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Abstract: Increasing restrictions on the emission of greenhouse gases by the standards and the
European Union’s policy aims at increasing the share of renewable energy sources in the energy
mix of the Member States. Subsequently, we observe a rapid increase in the installed capacity of
the renewable energy sources. Renewable energy sources are currently the fastest growing sectors
of energy generation, specifically the photovoltaic sector. In 2005, the total installed capacity in
photovoltaic installations in the European Union was about 2.17 GW, while in 2019 it was already
over 130 GW. Currently, due to many forms of incentive governmental measures the construction
of photovoltaic installations is rapidly increasing with installations mounted on private houses and
buildings. The article presents selected issues concerning the failure modes of photovoltaic installa-
tions and a comparative assessment of the estimated and the real measured electrical production of
an operational photovoltaic installation. The Solar-PV power plant design approach proposed in the
paper considers the failure modes to enhance the plant’s reliability.

Keywords: energy; design; numerical; simulations; failure

1. Introduction

The continuous development of modern society creates an ever increasing demand of
electricity, since the WW-II. Satisfying this growing demand relying only on fossil fuels
such as coal or oil is not a sustainable clean energy option, as fossil fuels are depleted and
cause pollution [1,2]. Resource depletion and increasing pollution are major threats to the
modern society. Renewable energy sources present a formidable opportunity to sustain the
continuous development of the modern society and to dissipate the threats induced by the
fossil energy [3].

Figure 1 shows the percentage share of renewable energy in the total energy production
in the European Union in 2005–2019. Within 14 years, the share of renewable energy has
doubled, from 10% in 2005 to almost 20% in 2019. Sweden has the highest percentage
of renewable energy among the Member States of the European Union. In 2019, 56.4%
of Sweden’s energy was produced using renewable energy sources (hydropower, wind,
photovoltaic and biofuels). Of all European countries, including those not belonging to the
European Union, Iceland has the highest percentage share of renewable energy—78.2%
(hydropower and geothermal).
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Figure 1. share of renewable energy in the total energy production in the European Union in 2005–
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Despite the fact that many countries may not have achieved the required target, the 
total share of renewable energy in the European Union has achieved its target of 20% share 
in energy production. The next step will be to improve energy efficiency by 2030. The 
goals set for the Member States will be: reducing greenhouse gas emissions by at least 40% 
compared to 1990, increasing the share of renewable energy sources to 32% and increasing 
energy efficiency by at least 32.5%. 

Stand-alone photovoltaic systems are the most economic and ecological power gen-
eration solutions for both remote places from the power grid and in cities where connec-
tion to the grid is associated with high installation connection costs.  

The use of a stand-alone photovoltaic system for power supply is particularly bene-
ficial for various types of lighting and emergency telephones on highways, navigation 
buoys, lighthouses, telecommunications relay stations or weather stations. Energy from 
stand-alone photovoltaic systems is clean, quiet and reliable energy. 

Figure 1. Share of renewable energy in the total energy production in the European Union in
2005–2019. Adapted from Ref. [4].

According to Directive 2009/28/EC of the European Parliament and the European
Council, the aim for 2020 was to achieve a 20% share of renewable energy in total energy
production and a 10% share of renewable sources in EU transport sectors. In order to
achieve a 20% share of renewable energy in the total energy production in the European
Union, individual Member States have set up specific targets that should be achieved by
2020. Figure 2 shows the targets set up by specific Member States and their degree of
fulfilment in 2019. Sweden, Finland, Slovakia, Romania, Lithuania, Latvia, Cyprus, Italy,
Greece, Estonia, Denmark, the Czech Republic and Bulgaria have already met the targets.
Portugal, Austria, Hungary and Germany were close to meeting the targets in 2019 (less
than 1% to meet the target).

Despite the fact that many countries may not have achieved the required target, the
total share of renewable energy in the European Union has achieved its target of 20% share
in energy production. The next step will be to improve energy efficiency by 2030. The
goals set for the Member States will be: reducing greenhouse gas emissions by at least 40%
compared to 1990, increasing the share of renewable energy sources to 32% and increasing
energy efficiency by at least 32.5%.

Stand-alone photovoltaic systems are the most economic and ecological power gener-
ation solutions for both remote places from the power grid and in cities where connection
to the grid is associated with high installation connection costs.

The use of a stand-alone photovoltaic system for power supply is particularly ben-
eficial for various types of lighting and emergency telephones on highways, navigation
buoys, lighthouses, telecommunications relay stations or weather stations. Energy from
stand-alone photovoltaic systems is clean, quiet and reliable energy.

