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Abstract: The conductive and radiative properties of participating medium can be estimated by
solving an inverse problem that combines transient temperature measurements and a forward
model to predict the coupled conductive and radiative heat transfer. The procedure, as well as the
estimates of parameters, are not only affected by the measurement noise that intrinsically exists in the
experiment, but are also influenced by the known model parameters that are used as necessary inputs
to solve the forward problem. In the present study, a stochastic Cramér–Rao bound (sCRB)-based
error analysis method was employed for estimation of the errors of the retrieved conductive and
radiative properties in an inverse identification process. The method took into account both the
uncertainties of the experimental noise and the uncertain model parameter errors. Moreover, we
applied the method to design the optimal location of the temperature probe, and to predict the
relative error contribution of different error sources for combined conductive and radiative inverse
problems. The results show that the proposed methodology is able to determine, a priori, the errors
of the retrieved parameters, and that the accuracy of the retrieved parameters can be improved by
setting the temperature probe at an optimal sensor position.

Keywords: conductive and radiative properties; inverse problem; error analysis; stochastic
Cramér–Rao bound (sCRB); experimental design

1. Introduction

Participating medium is widely presented in many engineering fields, such as
aerospace engineering, energy and power systems, and information communications.
The conductive and radiative properties of participating medium can be determined from
transient temperature measurements by solving an inverse problem [1–3]. This procedure
consists of comparing the measured temperatures to the responses predicted from com-
bined conductive and radiative heat transfer simulation [4–7]. A sequence of computations
is performed, and the property values are adjusted until the predictions match well with
the measurements.

For the ideal case, the experimental measurements are noise-free and the predictions
perfectly reflect the reality; consequently, the conductive and radiative properties may be
precisely recovered. However, neither the measurements nor the predictions are strictly
accurate. The measurements are distorted by measurement noise, and the predictions,
simulated via combined conduction and radiation, may exhibit variations due to the fact
that: (1) the solution method may simplify the complex coupled heat transfer problem,
and thus, yield inaccurate temperature responses; and (2) some of the model parameters
(such as geometry parameters, density, the specific heat of the material, and the boundary
conditions) used in the forward problem solution are not precisely known. As the inverse
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problem is always ill-posed, a small deviation in the measured or predicted temperatures
may lead to a considerable deviation in the recovered properties. Therefore, there is a
crucial need to investigate the uncertainties of the recovered properties in the inverse
scheme, and to make efforts to improve the accuracy of the retrieved parameters.

Several studies were performed to estimate the uncertainties of the recovered prop-
erties. Lazard et al. [8] retrieved the thermal diffusivity, the Plank number, and a global
radiative transfer coefficient (defined from the absorption coefficient, the scattering coeffi-
cient, and the slab thickness) of an absorbing and isotropic scattering slab from transient
temperature measurement, and the authors estimated the variance of the retrieved parame-
ters. Zhao et al. [9,10] performed transient temperature measurements of fibrous insulation,
and retrieved the conductive and radiative properties by solving an inverse problem; the
uncertainties of the retrieved parameters were evaluated from the standard deviation of
the measured temperature response. Several similar studies, which aimed to estimate the
thermophysical properties of anisotropic composite [11], the thermal conductivity and heat
capacity of an orthotropic medium [12], and the conductive and radiative properties of par-
ticipating medium [13,14], were also performed. The above-mentioned studies considered
only the experimental noise, while the uncertainties that might have existed in the known
model parameters of heat transfer models were not taken into account, i.e., the predictions
were assumed to be strictly accurate. Only a few research studies considered both the
experimental noise and the uncertainties of model parameters, and the uncertainties of
the retrieved properties were estimated using the Cramér–Rao lower bound (CRB)-based
method [15–22]. These works, relative to inverse heat transfer problems, mainly focused
on retrieving the thermal conductivity, thermal resistance, and heat transfer coefficient
by solving inverse heat conduction problems [15–17]. The other studies mainly inves-
tigated the uncertainty estimation and the selection of measurement modalities for the
retrieval of the magnetic material properties of electromagnetic devices (EMD) [20–22]. To
the best of the authors’ knowledge, there is no uncertainty analysis research reported for
inverse conduction-radiation problems that considers both the experimental noise and the
uncertainties of the model parameters.

