerable asymmetric risk spillover effect on
the carbon market [32]. Considering that both fossil energy and macroeconomic factors are
closely related to the new energy capital market, this paper believes that the relationship
between the new energy capital market and the carbon trading market is also worthy of
in-depth study.

There are also some studies that have focused on the relationship between China’s
carbon trading market, traditional energy market, and new energy financial market. First,
some scholars have explored the relationship between carbon allowance prices and energy
prices in China. Zeng et al. investigated the relationship between Beijing carbon allowance
prices, macroeconomic factors, and fossil energy prices by constructing a structural vector
autoregression (SVAR) model and found that the carbon allowance price is mainly affected
by its own historical price, and there is an insignificant but positive correlation between
the price of crude oil, the price of natural gas, and economic development [33]. Chang et al.
employed the DCC-GARCH model to respectively study the relationship between spot
prices of carbon allowances in China’s five pilot carbon trading markets and the prices
of coal, crude oil, and natural gas, and found that the volatility of the three energy prices
have a long-term or short-term impact on the spot prices of carbon allowances; from the
perspective of dynamic correlation, however, the spillover effect between energy price
volatility and carbon allowance price volatility was relative low [34]. Second, some scholars
have conducted research on the relationship between the fossil energy market and new
energy stocks. Zhang and Du found that the volatility of new energy stocks will not affect
the stock prices of fossil energy companies and the correlation between the two is lower
than that of new energy and high-tech stocks [35]. Wen et al. built an asymmetric BEKK
model and found that positive information about new energy stock price returns leads to a
decline in the fossil fuel stock price return, while positive information about fossil fuel stock
price returns leads to an increase in the new energy stock price returns [36]. Chang et al.
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studied the dependence structure between China’s carbon trading pilot markets and three
major energy markets, namely coal, oil and natural gas, and found that there are significant
regional differences in the dependence relationship between the carbon market and energy
market [37]. In addition, there are a few studies on the relationship between China’s new
energy stock market, fossil energy, and the carbon trading market. Lin and Chen studied
the volatility spillover effect on the new energy stock market, coal market, and carbon
trading market by establishing multivariate GARCH models and found that there is no
significant volatility spillover effect between China’s carbon market and the fossil energy
market, or between the carbon market and new energy stock market [38]. Jiang et al.
introduced a multivariate wavelet method to investigate the dynamic correlation between
the new energy stock market, coal market, and carbon trading market under different
time-frequencies [39].

It can be seen from the above literature that although there is abundant research on the
carbon trading market, new energy stock market, and fossil energy market, there are still
some research gaps, which are mainly reflected in the following two aspects. One aspect
concerns the fact that many previous studies have mainly focused on mature carbon trading
markets in Europe or the US, but research on China, an emerging carbon trading market,
is limited. However, the research on China’s carbon trading market is very important.
This is because China has been the world’s largest emitter of greenhouse gases since 2006
and the efficiency of China’s emission reduction work is critical to the progress of global
greenhouse gas reduction. At the same time, with the proposal of carbon neutral and carbon
emission peak targets, China will accelerate the improvement and development of the
carbon trading market, and research on China’s carbon trading market will be an important
complement to the current research on carbon trading markets. Moreover, the study of
China’s carbon trading market can provide reference for the construction of other emerging
carbon trading markets. The second aspect concerns the fact that previous studies on the
carbon trading market, new energy stock market, and fossil energy market have focused
on the interactions between the two markets, and there are few studies considering the
interactions between them from a systematic perspective. In contrast, conducting research
from a system perspective can help in gaining a better understanding of the relationship
between the three, which allows investors to engage in asset portfolio optimization and
risk management, and is also conducive to policy-makers to establish effective policies. In
consideration of the above research gap, this paper selects the Hubei carbon trading pilot
market and builds a connectedness network model, as proposed by Diebold and Yilmaz, to
study the time-varying spillover effect and asymmetry of the spillover effect of China’s
carbon trading market, fossil energy market, and new energy stock market from 20 June
2014 to 18 September 2020 [40].

The purpose of this paper is to explore the interactions between the three markets from
a systematic perspective and to provide more information for investors and policy-makers
by studying the quantitative spillovers among markets in the carbon–energy–stock system
in China. The contributions of this paper are as follows:

(1) This may be the first study on the dynamic spillovers between China’s carbon trading
market, fossil energy market, and new energy stock market from a systematic perspec-
tive. Different from using VAR and GARCH models to study the spillovers between
every two markets in turn, this paper constructs a connectedness network model to
measure both the system-wide and pairwise spillovers in the carbon–energy–stock
system.

(2) Although there have been previous studies on the spillover effect between China’s
carbon trading market, fossil energy market, and new energy stock market, there is
no research on the asymmetry of the spillover effect of their spillover effect. This
paper studies the asymmetry of the spillover effect by constructing a positive return
connectedness network and a negative return connectedness network. The results
show that the spillover effect of the carbon–energy–stock system is asymmetric, that is,
the system is more sensitive to the negative information about price returns. Research
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on the asymmetry of the spillover effect can provide important information for market
investors and policy-makers.

