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Abstract: The proliferation of renewable energy sources distributed generation (RES-DG) into the
grid results in time-varying inertia constant. To ensure the security of the grid under varying inertia,
techniques for fast security assessment are required. In addition, considering the high penetration
of RES-DG units into the modern grids, security prediction using varying grid features is crucial.
The computation burden concerns of conventional time-domain security assessment techniques
make it unsuitable for real-time security prediction. This paper, therefore, proposes a fast security
monitoring model that includes security prediction and load shedding for security control. The
attributes considered in this paper include the load level, inertia constant, fault location, and power
dispatched from the renewable energy sources generator. An incremental Naïve Bayes algorithm
is applied on the training dataset developed from the responses of the grid to transient stability
simulations. An additive Gaussian process regression (GPR) model is proposed to estimate the load
shedding required for the predicted insecure states. Finally, an algorithm based on the nodes’ security
margin is proposed to determine the optimal node (s) for the load shedding. The average security
prediction and load shedding estimation model training times are 1.2 s and 3 s, respectively. The
result shows that the proposed model can predict the security of the grid, estimate the amount of
load shed required, and determine the specific node for load shedding operation.

Keywords: security; incremental machine learning; renewable energy sources; distributed generation

1. Introduction

The emerging grid is defined as the future power system with a clean, affordable,
sustainable energy generation and delivery system. The emerging grid is also characterized
by high efficiency and reliability achievable through the accompanying components such
as renewable energy sources distributed generators (RES-DG) units. There has been a
concerted effort to enhance the emerging grid to accommodate high penetration levels
of RES-DG units as the power grid moves to a carbon-less grid. To deliver a reliable,
resilient, and secure grid, the power grid requires intelligence to sense, assess, and predict
the security state of the grid [1]. The rapid transition towards a more active and intelligent
grid will help to achieve high RES-DG penetration, improved security, and reliability. As
the emerging grid evolves to accommodate the increasing integration of RES-DG units and
energy storage systems (ESS), it is essential to ensure its security through security analysis
and prediction.

Figure 1 shows the emerging power grid with several components related to the
generation, control, and utilization of energy. These components may be categorized
into smart generation, smart transmission, smart distribution, and smart communication
systems [2]. The smart generation is strongly linked to decarbonization and digitalization
since the grid will contain a mix of large and small RES-based generation units. The smart
generation also includes the microgrid model where active customer (prosumers) generates
power through the distributed generation together with storage systems and transfers
the surplus power generated to the grid [3]. The smart distribution system is based on
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the adoption of advanced distribution management technologies that will help optimize
distribution network operations and increase network resiliency. The use of smart meters is
also critical for energy usage monitoring and management. Smart distribution is the most
recent notion, and it entails putting in place managerial measures. Smart distribution’s
most recent concept is the use of managerial strategies to develop resources on the demand
side by influencing load demand. The goal of smart communication systems is to eliminate
information asymmetry and hence improve supply reliability. Power line communication
technology, which allows bi-directional communication over existing power lines, is a key
technology to achieve this goal [4].

Figure 1. Emerging power grid with RES-DG units.

System security has been defined by system regulators and operators for decades
as the ability of a grid to withstand sudden changes in load and disturbances such as
short circuits or unexpected network elements losses due to natural causes. Under this
definition, the grid’s security can be evaluated under static security through voltage and
thermal limits and under dynamic/transient security through voltage, angular, frequency
stability studies [5]. The assessment of grids’ security under the impact of disturbances
and unexpected network elements losses using these limits and stability studies may
be regarded as a conventional security assessment. However, in modern grids with
several Internet of Things (IoT) devices and wide area network controls, the focus of
security assessments has been expanded to include cybersecurity assessment of the cyber-
physical grid. The assessment of the cyber-physical grid security includes estimating the
impacts of feasible cyber-physical attacks, evaluating the grid’s dependency on its cyber
infrastructure, and assessing the ability of the grid to tolerate potential failures due to
the cyberinfrastructure [6]. Comprehensive security assessment for the modern grid will
be performed under the conventional security and cybersecurity assessments. However,
the security state of the grid due to the impact of either the traditional disturbances or
cyberattacks remains classifiable into the secure, insecure, and asecure states as given by
Dy Liacco [7].