As for the strategies for improving the accuracy of the retrieved parameters, the
first approach involves reducing the errors related to the inverse identification solution,
i.e.,: (1) performing accurate experimental measurements, and thereby offering perfect
measured temperature responses; (2) acquiring accurate model parameters (generally
measured from other experiments) before solving the inverse problem; and (3) employing
an accurate method for the solution of the forward problem. However, this strategy is
usually ineffective due to the limitations of experimental equipment, such that the accuracy
of the transient temperature and model parameter measurements are usually difficult to
improve. Another means of improving the identification accuracy is to place the sensors at
optimal positions; this involves the solution of an optimal experimental design problem.
In general, the optimal sensor location is such that the sensitivity of the temperature
responses at the optimal positions for the parameters to be retrieved should be as large
as possible. As for most transient problems, the sensitivity is a function of time, and the
location of maximal sensitivity at any time duration may not be unique, and thus, the
ideal position of a single sensor is not unequivocally defined; instead, the sensor should be
located at positions that give the best integrated sensitivity over the entire experimental
time duration. In addition, the optimal locations should be designed to minimize the noise
effects, i.e., the measured temperature responses at the optimal sensor positions should
be as accurate as possible, and the corresponding predictions should be less sensitive to
the uncertainties of the known model parameters when solving the forward problem. It is
not obvious that the maximization of integrated sensitivity and the minimization of noise
effects lead to the same sensor location; therefore, the optimal design of the sensor location
is comprehensively affected by the aforementioned two factors.

This paper presents a stochastic Cramér–Rao bound (sCRB)-based error analysis
method for estimating the uncertainties of conductive and radiative properties retrieved
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from transient temperature measurements by solving an inverse conductive and radiative
heat transfer problem. The measurement noise and the uncertainties of known model pa-
rameters are both taken into account in the analysis, whereas the solution error that occurs
as a result of the method used to solve forward problem is neglected in the present study.
Furthermore, the optimal temperature sensor positions for inverse transient conductive
and radiative heat transfer problems are designed to improve the accuracy of the retrieved
properties on the basis of the CRB-based error analysis method. Several examples are
given to illustrate the error analysis method and to show the superiority of the designed
optimal sensor positions. The remainder of the present manuscript is organized as follows:
Section 2 presents a combined conduction and radiation model, an inverse identification
method, and the CRB-based uncertainty analysis method. Several examples, as well as the
corresponding discussions, are presented in Section 3. Conclusions are drawn at the end of
this manuscript.

2. Theory and Methods
2.1. Combined Conductive and Radiative Heat Transfer in Participating Medium

Transient coupled conductive and radiative heat transfer, in an absorbing and isotropic
scattering gray solid slab with a thickness of L, were considered. The physical model of the
slab, as well as the associated coordinate system, are shown in Figure 1. As the geometry
considered was a solid slab, convection was not considered in the present study. In addition,
the geometry can be three-dimensional but only one direction is relevant; thus, only 1-D
combined conductive and radiative heat transfer was investigated. The boundaries of the
slab were assumed to be diffuse and gray opaque, with an emissivity of ε0 for x = 0, and εL
for x = L, and the temperatures of the two walls were fixed at TL and TH, respectively. The
extinction coefficient β, the scattering albedo ω, the thermal conductivity kc, the density ρ,
and the specific heat cp of the slab were assumed to be constant in the present study.
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Figure 1. Schematic of coupled conductive and radiative heat transfer in an absorbing and scattering
slab.