(3) In previous studies on the relationship between China’s carbon trading market, fossil
energy market, and new energy stock market, scholars often chose the oil or coal
market as the representative of the fossil energy market, but this paper selects three
fossil energy sources: oil, coal, and natural gas. Thus, this paper takes into account the
interactions between different fossil energy markets when analyzing the relationship
between fossil energy and other markets. This can also provide more evidence for the
relationship between different energy sources and the carbon trading market, which
is conducive to assessing the role of the carbon trading market in improving China’s
energy consumption structure.

(4) The existing research mainly focuses on mature carbon trading markets in Europe or
the US, while this paper is a research study on the emerging carbon trading market,
namely China’s carbon trading market, which is an important complement to the
existing research. China’s carbon trading market has a different market structure.
So far, it is a decentralized carbon trading market composed of several pilot carbon
trading markets throughout the country. The research on China’s carbon trading
market is not only of great significance to China but also can provide reference for
other emerging carbon trading markets. Moreover, promoting the improvement of
China’s carbon emission reduction work and the development of the new energy
industry is conducive to accelerating the process of global carbon emission reduction;
thus, the research in this paper has important theoretical and practical significance.

The structure of the remainder of this paper is as follows: Section 2 introduces the
connectedness network model; Section 3 explains the contents of the variables and the
source of the data, and makes a preliminary analysis of the original data; in Section 4, we
investigate the spillover from the static and dynamic perspectives of the carbon–energy–
stock connectedness network and analyze the asymmetry of the spillover effect; lastly,
Section 5 summarizes the main findings of this paper and makes recommendations for
policy-makers and market investors.

2. Methodology

In order to study the spillover effect of the carbon–energy–stock system, this pa-
per introduces the connectedness network method proposed by Diebold and Yilmaz in
2014 [40]. This method is based on forecast error variance decompositions from vector auto
regressions (VAR). Different from standard approaches relying on Cholesky factorization,
the result of variance decomposition in this method proposed by Diebold and Yilmaz is
invariant to the ordering of the variables. In addition, this method can not only measure
the pairwise spillovers between variables but can also measure the spillovers of the whole
system.

First, we establish a standard p-order lag VAR model with N variables.

Rt =
p

∑
i=1

ΦiRt−i + εt (1)

where Rt is an N × 1 vector, which can be expressed as, Rt = (R1t, . . . , Rnt)
T. In this

paper, Rt is a 5 × 1 vector that includes the prices of oil, natural gas, coal, clean en-
ergy, and carbon allowances. Φi is an N × N vector autoregressive coefficient matrix.
The error term εt is a vector of independently and identically distributed disturbances.
Equation (1) can also be expressed by the equation of the moving average, that is,
Rt = Aiεt−i. Ai = Φ1 Ai−1 + Φ1 Ai−1 + . . . + Φp Ai−p, A0 is an N × N identity matrix.
Additionally, this applies when k < 0, Ak = 0. Based on the generalized variance decom-
position framework proposed by Koop et al. and Pesaran and Shin, Diebold and Yilmaz
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defined variable j’s contribution to variable i’s H-step-ahead generalized forecast error
variance as that in [40–42].

θij(H) =
σ−1

jj ∑H−1
h=0

(
e′i AhΣεej

)2

∑H−1
h=0

(
e′i AhΣε A′hei

) (2)

where Σε is the variance matrix of error vector ε; σjj is the standard deviation of the error
term of the j-th variable; ei is a selection variable whose i-th element is 1, and the other
elements are 0. θij(H) measures the pairwise directional connectedness between variable i
and variable j, which can also be denoted as SH

i←j.
In order to make the sum of each row of the variance decomposition matrix (the matrix

with the ij-th element in Equation (2)) equal to 1, the elements in the matrix are normalized.

θ̃ij(H) =
θij(H)

∑N
j=1 θij(H)

(3)

Now,
N
∑

j=1
θ̃ij(H) = 1 and

N
∑

i.j=1
θ̃ij(H) = N. Sometimes, we need to measure the net

pairwise directional connectedness between variables

Sij = Si←j(H)− Sj←i(H) (4)

If the net connectedness between the two variables is positive, it means that variable i
is a net information transmitter to j, and if it is negative, it means that variable i is a net
information receiver from j.

To determine how all variables together contribute to a single variable, the total
directional connectedness from all variables to i is defined as

Si← (H) =

∑N
j = 1
i 6= j

θ̃ij(H)

∑N
i,j=1 θ̃ij(H)

× 100 (5)

The total directional connectedness from i to all variables is computed as

S ←j(H) =

∑N
j = 1
i 6= j

θ̃ji(H)

∑N
i,j=1 θ̃ij(H)

× 100 (6)

To determine the role of the market in the overall system as a net information trans-
mitter or receiver, the net total directional connectedness is calculated as

Si(H) = Si→ (H)− S →i(H) (7)

In order to get system-wide connectedness, the total spillover index of the system is
computed as

TSI(H) =

∑N
i, j = 1
i 6= j

θ̃ij(H)

∑N
i,j=1 θ̃ij(H)

× 100 =

∑N
i, j = 1
i 6= j

θ̃ij(H)

N
× 100 (8)

In order to study the asymmetry of market return volatility, it is necessary to construct
the connectedness network of positive returns and negative returns. Referring to the
research of Ji et al., this paper processed the original price return as follows to derive the
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time series of positive returns and negative returns [43]. When Rt > 0, set R+ = Rt, and
otherwise set R+ = 0. Similarly, when Rt < 0, set R− = Rt, and otherwise set R− = 0.
The total spillover indexes of the positive and negative return connectedness networks
are denoted as TSI+ and TSI−, respectively. Then, we define the spillover asymmetry
measure as

SAM =
TSI−

TSI+
(9)

When the system does not have asymmetry, SAM = 1, which means that the system
reacts to positive information as much as to negative information. When SAM 6= 1,
it indicates that the system has asymmetry and there are two cases. When SAM < 1,
it indicates that the volatility of the system affected by positive information is greater
than that of negative information. When SAM > 1, it indicates that the system is more
affected by negative information than by positive information. With the asymmetry of the
spillover effect, we can know whether the system is more sensitive to positive or negative
information about price returns.