The EU 2020 Climate & Energy package targeted an increase in the share of renewable
energy sources up to 20% in EU countries [5]. Therefore, investments in renewable energy
sources are necessary [6–14]. Solar energy is a major renewable source to generate electricity
through photovoltaic cells [15–17]. Due to various types of subsidies, a large increase in
installed capacity in photovoltaic installations has been recorded [18]. Figure 3 shows a
rapid increase in the photovoltaic installed capacity in the European Union in the period
2005–2019.
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electronics systems that control the installation operation [27–29]. Since the output power 
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cannot be represented by static two-state or multi-state models, as these models assume a 
constant value of the generated power [30]. One of the primary errors in designing pho-
tovoltaic installations comes from the lack of the load-bearing roof or the geological soil 
expertise, depending on whether it is a roof or ground-mounted installation. This results 
in a decrease in the structure strength and exposes the installation structure to damage. 
Another error in design is due to the lack of an extensive analysis of the shading effects 
from neighbouring objects on the installation. Shading of even a small area can shut down 
part of the installation. 

For the design of photovoltaic installations, numerical simulation is largely used. It 
enables designers to predict the electrical energy production and to optimise the installa-
tion design [31]. Numerical simulation uses a variety of software and big databases that 
contain regional operational insolation data over many years. Computer simulations can 
also prevent design errors that are the major causes of almost all the failure modes like 
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The total photovoltaic installed capacity in the EU countries is 130.67 GW in 2019. The
largest installed capacity is in Germany with 49 GW, which accounts for almost 38% of
the total energy in photovoltaic installations in the European Union [19–21]. Despite the
growing interest in photovoltaics in the EU Member States, almost 80% of the installed
capacity belongs to only five countries: Germany, Italy, Great Britain, France and Spain.

The nominal operation of a photovoltaic installation depends on the available quantity
of solar energy. The availability of the insolation energy is governed by many atmospheric
parameters such as, the sun azimuth angle, ambient temperature, air-carried dust and
clouds. An indicator specifying the random nature of the clouds effect is taken into account,
as it directly affects the level of the solar energy received by the photovoltaic panels [22,23].

The performance analysis of a specific photovoltaic installation requires the creation
of a set of dedicated models to describe different functions in the installation [24–26]. A
photovoltaic installation usually consists of: photovoltaic panels, an inverter and power
electronics systems that control the installation operation [27–29]. Since the output power
of a PV installation depends on the random nature of the clouds effect, the installation
cannot be represented by static two-state or multi-state models, as these models assume
a constant value of the generated power [30]. One of the primary errors in designing
photovoltaic installations comes from the lack of the load-bearing roof or the geological soil
expertise, depending on whether it is a roof or ground-mounted installation. This results
in a decrease in the structure strength and exposes the installation structure to damage.
Another error in design is due to the lack of an extensive analysis of the shading effects
from neighbouring objects on the installation. Shading of even a small area can shut down
part of the installation.

For the design of photovoltaic installations, numerical simulation is largely used. It
enables designers to predict the electrical energy production and to optimise the installation
design [31]. Numerical simulation uses a variety of software and big databases that
contain regional operational insolation data over many years. Computer simulations can
also prevent design errors that are the major causes of almost all the failure modes like
installation fire, anormal operation conditions or cable insulation damage [32,33].

The paper describes, in Section 1, the general lines of the methodology of the study.
In Section 2, the paper presents a general description of the study area.
In Section 3, the paper presents identification and technical description of the photo-

voltaic installation and its simulations.
In Section 4, the paper presents the principal conclusions and synthesis of the com-

parative assessment of the estimated and the real measured electrical production of an
operational photovoltaic installation.