The energy conservation equation for the slab can be written as [23,24]

ρcp
∂T
∂t

=
∂

∂x

(
kc

∂T(x, t)
∂x

)
− ∂q′′r (x, t)

∂x
(1)

where T(x,t) denotes the temperature at position x and time t, and q′′r (x, t) is the radiative
heat flux. The gradient of the radiative heat flux can be calculated from [23,24].

∂q′′r (x, t)
∂x

= 4πn2 Ib[T(x, t)]− G(x, t) (2)
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where Ib[T(x, t)] is the blackbody radiation intensity, and G is the fluence rate defined
as G(r̂) =

∫
4π

I(ŝ, r̂)dΩ. The intensity I(ŝ, r̂) at location r̂ in direction ŝ is governed by the

radiative transfer equation (RTE), written as [23,24]

ŝ · ∇I = −(κ + σs)I + κn2 Ib[T(r̂, t)] +
σs

4π

∫
4π

Φ
(
ŝ′, ŝ
)

IdΩ′ (3)

where κ is the absorption coefficient and n is the refractive index, while σs and Φ(ŝ′, ŝ) are
the scattering coefficient and phase function of scattering, respectively.

Corresponding to the physical model shown in Figure 1, the boundary and initial
conditions can be written as

T(0, t) = TH, T(L, t) = TL, and T(x, 0) = T0 (4)

where TH and TL are the temperatures at the walls of x = 0 and x = L, respectively, while T0
is the initial temperature. The transient temperature T(xs, t) at sensor position xs can be
predicted by solving Equations (1)–(4).

2.2. Inverse Method

In order to maintain the generality of the method, we assumed that the unknown
conductive and radiative properties to be retrieved were labeled as u ∈ RNP×1, where
Np is the number of unknown parameters. The model parameters were assumed to
be b ∈ RNq×1, where Nq is the number of model parameters. The predicted transient

temperature at location xs was T
(

ũ, b
)
∈ RNS×Nt , where ũ is the retrieved value of u,

and b is the measured value of parameter b, Nt is the number of sampling points, and
NS is the number of sensor positions. The transient temperature history measured in the
‘experiment’ was expressed as W ∈ RNS×Nt .

The inverse problem was defined as an optimization problem of finding the parameter
vector u, for which the transient temperature history T

(
ũ, b

)
at location xs predicted from

combined conduction and radiation was closest to the experimental data W; thus, the
parameter vector u could be determined by minimizing an objective function defined as

F(u) = ‖T
(

u, b
)
−W‖ (5)

Thus,
ũ = argmin

u
F(u) = argmin

u
‖T
(

u, b
)
−W‖ (6)

The genetic algorithm (GA), which is widely used for complex, ill-posed
problems [25–27], was employed to solve the inverse identification problem. Figure 2
shows the block diagram of the GA-based inverse method used to determine parameter
vector ũ.
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2.3. Uncertainty Estimation and Design of Experiment

In the present study, a mathematical technique based on the stochastic Cramér–Rao
lower bound (sCRB) is presented; the method aimed to take the measurement noise and
the model parameter uncertainties of combined conduction and radiation into account
for an a priori uncertainty estimation of the retrieved properties. Assuming that u* is the
actual value of parameter vector u, the actual measurement W can be expressed as

W = T
(

u∗, b
)
+ etot (7)

where etot ∈ RNS×Nt is the total error vector, and the total error vector at time tk can be
expressed as

etot,k =
[
Wk − Tk

(
u∗, b

)]
− E

[
Wk − Tk

(
u∗, b

)]
, k = 1, 2, . . . , Nt (8)

where E
[
Wk − Tk

(
u∗, b

)]
is the expected value of quantity

[
Wk − Tk

(
u∗, b

)]
. The total

error vector, etot, contains two components, i.e., etot = eexp + epred, where eexp and epred
are the error vectors due to measurement noise and modeling uncertainties, respectively.
The measurement error eexp is composed of systematic and random components, as the
state-of-the-art techniques and devices used for temperature measurement provide a
rather low level of systematic error, and the reproducible nature of the systematic error
makes it possible to estimate the bias on the measured data by means of a calibration
procedure; this manuscript restricts discussions that the measurements contain only the
random component of uncertainties, and the random error is assumed to be Gaussian
while distributed with a mean of zero and a variance of σ2