As more renewable energy sources distributed generation (RES-DG) units are added
to the grid, the existing synchronous generators are disconnected and decommissioned.
Since the RES-DG units do not provide any significant mechanical inertia to the grid, the
grid’s resultant inertia constant is therefore notably reduced under high penetration of
RES-DG units [8]. At reduced inertia, the steady-state operation of the grid may be secure
since the disturbance is usually small and gradual. However, during fault conditions and
large changes in load, the security of the grid may not be guaranteed. The insecure state is
consequential to the grid not having sufficient inertial energy to withstand the perturbation
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during the period of the fault or large change in load. In addition to the inertia constant
challenge, the reliability of the grid at high penetration levels of RES-DG units may be
compromised due to the variability and intermittency of the power generation from the
RES-DG units [9].

The deployment of data acquisition devices within the grid enables the generation of
enormous data related to the state of the grid. Recent research focused on the application
of machine learning techniques to identify patterns within the generated data to predict
the security of the grid. Machine learning techniques are basically of two types, batch, and
incremental learning techniques. In a real life application environment, machine learning
is implemented as a repetitive process. A trained model is obtained using an appropriate
algorithm on a preprocessed training dataset. If model performance is satisfactory, pre-
dictions of the class of new instances from the test dataset can then be obtained using the
trained model [10]. The old (training) and the new (testing) datasets may then be combined
to generate a new and larger dataset. Under the batch machine learning process, the
predictive model needs to be retrained using the new and larger dataset. The performance
of the latest model does not depend on the former model [11].

With the rapid deployment of data acquisition devices, the modern power grid will
continue to generate a large amount of data in short time intervals. The models developed
from the batch training modes are often discarded when a new model is obtained. There
are several challenges associated with developing a batch machine learning model from a
large dataset considering the continual increase in the dataset volume. To begin with, the
time required in retraining a model from the combination of the old and new datasets is
increased. The training time is proportional to the volume of the data. Consequently, the
time lost between model retraining and deployment impacts the model user experience.
In addition, the challenge of large memory requirements for the storage of the data for
future applications will also be considered. The incremental learning process provides a
solution to these challenges [12]. With batch training algorithms, the obtained classification
model is seamlessly updated with new instances. The capability to effortlessly update the
incremental machine learning models makes them more suitable for real life and online
applications [13].

Many security prediction and control strategies have been proposed for the grid
with and without considerations of the penetration of RES-DG units. One of the recent
strategies is the application of a suitable machine learning algorithm to the existing dataset
containing the historical security information of the grid. These machine learning-based
prediction techniques were implemented in [14–17]. These techniques have shown their
effectiveness to predict the security of the grid in case of transient security [14], frequency
deviation [17], and distance to insecurity [18], without considering the penetration of any
type of distributed generation into the grid. The techniques were based on only one system
variable (voltage [14–16,18], frequency [17]). Considering the grid with high penetration
of RES-DG, the proposed techniques may not be applicable under changing inertia and
system loading. Batch machine learning-based techniques were proposed in [19,20]. Batch
models may not be effective for real-time security prediction considering the time required
to retrain the model when new data is available. For real-time security prediction capability,
an incremental model that requires less amount of data for initial training is more effective.

Many existing models and techniques for security control in recent literature are
based on restorative actions aimed to restore the system from the unstable to the normal
state. Cases of implementation of primary and secondary frequency controls have been are
presented in [21–24]. Models based on virtual power plant (VPP) application were proposed
in [25,26]; synthetic inertia techniques were developed in [27,28]; and fast frequency
response (FFR) control methods using backup generators were proposed in [29,30]. The
VPP and FFR controls require complex algorithms, which are made more difficult by the
significant penetration of RES-DG in the grid.

Considering the existing methods for under-frequency control due to the substan-
tial variance in generation and load, demand-side contribution with load shedding has
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been effective to ensure quick system recovery grids frequency [31,32]. To estimate the
load shedding required for frequency recovery, conventional analytical and optimization
techniques [33–35], adaptive techniques [36,37], and meta-heuristic techniques [38,39] have
been proposed. Although the existing methods can estimate and predict, to a reasonable
degree of accuracy, the amount of load shed required to ensure the security of the grid
through frequency control, the determination of the optimal load shedding nodes was not
discussed. Also, most of the existing techniques are developed based on the relation of the
grid’s power imbalance, the rate of change of frequency (ROCOF), and the frequency nadir.
Therefore, the applicability of the techniques to a grid under varying attributes is highly
doubtful. Furthermore, as synthetic inertia techniques for supporting conventional inertia
in low inertia grids become more popular [40], it is necessary to anticipate the security of
the grid for a specific level of inertia. Table 1 shows a summary of existing techniques in
recent literature for the security assessment and prediction of a power grid.