In order to study the dynamic spillovers between markets, the rolling window method
is introduced. In the rolling window method, the full sample period is divided into several
overlapping sub-sample periods and the connectedness network within each small sample
period is studied. Then, time-varying characteristics of the volatility within the system are
detected.

3. Variables and Data

This section is divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Variables

This paper studies the spillover effect on China’s carbon trading market, fossil energy
market, and new energy stock market. For these three markets, this paper selects a set of
variables. For the fossil energy market, this paper selects the daily closing price of South
China Sea crude oil, the daily closing price of thermal coal futures contract, and the daily
trading price of liquefied natural gas to represent the crude oil market, coal market, and
natural gas market, respectively. For the new energy stock market, this paper selects the
CNI new energy index. For the carbon trading market, this paper selects the daily trading
price of carbon allowance in the Hubei carbon pilot market. The details of the variables
selected in this paper are shown in Table 1.

Table 1. Introduction of variables and data.

Category Variable Content

Carbon emission allowance price RCEA Hubei carbon emissions allowance price (the daily trading price)
Fossil energy prices ROIL South China Sea crude oil price (the daily closing price)

RCOAL Thermal coal futures contract price (the daily closing price)
RGAS Liquefied natural gas price (the daily trading price)

Stock price of new energy companies RNES CNI new energy index (the daily closing price)

3.2. Data

In order to study the spillover effect on China’s carbon trading market, fossil energy
market, and stock market of new energy companies, this paper selects the daily trading
price of carbon allowance of the Hubei carbon trading pilot market; the daily closing price
of the South China Sea crude oil market; the daily closing price of thermal coal futures; the
daily market price of liquefied natural gas; and the daily closing price of the stock price of
new energy companies as sample data. The full sample period was from 20 June 2014 to
18 September 2020 for a total of 1522 available daily observations. Data sources are shown
in Table 1.
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3.2.1. Carbon Emission Trading Market

Among the eight pilot markets in China, this paper selects the daily trading price
of carbon allowances in the Hubei carbon trading pilot market, which is mainly based
on the following three reasons. Firstly, the Hubei carbon trading pilot market has been
running for a long time and sufficient data can be obtained. The Hubei carbon trading
pilot market officially started operation on 7 April 2014 and has been operating stably for
more than 6 years as of 2020. Second, the Hubei carbon trading pilot market is more active.
Its carbon trading volume and carbon trading turnover have long been ranked first in the
country [38]. Thus, more representative and effective data can be obtained from this pilot
market. Third, the trading price of carbon allowances in the Hubei carbon trading pilot
market is relatively stable and the price level is at the middle level in China’s pilot markets.
Therefore, the Hubei carbon trading pilot market can better represent the operation of
China’s carbon trading market. The data was sourced from the website of carbon k-line [6].

3.2.2. Stock Market of New Energy Companies

This paper selects the CNI new energy index to represent the stock price of Chinese
new energy companies. The CNI new energy index is a stock index that can reflect the
overall performance of listed companies in China’s new energy industry and new energy
vehicle industry. The sample of the CNI new energy index includes 70 new energy or new
energy vehicle companies listed in mainland China and it is regularly adjusted. The sample
includes the companies in nuclear energy, solar energy, wind energy, biomass energy, new
energy vehicle battery industry, etc., which can effectively represent the changes in the
Chinese new energy companies’ stock value. In some previous studies, the index has also
been selected as the price of China’s new energy market [37,38]. The data was downloaded
from the WIND database [44].

3.2.3. Crude Oil Market

In this paper, the spot price of South China Sea crude oil is selected as the crude oil
price. The crude oil market is an important part of the energy market and is closely related
to the macroeconomic conditions of a region or country. Since crude oil futures have been
officially traded in China since 2017, there are not enough observations. This paper chose
the spot price of crude oil to represent the price of crude oil. China’s spot crude oil mainly
includes China Daqing, China Shengli, and South China Sea crude oil, as well as others.
By comparison, it is found that the prices of these three crude oil products have similar
movements. Referencing the research of Chang et al., since the crude oil price in the South
China Sea is more closely related to the international crude oil price, this paper finally
selects the daily closing price of crude oil in the South China Sea [28]. We downloaded the
data from the WIND database [44].

3.2.4. Coal Market

As for coal prices, this paper selects thermal coal futures prices. For a long time,
China’s energy consumption structure has been dominated by coal and coal will remain
one of the most important fossil energy sources in China for a long time to come. Therefore,
the coal market is a very important part of China’s energy market. Moreover, the power
generation industry is a key regulated industry in China’s carbon trading market and
currently China’s power generation is dominated by thermal power generation. This
establishes a very close connection between the coal market and the carbon trading market.
In order to better represent the price of coal, this paper selects the price of thermal coal
futures listed and traded on the Zhengzhou Commodity Exchange. The data was obtained
from the WIND database [44].