exp,k. The modeling error, epred,
can also be divided into two parts: the modeling error due to the use of inaccurate model
parameter vector b, and the modeling error due to the use of inaccurate physical models
(such as simplification of the physical models, or the use of inaccurate numerical methods).
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In this study, we assumed that the physical model was perfect; thus, the modeling error
was affected only by the inaccurate model parameters.

The Cramér–Rao inequality theorem states that the covariance matrix of the deviation
between the true and the estimated parameters is bounded from below by the inverse of
the Fisher information matrix M [15–17]

E
[
(ũ− u∗)(ũ− u∗)T

]
≥M−1 (9)

where, the Fisher information matrix can be calculated from

M = E

{[
∂

∂u
ln L(W|u)

] [
∂

∂u
ln L(W|u)

]T
}

(10)

where M is a matrix with Np × Np dimensions, and ln L(W|u) is the log-likelihood of W
given the parameter vector u; the likelihood of the data is normally distributed and is given
by [15–17]

L(W |u ) =

[
(2π)Nt NS

Nt
∏

k=1
Det(Vk)

]−1/2

× exp
{

Nt
∑

k=1
− 1

2

[
Tk

(
u∗, b

)
−Wk

]T
V−1

k

[
Tk

(
u∗, b

)
−Wk

]} (11)

where Vk is the total error variance, expressed as

Vk = E
(

etot,keT
tot,k

)
(12)

The total error includes contributions of both the measurement noise and the modeling
error

Vk = ΘkGΘT
k + Sk (13)

where Sk = E
(

eexp,keT
exp,k

)
= E

{
[Wk − E(Wk)][Wk − E(Wk)]

T
}

is the measurement

variance, while ΘkGΘT
k is the contribution of the uncertain model parameters, where

G ∈ RNq×Nq is the covariance matrix of the uncertain modal parameter vector b, and
Θk is the sensitivity matrix of the temperature prediction T with respect to the uncertain
parameter vector b; this can be expressed as

(Θk)i,q =
∂Ti(tk, u, b)

∂bq
, i = 1, 2, . . . , NS, q = 1, 2, . . . , Nq (14)

Equation (11) can be rewritten as

ln L(W |u ) = − 1
2 NtNS ln(2π)− 1

2

Nt
∑

k=1
ln[Det(Vk)]

− 1
2

Nt
∑

k=1

[
Tk

(
u∗, b

)
−Wk

]T
V−1

k

[
Tk

(
u∗, b

)
−Wk

] (15)

The first term of the right side is constant, thus

ln L(W |u ) = const− 1
2

Nt
∑

k=1
ln[Det(Vk)]

− 1
2

Nt
∑

k=1

[
Tk

(
u∗, b

)
−Wk

]T
V−1

k

[
Tk

(
u∗, b

)
−Wk

] (16)



Energies 2021, 14, 6593 7 of 16

Therefore, the Fisher information matrix can be calculated from

(M)lm =
Nt
∑

k=1

{[
∂Tk(u∗ ,b)

∂um

]T
V−1

k

[
∂Tk(u∗ ,b)

∂ul

]
+ 1

2 Tr
[
V−1

k
∂Vk(u)

∂ul
V−1

k
∂Vk(u)

∂um

]}
, l, m = 1, 2, . . . , NP

(17)

The effect of the trace term is very small and can be neglected [17]; thus, the Fisher
information matrix can be approximated by

(M)lm ≈
Nt

∑
k=1


∂Tk

(
u∗, b

)
∂um

T

V−1
k

∂Tk

(
u∗, b

)
∂ul


, l, m = 1, 2, . . . , NP (18)