Table 1. Literature review summary.

References Main Objective Approach Main Security Predictor (s)

[16] Short-term voltage stability online prediction Online Voltage magnitude
[14] Transient stability prediction Offline Rotor angle
[19] Framework for transient stability prediction Offline Rotor angle
[41] Prediction of the transient Stability Boundary Offline Voltage magnitude and rotor angle
[42] Static security assessment Offline Voltage magnitude
[43] Security assessment for multiple contingencies Offline Voltage magnitude
[7] Power systems security assessment Offline Voltage magnitude

[15] voltage stability prediction Online Voltage magnitude
[44] Online static security Assessment Online Voltage magnitude and angle
[45] Online transient stability prediction Online Voltage magnitude and rotor angle

Security predictors in existing frameworks and techniques have largely been deter-
mined by changes in system load and generation. These determinants are effective for
conventional grids with insignificant penetration of non-synchronous generators. However,
to achieve effective security prediction for the modern and emerging grid, there is a need to
extend the predictor determinants to include varying parameters critical to the grids with
high penetration of non-synchronous generators. Consequently, it is important to develop a
method to achieve fast security prediction and control that takes into consideration changes
in inertia, generation levels from renewable energy systems, and network contingencies.
Hence, the contributions of this paper include:

• demonstrating the feasibility of security prediction using a time-varying system’s
deterministic and probabilistic attributes,

• developing a model using an incremental Naïve-Bayes algorithm for online security
prediction for the emerging grid,

• proposing a gaussian process regression load shed estimation method to ensure the
security of the predicted insecure network operation instances and,

• proposing a voltage security index ranking technique for optimal load shed node(s)
selection.

This paper is focused on the emerging grid with variable penetration levels of RES-DG
units that will result in varying inertia constants of the grid. The proposed model is based
on an incremental Naïve Bayes classification algorithm for security prediction based on
the rotor angle response obtained from the transient stability assessment of the network
to a three-phase short circuit fault. The attributes considered for the classification are
inertia constants, the system loadings, the RES-DG power generation, and the fault location
within the grid. An additive Gaussian process regression (GPR) model using the Pearson
Universal kernel (PUK) is developed to estimate the amount of load shed required to
ensure the security of the insecure predicted network instances. In conclusion, the suitable
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node (s) for the load shedding is determined using a ranking algorithm based on the node
loads and voltage security margins.

The rest of this paper is organized as follows. Section 2 discusses the impact of high
penetration of RES-DG units on the power grid as well as the security modeling and
assessment of the integrated transmission and distribution network considering time-
changing inertia. Online machine learning with the proposed incremental classification
algorithm and intelligent security control are presented in Section 3. Section 4 contains the
results and discussions obtained from testing the proposed techniques on the IEEE 39 bus
network, while the conclusions are presented in Section 5.

2. System Security and Inertia Constant Modelling
2.1. RES-DG Units and Time Changing Inertia

More fossil fuel-based synchronous generators will be made redundant as the pene-
tration of RES-DG units increases. The RES-DG units are connected to the grid through
electronic converters, therefore, they do not supply mechanical inertia to the grid. The
frequency of the power grid is controlled by the inertia supplied by synchronous generators
within the grid. At low penetration of RES-DG into the grid, the frequency response may
not be significantly impacted. However, as the RES penetration level increases, frequency
stability and power oscillations within the grid under disturbances becomes a challenge.
Attempts have been made to estimate the instantaneous RES-DG penetration level beyond
which the grid frequency may fall below the security range after a disturbance.