3.2.5. Natural Gas Market

In this paper, the market price of LNG is used to represent the market price of natural
gas. Liquid natural gas (LNG) is an important natural gas resource in China, which can well



Energies 2021, 14, 6438 10 of 22

represent the utilization of natural gas. In addition, the market price of liquefied natural
gas can well represent the transaction price level of spot transactions in the natural gas
market. Therefore, this paper chose the market price of liquefied natural gas to represent
the market price of natural gas. The series were extracted from the WIND database [44].

3.3. Preliminary Analysis of the Data

All the prices’ time series for fossil energy-related products and renewable energy
stock are originally transferred to returns series by the logarithmic difference, as follows.

Rt = 100× Ln(Pt/Pt−1) (10)

The data after logarithm processing is shown in Figure 1.
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Figure 1. The price returns of carbon allowance and the stock of new energy companies and fossil energies.

Furthermore, this paper conducts a preliminary statistical analysis of these data and
obtains Table 2. Table 2 shows that the carbon price has the highest standard deviation,
which indicates that the carbon market has the largest price volatility. In addition, by
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comparing the maximum and minimum values of the five variables, we find that the
fluctuation range of the carbon trading market price is much larger than for other variables.
This suggests that participants in the carbon market take more risks. The oil market
and natural gas prices fluctuate in the range of −39.4616, 37.0557 to −33.4422, 24.9173
respectively. Their price fluctuation range is much smaller than the carbon trading market
but higher than the new energy stock market and coal market.

Table 2. Descriptive statistics for RCEA, RNES, ROIL, RCOAL, and RGAS.

Mean Maximum Minimum Std. Dev. Skewness Kurtosis Jarque–Bera

RCEA 0.0152 630.3252 −629.5417 27.3922 −0.0254 386.6560 9,334,423.3501 ***
RNES 0.0434 6.8430 −9.6505 1.9370 −0.9931 6.9418 1235.5286 ***
ROIL −0.0743 37.0557 −39.4616 3.3283 −0.4050 39.5608 84,809.9692 ***

RCOAL 0.0073 6.7289 −8.0914 1.2774 0.1124 6.0584 596.4084 ***
RGAS −0.0392 24.9173 −33.4422 2.0394 −1.3235 105.0641 661,060.4418 ***

Note: *** represents significance levels of 1%.

4. Empirical Analysis

This paper constructs the connectedness network model of the carbon-energy-stock
system and calculates the connectedness from the static and dynamic perspectives. Addi-
tionally, the asymmetry of the system spillover effect is analyzed by building the connect-
edness network model of positive returns and negative returns. The full sample period was
from June 20, 2014 to September 18, 2020 for a total of 1522 available daily observations.

4.1. Static Connectedness Analysis

This section constructs a VAR model with five variables including carbon price returns,
new energy stock price returns, crude oil price returns, coal price returns, and natural gas
price returns, and calculates the static connectedness of the original return system, positive
return system, and negative return system.

4.1.1. Static Connectedness Analysis of the Original Return System

Basing on Equation (2), the connectedness matrix of the original return system is
obtained, as shown in Table 3. From a system perspective, 3.57% of the changes in the
carbon–energy–stock system can be explained by the interactions between markets within
the system. This level is very low, indicating that the overall interaction between China’s
carbon trading market, fossil energy market, and stock market of new energy companies
is relatively weak. From the “To” row in Table 3, it can be seen that the new energy stock
market has the largest contribution to system volatility (6.34%) and the contributions
of other markets to system volatility are 4.44% (OIL), 3.53% (CEA), 2.31% (COAL), and
1.21% (GAS). In the system, each market transmits and receives information. Through the
calculation of net connectedness, it can be known whether each market is a net information
transmitter or a net information receiver in the system. Through the analysis of the net
connectedness in Table 3, it is found that in the carbon–energy–stock system, the carbon
market, crude oil market, and natural gas market are the net information receivers in
the system, while the new energy stock market and coal market are the net information
transmitters in the system. This shows that the new energy stock market and coal market
have a certain leading role in the system.

Next, we analyzed the degree of connectedness between each market and other
markets in the system. Specifically, there are different degrees of spillovers between each
two markets, which indicates that there are different degrees of correlation between the
markets. For the carbon trading market, the largest contributor to the volatility of its price
returns is the new energy market stock system, which contributes 2.48%. The crude oil
market, coal market, and natural gas market contribute less to the spillover of the carbon
trading market than the new energy market, with a connectedness of 0.96%, 0.37%, and
0.30%, respectively. This shows that compared with other markets, the carbon market
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is most affected by the new energy market. Companies participating in carbon trading
should pay more attention to the new energy market.

• For the new energy stock market, the biggest contributor is the crude oil market, with
a contribution of 2.43%. This may be due to the close connection between the crude oil
market, macroeconomic market and the stock market. The carbon market, the natural
gas market, and the coal market have relatively low contributions at 0.39%, 0.36%,
and 0.28%, respectively.

• For the crude oil market, its biggest contributor is the new energy stock market, which
contributes 2.81%. Combined with the analysis of the new energy stock market, it can
be seen that the crude oil market and new energy stock market are closely related. The
coal market and carbon market contribute similarly to the volatility of crude oil prices,
at 1.04% and 1.35%, respectively. The natural gas market contributes the least to crude
oil price fluctuations at 0.19%.