The lower bound for the variances of the parameters to be retrieved can be estimated
as

σ2
ui ,LB =

(
M−1

)
ii

, i = 1, 2, . . . , Np (19)

The σ2
ui ,LB values could be used to qualitatively evaluate the retrieved results as well

as the inverse identification models, and thus, could be employed in the method used to
design the experiment. For inverse problems with only one parameter to be retrieved, the
Fisher information matrix M can be reduced to a scalar M, σ2

u,LB = 1/M.
The algorithm for determining the optimal sensor position for inverse conductive and

radiative heat transfer is shown in Figure 3 as follows:
Step 1: Identify the mean value b of b and the corresponding covariance matrix G;
Step 2: Identify possible sensor positions, and chose an initial sensor position;
Step 3: Solve the forward problem, predict T

(
u, b

)
and the corresponding sensitivity

Θ, then estimate the experimental error σ2
exp;

Step 4: Estimate σ2
u,LB for the retrieved parameter ũ;

Step 5: Update the sensor position and go to step 3, then estimate σ2
u,LB for all sensor

positions;
Step 6: Evaluate the different sensor positions and find the optimal sensor position.
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3. Results and Discussion

We ‘simulated’ the measurements by using the output of the forward model with
the actual values of the unknown parameters to be retrieved, and the measurements were
corrupted by Gaussian noise with a mean and standard deviation of zero. In this way, we
were able to perform numerical experiments to illustrate the uncertainty of the method of
analysis, and to show the designed optimal sensor position.
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3.1. Identification of Conductive Thermal Conductivity: The Optimal Experimental Design

For the first example, we considered an absorbing and isotropic scattering gray slab,
as shown in Figure 1. The slab had volumetric heat capacity cv = 4×105 J/(m3·K), refractive
index n = 1.0, extinction coefficient β = 2000 m−1, and scattering albedo ω = 0.8; furthermore,
the thickness of the slab was L = 0.02 m, and the boundary emissivities for x = 0 and for x = L
were ε0 = εL = 0.8. The initial temperature of the slab was T0 = 300 K; the temperature of
the two slab walls were fixed at TH = 1000 K for x = 0, and TL = 300 K for x = L, respectively.
The conductive thermal conductivity kc was assumed to be unknown and needed to be
retrieved, and the actual value of kc was 0.02 W/(m·K). The ‘measured temperature’ was
simulated by adding Gaussian noise to the solution of combined conduction and radiation,
and various noise levels, γTS% , were considered in the present study. The standard
deviation, σexp,k, of the ‘measured temperature’, at time tk, could be calculated from

σexp,k = γTS% · T(xS, tk) · ξ (20)

where ξ is a normal distribution number with a mean of zero and a standard deviation of
unity. We also considered that the boundary temperature TH at x = L was not accurate,
and its value was distributed about the mean value of TH = 1000 K with a normally
distributed noise γTH% ; similarly, the standard deviation σTH of TH could be calculated
from σTH = γTH% · TH · ξ. Here, the considered time duration of the ‘experiment’ was
tS = 200 s, and the sampling increment of time was ∆t = 2 s.

Figure 4 shows the estimated lower bound, σkc ,LB, for the standard deviation of the
conductive thermal conductivity, kc, with respect to various measurement noise γTS% and
boundary temperature error γTH% values; the values considered for γTS% and γTH%
ranged from 1% to 9%, with an increment of 2%, and the temperature sensor was located
at xs = L/2.
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boundary temperature error γTH% values.