Traditionally, the inertial response from the synchronous generator is an inherent
characteristic, and it is not treated as an ancillary service. However, with the increase
in penetration of RES-DG, the grid operators in several power systems have identified
inertia as an ancillary service [46]. From the grid operator’s perspective, the grid can be
categorized as a high and low inertia grid depending on the penetration level of RES-DG. A
grid with low penetration of RES-DG is referred to as a high inertia grid, and a grid with a
high penetration of RES-DG is described as a low inertia grid. Figure 2 shows the frequency
responses of the grid under high and low inertia values. Under low inertia values, the
Nadir frequency and the rate of change of frequency (ROCOF) are both increased. Also,
more oscillations are experienced by grids with low inertia values before attaining stability.

Figure 2. Frequency response under varying inertia.

Considering the rapid proliferation of RES-DG units into the grid, it is therefore
important to be able to predict the security of the grid under changing inertia values. The
equivalent inertia constant (Heq) for a grid at a particular time can be derived as shown in
Equations (1) and (2).

Hi =
Ek
Sr,i

(1)
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Heq =
∑N

i=1 Hi × Sr,i

SB
(2)

where Hi is the inertia of the i− th synchronous generator, Sr,i is the rated apparent power
of the i− th synchronous generator, Ek is the total rotational kinetic energy stored in the
grid, SB is the base power of the grid, and N is the total number of synchronous generators
connected to the grid.

2.2. Power System Security Modeling and Assessment

System security is defined as the ability of the system operating point to remain within
the secured zone in which any of the constraints are not violated under dynamic and
transient conditions [47]. According to IEEE standard 1547.1-2015 [48], the operation of
RES-DG units within a grid should not result in the insecurity of the grid. Consequently, at
high penetrations of RES-DG, the grid should be able to remain in a secure state during
and after the occurrence of contingencies. Any constraints violations leading to insecurity
during and after the occurrence of a contingency should be confined to an area within the
grid. The constraints under which the security can be assessed are developed based on
the system variables of concern. As shown in Figure 3, variables a, b, c, and d represent
the node voltage, rotor angle, frequency, and current limits for the i− th operating point
for the system under a contingency. The i− th operating point is represented by the dots
along the trajectory of each variable at a specific time. The operating points represented by
the different coloured dots move from the secure state (green colour) to the insecure state
(red colour). Depending on several factors, including the type of contingency, a network
may have operational points in different security states at the same time. However, it is
common to have the system variable operating points existing in the same security state.

Figure 3. System security region modelling.

As stated earlier, the security state of a network may be assessed using several network
variables including the post contingency voltage and frequency values as well as the rotor
angle response of the synchronous machines. During contingencies, the values of network
variables are allowed to deviate over a specified security limit. However, to achieve a new
security state, the grid’s frequency and voltage must return to the initial values while the
rotor angle settles at a new stability point. The security of the grid largely depends on the
dynamic parameters of the generators, transmission system, and load. The general steps
to security assessment include contingency screening, contingency ranking, and security
assessment using appropriate indices.

2.3. System Modeling for Transient Stability Assessment

A disturbance within a grid caused by a fault or sudden change in load leads to the
exchange of stored kinetic energy between the system’s synchronous generators. The result
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is a change in the speed of each generator. Since the change is different for each generator,
the generators swing relative to each other and relative to the reference generator in the grid
causing the flow of synchronizing power among the generators. Faults within a section of
the grid create large disturbances within the boundaries of such grid section. The fault may
be due to but not limited to equipment malfunction, human errors, natural disasters, and
attacks. The effects of the disturbances may spread across the whole grid if quick action is
not taken. It is, therefore, the responsibility of the grid operators to ensure the reliability of
the power supply considering the possibility of disturbances.

The general model used to ensure reliability is to anticipate and assess the fault
conditions through transient security studies, and implement appropriate methods to limit
the impact of the disturbances. The model of the power grid is based on the synchronized
operation of several generators connected in parallel within the grid. If the synchronization
criteria are met, generators can be readily added and removed, depending on the situation
of the grid. To elaborate, the degree of security of the grid depends on the size of the
generators, the locations of the generators within the grid, the transfer capacity of the
transmission network, the load distribution, and the type of disturbance.

The relative swinging of the synchronous generators to each other and the reference
generator is due to the non-uniformity in sizes and other dynamic parameters such as
the inertia constant. Synchronism is lost when the swing of one or more synchronous
generator(s) is beyond control; hence, the generator is said to be out of step. To avoid grid
collapse, the out-of-step generator must be swiftly disconnected from the grid through the
protection devices. The ability of the system to remain in synchronism after the occurrence
of a fault is assessed under transient security studies. Considering the dynamic model of
the synchronous machines, the grid can be represented by differential-algebraic equation
models in (3) to (5) using the d− q axis model [49].