• As for the coal market, the analysis revealed that it is greatly influenced by the crude
oil market and 0.79% of its volatility can be explained by the crude oil market. It is
worth noting that the coal market has low connectedness with the carbon market,
which indicates that the implementation of carbon trading in China has not yet had
enough impact on the coal market. Therefore, the spillover of the carbon trading
market to the coal market is relatively low. In other words, so far, carbon trading has
not been enough to be a significant factor influencing whether regulated companies
use coal as fuel. If the existing carbon trading mechanism is not improved, it will be
difficult to change China’s strong dependence on coal use.

Table 3. The connectedness matrix of the original return system.

RCEA RNES ROIL RCOAL RGAS FROM

RCEA 95.89 2.48 0.96 0.37 0.30 4.11
RNES 0.39 96.54 2.43 0.28 0.36 3.46
ROIL 1.35 2.81 94.61 1.04 0.19 5.39

RCOAL 0.16 0.39 0.79 98.30 0.36 1.70
RGAS 1.63 0.66 0.26 0.62 96.83 3.17

TO 3.53 6.34 4.44 2.31 1.21
TSI = 3.57NET −0.58 2.88 -0.95 0.61 −1.96

Note: “From” is the aggregation of each row, excluding diagonal elements; “To” is the aggregation of each column,
excluding diagonal elements; “Net” is the net contribution of each variable; and “TSI” is the total spillover index.

For the natural gas market, compared with other markets, the carbon market has the
largest spillover to the natural gas market. This may be because when power generation
companies are affected by the carbon trading mechanism and need to change the fuel
mix for power generation, they tend to change the proportion of natural gas in their fuel
mix. In order to further analyze the interactions between the markets, the difference in the
connectedness between the two markets was calculated to obtain the net connectedness, as
shown in Figure 2. In the figure, the direction of the arrow represents the spillover direction
and the value represents the size of the information spillover. The new energy stock market
is the information transmitter to the carbon market, crude oil market, coal market, and
natural gas market, and its spillover to these markets is 2.09%, 0.38%, 0.11%, and 0.3%,
respectively. This indicates that the new energy stock market has a certain leading role for
other markets. The natural gas market is the information receiver to other markets in the
system and the carbon market has a higher spillover degree to it, which indicates that the
carbon market has a greater impact on gas markets than other natural gas alternatives in
the system. This finding is of concern to participants in the natural gas market.
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Figure 2. The net pairwise connectedness of the carbon trading market, new energy stock market,
and fossil energy market in the original return system. The color of the node in the figure represents
whether it is a net transmitter or a net receiver. Net transmitters are shown in orange and net receivers
are shown in blue. The size of the node shows the value of the net spillover; the larger the node,
the larger the value of the net spillover. The thickness of the arrow line indicates the degree of
information spillover; the thicker the line, the higher the degree of spillover between markets.

4.1.2. Static Connectedness Analysis of Positive and Negative Return Systems

This section constructs the connectedness network of the positive return system and
the negative return system, and calculates the spillover matrix to analyze the asymmetry
of the spillover effect of the system, as shown in Tables 4 and 5.

Table 4. The connectedness matrix of the positive return system.

RCEA RNES ROIL RCOAL RGAS FROM

RCEA 95.96 2.35 0.86 0.26 0.57 4.05
RNES 1.05 96.24 1.55 0.76 0.40 3.75
ROIL 1.06 1.66 96.79 0.29 0.20 3.20

RCOAL 0.85 1.12 0.51 96.71 0.81 3.30
RGAS 0.21 0.26 0.19 0.40 98.93 1.05

TO 3.15 5.40 3.10 1.70 2.00
TSI+ = 3.07NET −0.90 1.65 −0.10 −1.60 0.95

Table 5. The connectedness matrix of the negative return system.

RCEA RNES ROIL RCOAL RGAS FROM

RCEA 95.82 3.17 0.64 0.30 0.08 4.20
RNES 0.48 96.24 2.31 0.44 0.54 3.75
ROIL 1.09 2.85 95.38 0.52 0.15 4.60

RCOAL 0.54 0.51 0.62 97.83 0.51 2.15
RGAS 3.92 0.36 0.17 0.69 94.86 5.15

TO 6.05 6.90 3.75 1.95 1.30
TSI− = 3.97NET 1.85 3.15 −0.85 −0.20 −3.85

It can be seen from Tables 4 and 5 that the total spill-over index of the positive and
negative return systems is 3.07% and 3.97%, respectively. According to Equation (9), the
asymmetry coefficient is 1.29. In other words, the system is more sensitive to negative
information about price returns than positive information about price returns.

Through the comparative analysis of Tables 3–5, the following findings can be obtained.
First, the spillover index of the original return system is 3.57%, which is at a medium level
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among the three return systems. Second, in these three systems, the new energy stock
market is the net information transmitter and the crude oil market is the net information
receiver. Third, the new energy market is the largest net information transmitter in the three
systems, with a net information spillover of 2.88%, 1.65%, and 3.15%. Fourth, the natural
gas market is the largest net information receiver in both the full sample return system and
the negative return system, with a net spillover of −1.96% and −3.85%, respectively. In the
positive return system, the natural gas market is a weak in-formation transmitter, with a
contribution of 0.95% to the system.