First, it was obvious that the σkc ,LB values increased with the increasing measurement
noise γTS% , as well as the increasing γTH% values, which indicated that the accuracy
of the retrieved parameters could be improved by performing an accurate experiment,
and by using accurate model parameters. It is also interesting to note that the σkc ,LB value
for γTS% = 3% and γTH% = 1% was smaller than that for γTS% = 1% and γTH% = 9%;
the decrease in measurement noise γTS% (from 3% to 1%) did not result in a lower
value of σkc ,LB. This indicated that the accuracy of the retrieved parameter was affected
comprehensively by the measurement noise and the model parameter uncertainty, and
neither of the two factors could be neglected. Therefore, for some inverse identification
problems, only trying to perform accurate experiments may not be sufficient in terms of
improving the accuracy of the retrieved parameters.
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Figure 5 presents the estimated Fisher information matrix M (M is reduced to a scalar
M as M has only one element), and the lower bound σkc ,LB, for the standard deviation of
the conductive thermal conductivity kc as a function of the dimensionless sensor position
xs/L. The measurement noise was assumed to be γTS% = 1%, and two different boundary
temperature noise values, γTH% = 0% and γTH% = 5%, were investigated separately.
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It can be seen from Figure 5 that the σkc ,LB values first decreased, and then presented
an increasing tendency with the increasing of the dimensionless sensor position xs/L. For
γTH% = 0%, the optimal sensor position was in the vicinity of xs/L = 0.5, and the minimum
value of σkc ,LB was about 5.5× 10−5 W/(m·K). Compared with the results for γTH% = 0%,
the minimum value of σkc ,LB for γTH% = 5% was increased to about 2.4× 10−4 W/(m·K);
furthermore, the optimal sensor position moved from xs/L = 0.5 to a position in the vicinity
of xs/L = 0.6, due to the fact that the boundary temperature error γTH% affected the
solution of the forward problem, especially for positions that were close to the boundary
x = 0. Therefore, the sensor should be placed far away from the boundary to reduce its
error effect.

The time-consuming Monte Carlo (MC) technique was employed to validate the
designed sensor positions. We assumed that the three potential positions, xs/L = 0.5,
0.6, and 0.9, were available to place the temperature sensor for both γTH% = 0% and
γTH% = 5%, respectively. For each sensor position and boundary temperature error γTH% ,
1000 independent inverse identifications were performed to retrieve kc; thus, the standard
deviations of the retrieved kc were calculated and compared with the σkc ,LB value estimated
via the CRB-based error analysis method. The results are presented in Table 1.

Table 1. Comparison of standard deviation of the retrieved conductive thermal conductivity esti-
mated from the CRB method and MC simulations for various boundary temperature error values of
γTH% = 0% and 0.5, and various dimensionless sensor positions of xs/L = 0.5, 0.6 and 0.9, respectively.

Sensor Position

Standard Deviation of Thermal Conductivity, W/(m·K)

γTH% = 0% and γTS% = 1% γTH% = 5% and γTS% = 1%

CRB MC CRB MC

xs/L = 0.5 0.55 × 10−4 1.0 × 10−4 2.6 × 10−4 5.2 × 10−4

xs/L = 0.6 0.70 × 10−4 1.3 × 10−4 2.4 × 10−4 4.1 × 10−4

xs/L = 0.9 11.1 × 10−4 18.7 × 10−4 11.2 × 10−4 19.3 × 10−4
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It can be seen that a large discrepancy between the values estimated from the two
methods was observed. This was due to the fact that the CRB-based method gave the lower
bound of the uncertainty of the retrieved kc; however, the aim of the present study was
not to prove the correct quantitative error values. According to the MC simulation results,
the best sensor position was xs/L = 0.5 and xs/L = 0.6 for γTH% = 0% and γTH% = 5%,
respectively, while the worst position was xs/L = 0.9 for both γTH% = 0% and γTH% = 5%;
this is consistent with the positions estimated using the CRB method. It indicates that the
CRB method can be used to estimate the optimal experimental design for identification
problems related to thermal properties.