2. Description of Study Area

The distinguished installation is located in Subcarpathian province, Poland. The
commune is located on the right bank of the Vistula, in the south-eastern part of Poland, it
covers a total area of 921 square kilometres and lies in 50◦05′08.0′ ′ N and 22◦01′52.7′ ′ E as
shown in the Figure 4. Commune has an urbanisation rate of 233 inhabitant/km2 and is laid
of 200 MASL. The area of the commune is dominated by arable lands, which constitutes as
much as 65% of the city’s area and forest land is about 13%. The rest of the area is occupied
by urban areas and industrial areas. The city is located in the climatic zone of lowlands and
sub montane foothills. This area is characterised by hot summers, relatively small amounts
of rainfall of about 600 mm and not severe winter.
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3. Photovoltaic Installation Simulations

The design of the photovoltaic installation requires, first, to choose whether the
installation will be connected to the grid or not. The designed installation will be connected
to the low voltage grid through a bidirectional meter, which enables the surplus of energy
to be transferred to the power grid. The next step is to determine the exact location of
the installation. On this basis, the program selects the insolation values corresponding
to the location. In the next step, you can choose whether the installation will have an
energy storage in the form of batteries that will store the energy surplus. In the designed
installation, the surplus will be transferred to the grid, therefore the installation will not
have an energy storage. In the next stage, you need to create a building model, select
photovoltaic panels, determine their slope and select an appropriate inverter. At the design
stage, attention should be paid to whether there are any objects on the roof or in the vicinity
of the building that could shade the installation. This can have a significant impact on the
installation efficiency. After the simulation is completed, the program presents the detailed
results regarding the installation efficiency, shading effects and energy losses.

A photovoltaic installation was designed for an office building located in south-eastern
Poland. It consists of 16 panels with a capacity of 265 Wp, giving a total output power of
4.24 kWp. The BlueSol software was used to perform the simulation.

Figure 5 shows the values of insolation for the location of the designed building, on
the basis of which the program calculates the energy produced by the photovoltaic panels.
The data source is the NASA-SSE database. The NASA database is based on measurements
over a period of 22 years, in the years 1983–2005.
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Figure 5. Insolation in individual months based on the NASA-SSE database.

Taking into account the average daily intensity of solar radiation and the number
of days in a year, the program determined total annual insolation as 1070 kWh/m2. The
highest value of insolation was in May and amounts to 153.14 kWh/m2, while the lowest
value was in December and amounts to 24.18 kWh/m2.

Figure 6 shows the designed installation as described in the BlueSol program. Due
to the flat roof, the photovoltaic panels are designed on metal structures at an angle of
13 degrees.
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Figure 7 shows the azimuth of the designed building and the path of the sun (blue
line), which shows the altitude of the sun during the year, which makes it possible to
calculate the shading of the installation by neighbouring buildings, trees, or chimneys.
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Based on the design, simulations were performed. Figure 8 shows the monthly energy
production calculated by the program BlueSol.

The total energy obtained during the year is 4244.8 kWh. The energy obtained from
one kWp of installed capacity is 1001.1 kWh/kWp. The largest energy production takes
place in May and amounts up to 578.7 kWh, while the least produced energy is in December
and goes down to 114.9 kWh.

After designing the photovoltaic system and simulation, the installation was per-
formed on the building.

Figure 9 shows pictures of the completed installation.
The installation was realised in 2019, with a total insolation surface of 26.24 m2. Mea-

surements of the produced electrical energy were carried out throughout 2020 (Figure 10).
The total energy produced in 2020 was 4810.5 kWh. Converted to one kWp of installed

power, the production amounted to 1134.5 kWh/kWp. Compared to the simulation
expectations, the amount of the produced energy is higher by 13% (565.7 kWh more than
in simulations).

Figure 11 shows the results of solar radiation measurements in individual months
of 2020, carried out by the SolarAOT radiation transfer research station located in south-
eastern Poland [34].

The seasonal variations in the installation conversion rate are shown in Figure 12. The
energy conversion ratio is an indicator of the thermal performance of the installation.
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Figure 12 proves that the energy conversion ratio is not constant all over the year. It
seems as if insolation power and seasons impact the installation performance measured
through the energy conversion ratio. As can be noticed that the lower is the insolation
power, higher is the conversion ratio.

The total annual insolation in 2020 was 1198.12 kWh/m2, which is 12% higher than
the data given in the NASA-SSE database.
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It is also possible to calculate the approximate electricity production of a photovoltaic
installation without the need for expensive simulation software. Produced energy can be
calculated from the formula:

E =
N · k · PPV ·W

STC
(kWh) (1)

where: N—insolation on a horizontal surface (kWh/m2), k—a correction factor that al-
lows the insolation to be converted from a horizontal position to an inclined surface (for
an inclination of the panels of 13◦, and an inclination from the south of 15◦, k = 1.09),
PPV—photovoltaic installation power, W—performance ratio, STC—standard test condi-
tions, STC = 1000 W/m2.
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The performance ratio determines the level of losses in the photovoltaic installation.
Table 1 shows the losses in the installation determined with the BlueSol program.