Similar to the study on the net spillover between the markets in the original return
system, this section calculates the net spillover between the markets in both the pos-
itive return spillover system and the negative return spillover system, as depicted in
Figure 3a,b. By comparing with Figure 2, we obtain following findings. First, in the original
and the positive return system, the net spillovers between the new energy stock market and
the carbon market are higher than that of other markets, at 2.09% and 1.30%, respectively.
In the negative return system, the spillover between the new energy stock market and
the carbon market is also relatively high (2.69%), which is only lower than the spillover
between the carbon market and the natural gas system (3.84%). Second, in the original and
the negative return system, the spillovers of the carbon market to the natural gas market
are 1.33% and 3.84%, respectively, ranking second and first in each system. This shows that
the carbon market plays a leading role for the natural gas market in these two systems.
Third, the net spillovers between oil and natural gas are the lowest in all three systems,
at 0.07%, 0.01%, and 0.02%, respectively. According to the spillovers between these two
markets, as shown in Tables 3–5, it can be found that the low net spillovers are due to the
similar and relatively low spillovers between the two markets.

Energies 2021, 14, x FOR PEER REVIEW 14 of 23 
 

 

Through the comparative analysis of Tables 3–5, the following findings can be ob-
tained. First, the spillover index of the original return system is 3.57%, which is at a me-
dium level among the three return systems. Second, in these three systems, the new en-
ergy stock market is the net information transmitter and the crude oil market is the net 
information receiver. Third, the new energy market is the largest net information trans-
mitter in the three systems, with a net information spillover of 2.88%, 1.65%, and 3.15%. 
Fourth, the natural gas market is the largest net information receiver in both the full sam-
ple return system and the negative return system, with a net spillover of -1.96% and -
3.85%, respectively. In the positive return system, the natural gas market is a weak in-
formation transmitter, with a contribution of 0.95% to the system. 

Similar to the study on the net spillover between the markets in the original return 
system, this section calculates the net spillover between the markets in both the positive 
return spillover system and the negative return spillover system, as depicted in Figure 
3a,b. By comparing with Figure 2, we obtain following findings. First, in the original and 
the positive return system, the net spillovers between the new energy stock market and 
the carbon market are higher than that of other markets, at 2.09% and 1.30%, respectively. 
In the negative return system, the spillover between the new energy stock market and the 
carbon market is also relatively high (2.69%), which is only lower than the spillover be-
tween the carbon market and the natural gas system (3.84%). Second, in the original and 
the negative return system, the spillovers of the carbon market to the natural gas market 
are 1.33% and 3.84%, respectively, ranking second and first in each system. This shows 
that the carbon market plays a leading role for the natural gas market in these two sys-
tems. Third, the net spillovers between oil and natural gas are the lowest in all three sys-
tems, at 0.07%, 0.01%, and 0.02%, respectively. According to the spillovers between these 
two markets, as shown in Tables 3–5, it can be found that the low net spillovers are due to 
the similar and relatively low spillovers between the two markets. 

  
(a) Positive Return System (b) Negative Return System 

Figure 3. The pairwise connectedness of the carbon trading market, new energy stock market, and fossil energy market in 
the positive return and negative return system. The color of the node in the figure represents whether it is a net transmitter 
or a net receiver. Net transmitters are shown in orange and net receivers are shown in blue. The size of the node shows 
the value of the net spillover; the larger the node, the larger the value of the net spillover. The thickness of the arrow line 
indicates the degree of information spillover; the thicker the line, the higher the degree of spillover between markets. 

  

Figure 3. The pairwise connectedness of the carbon trading market, new energy stock market, and fossil energy market in
the positive return and negative return system. The color of the node in the figure represents whether it is a net transmitter
or a net receiver. Net transmitters are shown in orange and net receivers are shown in blue. The size of the node shows
the value of the net spillover; the larger the node, the larger the value of the net spillover. The thickness of the arrow line
indicates the degree of information spillover; the thicker the line, the higher the degree of spillover between markets.

4.2. Dynamic Connectedness Analysis

Based on the study of static connectedness, this section calculates the dynamic connect-
edness of the carbon–energy–stock system by introducing the method of rolling window
and conducts a time-varying analysis of the asymmetry of the spillover effect. In this paper,
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300 observations, which is about one fifth of the total observations, are selected as the
window length.

4.2.1. Dynamic Connectedness Analysis of the Original Return System

Figure 4 depicts the trend of the spillover index of the system. The spillover indexes
fluctuate within the range of 7.67% to 22.62%, with an average value of 12.99%. According
to the trend of the total spillover index, the samples can be divided into four stages. In the
first stage, the total spillover level is relatively low but stable. There is a clear distinction
between the second stage and first stage. From the beginning of 2016 to the middle of
2017, the total spillover index rises greatly compared with the first stage and maintains at a
relatively high level. In the third stage, the overall spillover level falls back to a relatively
low level, which lasts until the end of 2019. In this stage, the total spillover index mostly
fluctuates slightly around 10%. The fourth stage begins at the beginning of 2020: the total
spillover index is at a higher level than the previous stage and during this stage the index
is greater than 10%.
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Figure 4. Dynamic total connectedness index with rolling windows. The length of the rolling window is 300 days and the
date in the figure is the last day of each rolling window.