T′doi

dE′qi

dt
= −E′qi −

(
Xdi − X′di

)
Idi + E f di (3)

T′qoi
dE′di
dt

= −E′di +
(

Xqi − X′qi

)
Iqi (4)

Tavi
dE f di

dt
= −E f di + KA

(
Vre f −V

)
(5)

where T′di and T′qi are the open-circuit time constants in the d and q axis, respectively; E′di
and E′qi are the d-axis and q-axis transient voltages; Xdi and Xqi are the d and q synchronous
reactances; X′di and X′qi are the d and q transient reactances; E f di is the excitation system
voltage; Idi and Iqi are the d and q armature current, respectively; Tavi is the voltage
regulator time constant; KA is the voltage regulator gain; Vre f is the reference voltage; and
V is the generator terminal voltage. If ωi is the i− th synchronous generator rotor angular
speed, ωs is the synchronous angular speed of the grid, Pm is the synchronous generator
mechanical power, and Pe is the synchronous generator electrical power, then the rotational
dynamics of the synchronous generators’ rotor is given by Equations (6) and (7).

dδi
dt

= ωi −ωs (6)

2Hi
ωs

dωi
dt

= Pm − Pe − Di(ωi −ωs) (7)

where δi is the rotor angle of the i − th synchronous generator. If Rai is the armature
resistance, then the synchronous generator stator can be modeled using the algebraic
Equations given by (8) and (9).

E′qi −Vicos(δi − θi)− Rsi Iqi − X′di Idi = 0 (8)
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E′di −Visin(δi − θi)− Rsi Idi − X′qi Iqi = 0 (9)

3. Online Security Prediction

This section describes the steps involved in the development and deployment of an
online machine learning model. As shown in Figure 4, historical training data is obtained
through recorded real-life operations and responses to significant events such as three-
phase short circuit fault. Historical training data can also be represented by the responses
of the network to several transient stability simulation scenarios using an appropriate
simulation tool. The training dataset is then preprocessed to determine attribute suitability
and impact on security (class of dataset) through filtering and/or correlation. A suitable
machine learning algorithm is selected and then applied to the training dataset. The
suitability of an algorithm for a classification model depends on several factors that include
the data types, storage availability, and type of training (batch or incremental). The step-
by-step operation of an online prediction model is shown in Figure 4. Since the model in
the paper is intended for online security prediction, this paper focuses on the incremental
Naïve Bayes classification algorithm.

Figure 4. Online system security modelling.

The performance of the incremental model is evaluated at each training step. In a
classification problem, a model with high accuracy (α) and low misclassification rate (β)
is desirable. If Nc is the total correctly classified instances in the stream of the dataset, N
is the total instances in the stream of the dataset, Nm is the number of misclassification in
the k− th and Nk is the total number of instances in the k− th class [45], then the accuracy
and misclassification of a model can be evaluated using Equations (10) and (11).

% α =
Nc

N
× 100 (10)

% β =
Nm

Nk
× 100 (11)

The approach proposed in this paper involves transient security assessment under
varying system parameters and grid operation points. The methodology proposed in
the section above is focused on the prediction of the security of the grid for a given
grid operating point. The knowledge of the security state of the grid using past and
present data is required to determine techniques to ensure the security of the grid. The
steps for the online security prediction and control technique proposed in this paper
are described in the flowchart in Figure 5. The integrated transmission and distribution
network is modelled with a suitable automatic voltage regulator, power system stabilizer,
and governor control for transient stability assessment with the necessary controllers for
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the RES-DG units. Transient stability assessment is performed on the grid to determine its
response to three-phase bolted fault. The transient security assessment is performed several
times using varying network parameters and grid operation points to obtain instances
for the training dataset. The variable network parameters and grid operation points are
regarded as the attributes of the training dataset and include the equivalent inertia constant,
the load level, the aggregated RES-DG units output, and the fault distance. To optimize
the model’s accuracy and performance, the incremental Naïve-Bayes based-model training
is carried out using the continual learning approach. With continual learning, the model
can autonomously relearn from a stream of data and adapt automatically as new data is
available to improve accuracy and performance.