3.2. Identification of Conductive and Radiative Properties: The Optimal Experimental Design

For problems regarding identification of conductive and radiative multiple properties,
we considered the same physical model that was discussed in Section 3.1. The conductive
thermal conductivity kc, extinction coefficient β, and scattering albedo ω of the slab were
assumed to be unknown, and thus, needed to be retrieved, and their actual values were
such that kc = 0.02 W/(m·K), β = 2000 m−1, and ω = 0.8, respectively. The time duration
of the ‘experiment’ was tS = 1000 s, and the sampling increment of time was ∆t = 2 s. The
other parameters including the geometry parameter, the boundary condition parameters,
and other properties were the same as those presented in Section 3.1.

For optimal experimental design problems involving the retrieving of only one pa-
rameter, the optimal sensor position could be easily identified according to the lower
bound for the standard deviation values of the parameter to be retrieved. The optimal
sensor position for multiple-parameter identification problems could not be determined
directly from the lower bound for the standard deviation σ2

ui ,LB of the parameter to be
retrieved, as the minimum σ2

ui ,LB for each parameter would not necessarily lead to the same
sensor location. For this reason, it was necessary to define a new parameter to evaluate the
retrieved parameters; in the present study, the parameter EU% was defined

EU% =
Np

∑
i=1

∣∣∣∣∣∣∣∣∣∣

√
1

Nt

Nt
∑

k=1

[
TS,pred

(
ui,fic + σui ,LB, xe, tk

)]2

√
1

Nt

Nt
∑

k=1

[
TS,pred(ui,fic, xe, tk)

]2
− 1

∣∣∣∣∣∣∣∣∣∣
× 100% (21)

where Nt is the number of sampling points, TS,pred(ui,fic, xe, tk) is the predicted temperature
at time tk and location xe using the fictitious parameter value ui,fic, and in the present study,
we assumed that xe = L/2. The parameter EU% measured the integrated uncertainty of
the recovered transient temperature response; the lower the EU%, the better the retrieved
parameters. Thus, the best sensor position was the one that featured the lowest EU%.

Figure 6 presents the estimated EU% with respect to various measurement noise
γTS% and boundary temperature error γTH% values. The values considered for γTS%
and γTH% ranged from 1 to 5%, with an increment of 1%. The temperature sensor was
located at xs/L = 0.5. As with those used for one-parameter identification problems, the
accuracy of the retrieved parameters could have been improved by performing more
accurate experiments, and by using accurate model parameters when solving inverse
conductive and radiative heat transfer problems.
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Figure 6. The EU% values based on the CRB method at various errors of γTH% and γTS%.

Figure 7a presents the values of σu,LB/ufic with respect to dimensionless sensor lo-
cation xs/L; the measurement noise considered here was γTS% = 2.0%. It is obvious that
smaller σu,LB/ufic values led to better retrieved results. The dimensionless positions corre-
sponding to the minimum value of σu,LB/ufic for kc, β and ω were xs/L = 0.76, 0.75, and
0.19, respectively, and the positions should have been the optimal sensor position for each
parameter. It is interesting to note that the positions for each parameter were not consistent;
therefore, the overall optimal sensor position could not be directly determined.
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Figure 7. The values of (a) σu,LB/ufic and (b) EU% as a function of the dimensionless sensor location
for γTS% = 2.0% and γTH% = 0.0%.

Figure 7b shows the EU% values with respect to the dimensionless sensor location
xs/L; the position corresponding to the minimum value of EU% was xs/L = 0.66, and the
position should have been the optimal sensor position for the multiple-property identifica-
tion problem. In fact, as the variation of xs/L between 0.4 and 0.8 led to only slight changes
in the EU% values, the temperature sensor could have been placed at any position within
this range. Therefore, the main consideration for researchers or engineers should be the
ease and reliability of sensor installation.