Table 1. Losses in the analysed photovoltaic installation.

Type of Losses Loss Value (%)

Heat losses 3.00
Losses from mismatch 2.00

Resistance Ohmic losses 4.00
DC/AC conversion losses 2.70

Other losses 2.00
Total losses 13.70

Based on solar irradiation data from the NASA database and the results of solar
irradiation measurements (SolarAOT) in 2020, produced energy were recalculated using
the formula (1) as shown in example below.

For insolation on a horizontal surface N = 32.64 kWh/m2 (January), k = 1.09, photovoltaic
installation power PPV = 4.24 kWp, performance ratio W = 0.863 and STC = 1000 W/m2,
produced energy calculated from the formula 1 equals:

E =
N · k · PPV ·W

STC
=

32.64 · 1.09 · 4240 · 0.863
1000

= 130.2 kWh (2)

The results are shown in Table 2.

Table 2. Electricity yield from the analysed photovoltaic installation.

Month Actual Energy
Production

BlueSol
Software

Calculations Using Formula (1)
for Insolation from

Measurements

Calculations Using Formula (1)
for Insolation from NASA

Database

(-) (kWh) (kWh) (kWh) (kWh)

Jan 163.2 148.3 130.2 126.1
Feb 197.4 219.3 163.4 196.6
Mar 446.1 361.8 388.6 349.9
Apr 689.6 446.1 680.2 455.9
May 570.5 578.7 603.9 610.8
Jun 534.3 545.6 570.0 585.1
Jul 628.7 567.5 711.3 604.6

Aug 639.1 530.8 694.2 549.0
Sep 470.4 352.7 434.5 349.4
Oct 240.1 242.9 201.7 225.0
Nov 148.3 136.2 120.8 120.8
Dec 82.8 114.9 79.7 96.4
Total 4810.5 4244.8 4778.6 4269.6

A comparison of the value of insolation and electricity production is shown. Using
formula (1), it is possible to calculate the energy production during the year with high
accuracy, without the need to use specialised software. The difference between the solar
calculations from NASA’s database and the PV installation design software is 24.8 kWh
per year, which is a difference of 0.6%. In the case of calculations using data from mea-
surements at the research station for 2020, the calculated annual energy produced is lower
by 31.9 kWh compared to the actual data, which is a difference of 0.66%, as shown in the
Figures 13 and 14.

Based on the results obtained from the measurements of the amount of energy pro-
duced from a photovoltaic installation, it can be concluded that the results obtained from
simulation programs and calculations using NASA-SSE databases may differ significantly
from the real values. The discrepancy between analytical and experimental data can be
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caused by the rapidly changing climate, which is difficult to predict in a given year, and the
relatively low resolution of insolation measurements, which results in simulation programs
assuming the same values even for remote locations whose weather conditions may be
different, e.g., due to different topography. In the analysed cases, it is a difference of 13% in
the amount of electricity produced.
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4. Conclusions

Currently, the photovoltaic energy market is one of the fastest growing renewable
energy markets in Europe and in the world. The development of the market was influenced
by many factors, including international legal restrictive regulations on greenhouse gas
emissions, the increase of the prices of the traditional energy sources, as well as the increase
in subsidies for renewable energy projects and the growing ecological awareness of the
society.

The use of numerical simulation allows optimising the design of a photovoltaic
installation and take into account the influence of neighbouring objects or trees on the
shading of the panels, the influence of the tilt angle and the selection of all installation
elements.

Based on the results obtained from measurements of the amount of energy produced
from a photovoltaic installation, it can be concluded that the results obtained from simula-
tion programs and calculations using NASA-SSE databases may differ significantly from
the real values. In the analysed cases, it is a difference of 13% in the amount of electricity
produced.

It should also be noted that the databases used by the programs are based on the
results of measurements between 1983–2005 [35]. Due to the changing climate, more up-to-
date databases should be used that would allow more precise determination of electricity
production from solar cells.

The analysis of failures shows that the photovoltaic companies have to take action
to prevent and improve the technical conditions of PV installation operation. Further
investigations should be performed for other available databases and measurements for
the following years in order to compare the accuracy of other databases. Future work will
also include reliability analysis of actual installation as well as decrease the performance of
panels with age. The presented analysis constitutes a first step in assessing the risk due to
these second family of failures related to solar-energy nature and could be considered as a
tool to support decision-making in the process of designing photovoltaic installations and
analysing the economic efficiency of investments.
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