Figure 5. Proposed security control flowchart.

The continually trained model is saved after the best obtainable accuracy is obtained.
The obtained Naïve Bayes security prediction model is ready for deployment at any stage
of the training between each data streams. If the security state prediction of the model to a
proposed system operating state (live data) is correct, the predicted security state with the
system operating state is afterward considered as historical data and used to improve the
performance of the model. For the predicted insecure states, a regression-based model is
proposed to estimate the amount of load shed required to ensure the security of the grid.
Also, an algorithm to determine the optimal node for load shedding is proposed.

3.1. Online Machine Learning Model Development

Online security prediction is the response to system operation state given the knowl-
edge of the true security state of previous operation states and, possibly, the availability
of additional information. Online prediction models imitate the ability of humans to give
responses and make rational decisions in an intelligent and programmed manner using
basic everyday attributes. An online prediction model is used to predict the outcome of
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successive instances. In this paper, a binary classification model to predict whether the
grid is secured or not using specific grid attributes is proposed. After the proposed grid
event (instance), the true security response is received as feedback from the grid. Using this
feedback, the difference in the precision of the prediction and the true security state can be
measured. Based on the precision difference, the model is updated to improve predictive
performance for future predictions. If w is the classification model and N is the number
of training rounds for the model, then the steps for the development of an online binary
classification model can be summarized as below [50]:

1. Initialize the prediction function, F1,
2. Receive new instance: xt ∈ R; where t = 1, 2, 3 . . . T,
3. Predict class yt = FtXt, for xt,
4. Obtain true class label: yt

∗ ∈ {secure, not secure},
5. Measure the loss suffered: lt(Ft),
6. Update model from wt to wt+1.

The number of classification mistakes made by online learning algorithm can be
measured using Equation (12). The performance of an online algorithm is measured by the
cumulative loss it suffers during the run of the T sequences. The objective of the online
learning task is to minimize the regret function of the model’s predictions against the
best-saved model before the present prediction task as defined in Equation (13). Assuming
that the true responses are generated by an unknown but fixed hypothetical factor g such
that yt = g(x f ) for all t ∈ T the cumulative loss of g over an entire sequence is zero and
is independent of T. The loss function in this paper is formulated as an online convex
optimization (OCO) problem with respect to w and is defined as Equation (14)

MT =
T

∑
t=1

(yt
∗ 6= yt) (12)

RT =
T

∑
t=1

lt(wt)−min
F

T

∑
t=1

lt(w) (13)

fc−t = l(gw, (xt, yt)) (14)

where w is the classification model, and lt is the loss suffered by the optimal model. It is
important to note that wt can only be known after the examination of all the instances and
their class labels.

3.1.1. Incremental Naïve Bayes model

The incremental Naïve Bayes algorithm is used to realize the online classification
model in this paper. The basic idea of the incremental Naive Bayes algorithm is to calculate
a posterior probability based on the prior probability and new data [51]. The ability of
the incremental Naive Bayes classification algorithm to support online learning is due to
its leverage on and exploitation of prior information of the datasets. The structure for
the incremental Naïve Bayes algorithm is shown in Figure 6. The posterior probability is
estimated from the prior probability and existing data. The predicted posterior probability
will then become the new prior probability for the next learning batch [52,53]. Subsequently,
the incremental learning algorithm saves the updated prior probability as knowledge.
To achieve unification of knowledge when new data is received, incremental learning
algorithms estimate a new knowledge for the new data based on the old knowledge. The
classification accuracy and precision are improved by adjusting the prior probability.
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Figure 6. Incremental Naïve Bayes learning model.

The post probability P(C|X) is the probability of an instance belonging to class C.
The conditional probability P(X|C) is the likelihood of a specific class occurring, based on
the occurrence of a previous instance. The class prior probability P(C) is the estimate of
the probability that a randomly sampled instance from a dataset will yield a given class
notwithstanding the attributes of the instance. If X = [A1, A2, . . . , An] is a sample dataset
with n attributes, then the post probability from the traditional Naïve Bayes principle can
be evaluated using Equation (15).