Figure 8a,b show the values of σu,LB/ufic with respect to the dimensionless sensor
position xs/L for the measurement noise value of γTS% = 2.0%, and the boundary temper-
ature error of γTH% = 2.0% and γTH% = 4.0%, respectively. Compared with the results
reported in Figure 7a, the σu,LB/ufic increased with the increasing of the γTH% values. The
optimal sensor positions for kc, β and ω moved slightly further away from the boundary
x = 0 as γTH% increased. Figure 8c reports the EU% as a function of the dimensionless
sensor location for various γTH% values of 0.0%, 2.0%, and 4.0%, respectively. It is obvious
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that the EU% values increased dramatically with the increasing of γTH%, which means
that the uncertainty of the boundary temperature had an obvious effect on the retrieved
results. Furthermore, the optimal sensor position displayed a tendency to move slightly
further away from the boundary x = 0. As the EU% values corresponding to xs/L between
0.4 and 0.8 changed slightly within this range, the temperature sensor could have been
placed at any position within the range.
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As only one sensor position was designed, the total error variance Vk and the ex-
perimental error variance Sk, shown in Equation (13), were reduced to scalar Vk and Sk;
thus, if Ok = Vk − Sk, the quantity Ok could then be used to measure the error variance
caused by an inaccurate boundary temperature TH. Therefore, the Sk/Vk and Ok/Vk values
could be used to measure the relative contribution of the experimental noise and boundary
temperature error to the total error at time tk, and thus, the integrated error contribution of
experimental noise and boundary temperature TH over the whole time duration could be
expressed as

Ef(Wk) =
Nt

∑
k=1

Sk/
Nt

∑
k=1

Vk , Ef(TH) =
Nt

∑
k=1

Ok(TH)/
Nt

∑
k=1

Vk (22)

Figure 9a presents Sk/Vk and Ok/Vk as a function of time t. At this point, the mea-
surement noise was still γTS% = 2.0%, and the boundary temperature error considered
in the present study was such that γTH% = 2.0% and γTH% = 4.0%, respectively. The
value of γTH% affected the contribution of the boundary temperature uncertainty to the
overall error, and the Ok/Vk values for γTH% = 2.0% were always smaller than those
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for γTH% = 4.0%. The Sk/Vk and Ok/Vk values varied with time; first, the experimental
error predominated, but, as time went on, the contribution of the boundary temperature
error gradually increased, and started to become predominant, indicating that the main
contribution factors changed in an alternating manner during the entirety of the time
duration.
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Figure 9b shows the integrated error contribution of the two error resources. First, it
can be seen that the boundary error contribution was predominant for both γTH% = 2.0%
and γTH% = 4.0%, and the error contribution was about 67% and 88%, respectively. There-
fore, in order to improve the accuracy of the retrieved conductive and radiative properties,
an effective method would involve trying to improve the accuracy of the boundary temper-
ature, TH, rather than concentrating on transient temperature measurements.

4. Conclusions

In the present work, we proposed a stochastic Cramér–Rao bound (sCRB)-based
numerical methodology to estimate the error of the conductive and radiative properties
of participating medium that was recovered from transient temperature measurements
by solving inverse heat transfer problems. The measurement noise and the inaccurate
model parameters were both taken into account in the analysis. The inverse identifica-
tion problems of retrieving only one parameter and retrieving multiple parameters were
illustrated separately. The proposed sCRB-based method was numerically validated by
the time-consuming Monte Carlo simulations, and it was shown that the method was
able to determine, a priori, the error of the retrieved parameters. Based on the method,
the optimal temperature sensor positions were designed to improve the accuracy of the
retrieved parameters, and the relative error contributions of the error sources were also
estimated.

The results show that: (1) the optimal sensor position is comprehensively determined
by the factors of measurement noise as well as the uncertainties of inaccurate model
parameters, and the optimal position varies with the levels of the error sources; (2) for
problems regarding multiple parameter identification, the optimal position for each pa-
rameter may not be consistent, and thus, the optimal sensor position for the identification
problem should be evaluated by the comprehensive parameter EU%, which is defined in
Equation (21); and (3) the relative error contributions for each error source vary according
to their error level, and the estimated relative error contributions can provide suggestions
for improving the accuracy of the retrieved parameters.
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