It is found that there may be a certain correlation between the spillover index and the
changes in energy market prices. During the first stage of the spillover index, affected by
the decline of international crude oil prices and turbulence of the stock market, China’s
energy market was relatively depressed. During this period, both crude oil and coal prices
in China were on a downward trend, which continued into early 2016. In the second stage
with a higher spillover index, the prices of crude oil and coal in China showed an obvious
upward trend, the trading in the energy market was more active, and the interaction
between the participants in the energy market was also improved. Then, in the third stage,
the prices of crude oil and coal prices in China were stable, without a sharp rise or fall. In
this stage, the spillover index is at a low level and is relatively stable. At the beginning
of 2020, affected by the COVID-19 epidemic and the impact of the international energy
market, China’s crude oil prices and coal prices experienced a sharp decline. It was not
until April 2020 that the crude oil market and coal market began to gradually recover and
during this time the spillover index also increased slightly compared with the third stage.

We noticed that there are two spikes during the second stage. We believe that these
spikes may be related to the events that occurred in the coal market and natural gas market.
The first spike may be related to the sharp rise in the coal price during this period. In
April 2016, the Chinese government imposed capacity restrictions on the coal industry. The
policy required coal producers to produce at maximum of 276 days a year. Additionally,
since 2016, the Chinese government has launched a crackdown on illegal coal mining.
These two measures have reduced the output of the coal industry, greatly changing the
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supply and demand of the industry, and raising the coal price sharply. The shock of the
coal market enhanced the spillover effect of the system. The second spike may be related
to the sharp fluctuations in the natural gas price during this period. In 2017, in an effort
to improve the air quality, the government implemented the coal-to-gas project, which
aimed to promote the use of natural gas instead of coal for heating in rural areas. The
policy led to a sharp increase in demand for natural gas in northern China at the end of
2017, resulting in severe shortages of natural gas in many areas. To ensure residents had
enough natural gas to heat their homes, plants that produced liquefied natural gas (LNG)
and natural gas for industrial use were forced to shut down or limit production. The LNG
price experienced a significant increase at the end of 2017 and remained high in the first
half of 2018, until the LNG price lowered in the second half of 2018.

As can be seen from Figure 5a,b, the spillovers received and transmitted by each
market also change over time.
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(a) Dynamic spillovers received by RCEA, RNES, ROIL, RCOAL, and RGAS 
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Figure 5. Dynamic spillovers of the carbon market, new energy stock market, and fossil energy markets. The length of the
rolling window is 300 days and the date in the figure is the last day of each rolling window.

In order to obtain more findings from the research on dynamic connectedness, we
analyzed the data of dynamic connectedness, as shown in Table 6. The expected value
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and standard deviation of the received spillover, transmitted spillover, and net spillover
of each market were calculated. It can be seen from Table 6 that the coal market is a net
transmitter most of the time and the proportion is as high as 69.83%. The proportion of
the new energy market as a net transmitter is 57.24%, which indicates that the new energy
stock market is a net transmitter most of the time. The carbon market is a net receiver most
of the time and its proportion as a net transmitter is only 27.15%. This is consistent with the
conclusion obtained in the static analysis, that is, the coal and new energy markets are the
net transmitters, and the crude oil, natural gas, and carbon markets are the net receivers.

Table 6. Summary statistics of dynamic connectedness.

From To Net Proportion

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
RCEA 2.4303 0.7635 3.1903 3.1417 0.7600 2.5919 27.15%
RNES 2.4440 0.5363 2.8017 1.0855 0.3577 1.0607 57.24%
ROIL 3.0402 0.8461 2.8215 0.7479 −0.2187 0.6184 37.69%

RCOAL 1.9893 0.6010 2.3305 0.5991 0.3412 0.6402 69.83%
RGAS 3.0856 2.6136 1.8453 0.4326 −1.2402 2.7058 48.00%

Note: “Proportion” refers to the proportion of the number of sub-samples with positive net spillovers in each
market to the total number of sub-samples.

4.2.2. Dynamic Connectedness Analysis of Positive and Negative Return Systems

We calculated the dynamic connectedness of the positive return and negative return
systems, and depicted the total spillover index of the system, as shown in Figure 6. As can
be seen from Figure 6, positive spillovers and negative spillovers generally show a similar
trend and both of them change over time. In addition, we depicted the dynamic asymmetry
coefficient, as shown in Figure 7. It can be seen that the index is greater than 1 most of the
time. The number of sub-samples with an index greater than 1 accounted for 72.44% of the
total, which means that the negative spillover is greater than the positive spillover most of
the time and the system is more sensitive to the negative information about price returns.
This is also consistent with our conclusion from the static connectedness analysis, that is,
the spillover effect of the system is asymmetric. Moreover, it can be seen that when the
total spillover indexes of the positive or negative return system are high, the asymmetry
coefficients are also high. This indicates that the asymmetry of the spillover effect is much
greater when the system is active.
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4.3. Robustness Check

To test the robustness of the methodology and results in this paper, in addition to the
selected size of the rolling windows (300 observations), we also considered another two
sizes of the rolling windows (200 and 400 observations). In this section, we estimate the
model under three different window lengths and depict the dynamic total connectedness
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indexes. The results are presented in Figure 8. As shown in Figure 8, the dynamic total
connectedness index becomes smoother with the increase of the window lengths and
the values of the indexes become smaller. This may be because, compared with a wider
rolling window, the total connectedness index captures more short-term changes of the
spillover effect under a narrower rolling window. However, the general trend remains,
which indicates that the dynamic spillover effect of the system is robust to the window
lengths. Similarly, we obtained the same results of the robustness tests under the positive
and negative return system.
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5. Conclusions