P(C|X) =
P(X|C)P(C)

P(X)
(15)

If C1, C2, . . . , Cm denotes the m different possible classes, then for each dataset X,
the post probability P(Cj

∣∣X) is evaluated using the prior probability P
(
C = Cj

)
and

conditional probability P(X
∣∣Cj) as given in Equation (16).

P(X|Ci)P(Ci)

P(X)
>

P(X
∣∣Cj)P

(
Cj
)

P(X)
(16)

where P(Ci|X) > P
(
Cj
∣∣X) . . . . . . 1 ≤ i 6= j ≤ m.

From Figure 6, it is shown that the process of updating the incremental learning of the
Naïve Bayes classifier is a recursive Bayesian estimation of parameters. Its advantage is
that information in initial training data is preserved in the form of parameters. During the
incremental learning process, the initial training data can be discarded to conserve memory
since the information contained in the initial training set has been stored in the form of
two key statistic parameters: the class prior probability and the conditional probability.
Suppose X∗ is the new testing dataset and X∗ = [A1, A2, . . . , An]

∗ ∈ M are the new
instances for updating the prior and conditional probabilities, then the model for updating
the class prior probability is given in Equation (17).

ϕj =

{ τ
τ+1 ϕj +

1
1+τ when Cd = Cj

τ
τ+1 ϕj when Cd 6= Cj

(17)

where Cd
∗ is the class label, ϕj = P

(
C = Cj

)
is the class prior probability of class label Cj,

τ = n + m, n is the number of instances in the initial training set N and m is the number of
instances in the new training dataset M.

The performance of incremental Naïve Bayes models is assessed using specified
metrics, similar to the traditional Naïve Bayes models. Generality, accuracy, learning
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rate, classification costs, and storage requirements are some of the common metrics. This
paper, however, focuses on the accuracy evaluation metrics that can be expressed using
the precision (Pre), recall (Rec), and F measure (Fm) as shown in Equations (18)–(20). The
precision of the model is the proportion of the predicted security state from the dataset that
is correct, the recall is the proportion of the dataset that is correctly classified. Occasionally,
the precision or recall may not truly represent the properties of a model. Consequently,
the F-Measure is employed to combine the recall and precision into a single metric that
effectively captures the performance of the model as given in Equation (21) [54].

ACC (%) =
TN + TP

(TN + FN + FP + TP)
(18)

Pre (%) =
TP

(FP + TP)
(19)

Rec (%) =
TP

(FN + TP)
(20)

Fm (%) =
2Pre × Rec
Pre + Rec

(21)

where TP (true positive) is the number of correct predictions that an instance is relevant,
TN is the number of correct predictions that an instance is irrelevant, FP (false positive) is
the number of incorrect predictions that an instance is relevant, and FN (false negative) is
the number of incorrect predictions that an instance is irrelevant.

3.1.2. Implementation for Real-Time Security Prediction

The dimensionality and types of attributes of the dataset determine the feasibility of
real-time applicability. Using the incremental learning technique, highly dimensional large
training datasets are reduced into small dataset batches. In this case for power system real
network application, security predictions are made for a single instance as obtained from
field devices such as PMU, therefore, the prediction time is diminutive. The situation that
may be regarded as a challenge is the speed at which the saved incremental classifier can
be retrieved from the different storage means.

There are several artificial intelligence application development tools for implementing
incremental learning approaches. However, only a few tools support online applications.
Weka software is one of the few tools that provides an online machine learning application
development environment [51]. In particularly demanding real-world applications like se-
curity state prediction for the grid operators, the Weka environment can be used to produce
real-time predictions. On Weka, many classifiers can be trained and implemented using
the incremental mode. However, training classifiers on large datasets can be challenging
even after reduction into smaller batches, particularly using the Weka explorer interface.

In the Weka explorer interface, due to the visualization and other functionalities, the
computer’s memory may be overloaded, which may significantly impact the training and
prediction times. An alternative to the graphical user interface is the Knowledge Flow
interface. The knowledge flow layout showing the important steps and elements for the
proposed set-up is shown in Figure 7. The knowledge flow interface makes it possible to
process large datasets that would have significantly impacted the computer’s processing
speed. By loading and processing each instance in a dataset separately, updateable clas-
sifiers may be trained incrementally. After each successful training, the serialized model
saver saves the most recent model, which is then retrieved by the model retriever to make
future security state predictions using live data.
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Figure 7. Knowledge flow layout for proposed security state prediction.