The study of the spillovers between China’s carbon trading market, new energy stock
market, and fossil energy market is of great significance for China and for other developing
countries that are in the early stages of establishing a carbon trading market. For China, this
is useful for policy-makers and market participants to understand the interactions between
markets and to establish energy policies or investment strategies. For other developing
countries, this paper provides ideas and methods to analyze the dynamic linkages between
the three markets. By constructing a connectedness network model of the carbon–energy–
stock system, this paper conducted an empirical study on the spillovers between the carbon
trading market, new energy stock market, and fossil energy market in China from June
2014 to September 2020.

5.1. Main Findings

First, from a systematic perspective, the spillover effect between China’s carbon
trading market, new energy stock market, and fossil energy market is relatively weak. The
empirical results show that the total spillover index of the carbon–energy–stock system is
low from both static and dynamic perspectives.

Second, in the carbon–energy–stock system, the new energy market plays a strong
leading role. For the whole system, the new energy market always acts as a net information
transmitter from both static and dynamic perspectives. For the carbon market, during the
full sample period, the new energy market had a higher degree of information spillover to
the carbon trading market than other fossil energy markets, which indicates that the price
return changes in the new energy market have a greater impact on the price changes in the
carbon trading market than in the fossil energy market.

Third, for the carbon market, the new energy stock market and coal market always
play the role of net information transmitters, which indicates that China’s carbon trading
has yet to have a significant impact on the energy market and cannot effectively promote
the low-carbon energy structure. This is consistent with Lin and Chen’s conclusion that
China’s carbon market is currently unable to effectively stimulate new energy sources to
replace traditional fossil fuel [38].

Fourth, the spillover effect of the carbon–energy–stock system is asymmetric, that is,
the system is more sensitive to negative news about price return than to positive news
about price return, and this asymmetric effect is much greater when the market interaction
is active.

Fifth, by studying the time-varying characteristics of the dynamic total connectedness
index, we found that the index is correlated with events in the fossil energy market. The
spillover effect of the system may be related to energy prices, especially crude oil and coal
prices.

5.2. Implications for Policy-Makers

According to the main conclusions above, we can observe that the total spillover effect
of China’s carbon–energy–stock system is weak and the three markets are less related.
In particular, the carbon market has yet to have a significant impact on energy markets
and cannot promote the low-carbon energy structure in China, which indicates that the
market efficiency of China’s carbon market is low. The development of China’s carbon
trading market faces some obstacles, such as decentralized pilot markets where market
participants in different markets cannot trade with each other; loose caps and quotas; vague
rewards and punishment mechanism; and so on. These issues have had a negative impact
on market liquidity and trading activity.

Policy-makers should take active measures to solve the problems mentioned above.
First, they should promote the construction of the national carbon trading market and
launch national legislative guidance for regional pilot markets. Establishing the national
legislation would prevent carbon pilot projects from being subject to administrative in-
terference that affects the flexibility of the market. In addition, the establishment of strict
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national laws and regulations can improve the legal restriction of carbon trading. Second,
policy-makers should improve the quota allocation mechanism as well as the reward and
punishment mechanism. The cap and quota in the pilot markets are loose and the carbon
price is low, which has not yet been able to motivate enterprises to actively participate
in carbon trading. Third, policy-makers should encourage investment institutions and
individual investors to participate in carbon market trading to enrich market participants,
thereby enhancing market liquidity.

In addition, since this paper finds that the new energy market plays a leading role
in the carbon–energy–stock system, policy-makers should provide policy support for
the development of new energy technologies as well as for energy-saving and emission
reduction technologies of fossil energy. The government should provide favorable tax
policies or financial services for these companies. This is conducive to ensuring the stable
development of the new energy industry and to preventing the volatility of the new energy
industry from having a huge impact on the system or carbon market.

Moreover, because of the asymmetric spillover effect of the carbon–energy–stock
system, policy-makers should pay more attention to falling energy prices to prevent serious
impacts on the system. This paper believes that in addition to paying attention to the
development of new energy, it is necessary to improve the price regulation mechanism of
the fossil energy market to prevent the fossil energy price from being greatly impacted by
the international energy price or by the supply and demand conditions in the domestic
market, which both transmit risks to the entire system.

5.3. Suggestions for Market Investors

For investors, this paper provides useful information regarding the relationship be-
tween market price changes. Considering the new energy market has a certain leading role
in the system, investors in the market should pay attention to the price return changes of
the new energy stock market in cases where they are considering long-term or short-term
investment.

5.4. Limitations and Future Research

This paper may be the first study to explore the spillover effect and asymmetry of
the spillover effect between China’s carbon trading market, fossil energy market, and new
energy financial market from a systematic perspective, which provides a new perspective
for the research on the interaction relationship between China’s energy market and carbon
trading market. The limitation of this paper is that it focuses on the results of spillovers
between markets but pays less attention to the transmission path of spillovers between
markets. Future research can investigate the transmission path and influencing factors of
the spillover effect so as to have a better understanding of the relationship between the
energy market and carbon trading market in China.
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