3.2. Intelligent Security Control System

An intelligent security control (ISC) system based on load shedding is proposed to
ensure the security of the grid for predicted insecure states. The ISC system determines
the secured load level for an insecure state, estimates the required load shed value, and
determines the best node within the network for load shedding action. The ISC system
model is developed from a dataset of proposed grid operating points with a new load
and simulated response from the offline transient security studies. A load shed value
for an insecure proposed grid operation point is estimated to ensure grid security by
constantly monitoring the output of the security prediction model. The proposed ISC
system is implemented on the physical distribution network through the distributed
controls enabled by communication devices as shown in the modern grid structure in
Figure 8. The proposed security prediction and ISC model exists on the first layer of the
integrated grid structure. Layer 2 comprises distributed control systems for different zones
of the distribution network. Commands from the ISC are implemented to activate the
necessary switches in sections of the distribution network on layer 3 of the integrated
transmission and distribution network structure.

Figure 8. Structure of the modern integrated power grid.

The development of the model for the ISC is achieved in two stages. In the first stage,
the estimation of the amount of load shed to ensure the security for the predicted insecure
state of the network is carried out. To estimate the load shed amount, an additive Gaussian
process regression algorithm is applied to train the developed dataset. In the second stage,
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the optimal node for load shedding action is determined using a ranking algorithm based
on the network node’s security margin.

3.2.1. Gaussian Process-Based Load Shed Value Estimation

This section describes the proposed algorithm to estimate the amount of load shed
required to ensure the security of the grid for all predicted insecure states. A new dataset
containing the new loads’ values for every insecure instance from the initial dataset is de-
veloped. An additive Gaussian process regression (GPR) prediction algorithm is proposed
to predict the secured load level for insecure predictions from Section 3.1. GPR is a nonpara-
metric Bayesian approach with several benefits. A few of the benefits include the capability
to work well on small datasets and the ability to provide uncertainty measurements on
the predictions. A GPR is a generalization of the Gaussian probability distribution. It
is a stochastic process in which a multivariate normal distribution exists for every finite
collection of random variables. In other words, a normal distribution is assumed for any
finite combination of variables.

Since the proposed load shedding model is described by more than one attribute
(x1, x2, . . . , xN) with high correlation to each other, the distribution of the attribute can be
represented by a multivariate Gaussian distribution model defined in Equation (22).

ℵ
(

x
∣∣µ, ∑

)
=

1
2πN/2 ∑1/2 exp

[
−1

2
(x− µ)T

−1

∑(x− µ)

]
(22)

where N is the dimension of the dataset, x is the variable, µ is the mean vector, and ∑ is
the N× N covariance matrix. Since it is possible to have a probability distribution function
for all possible predictions in GPR, the means of the predictions, as well as the prediction
variances, can be calculated. The multivariate regression prediction can be modelled as
given in Equation (23).

P( f |X) = ℵ ( f |µ, K) (23)

where X is the vector of attributes denoted byX = [x1, x2, . . . , xN ],f = [ f (x1), f (x2), . . . , f (xN)],
µ = [τ(x1), τ(x2), . . . , τ(xN)] and Kij = k

(
xi, xj

)
, τ represents the mean function, and

K represents a positive kernel function. A kernel function is commonly used in GPR
to represent the behavior of the dataset. The Pearson Universal Kernel (PUK) function
expressed in Equation (24) is chosen due to its ability to adapt to various other functions [55].
The conditional densities and posterior for prediction are given by Equations (25) and (26),
respectively. The GPR performance indices α and β are given in Equations (27) and (28).

K(a, a0) =
11 +

 2
√
|a−a0|2

√
2(

1
ω )−1

σ

2
ω (24)

 p(x1) = ℵ(x1|µ1, ∑11)
p(x2) = ℵ(x2|µ2, ∑22)
p(x3) = ℵ(x3|µ3, ∑33)

 (25)

p(x1|x2) = ℵ(x1

∣∣∣∣∣∣µ1|2, ∑
1|2

) (26)

α = ICMlv ×
→

TV (27)

β = ICMhv ×
→

TV (28)

where µ1|2 = µ1 + ∑ ∑−1
12 (x2 − µ2), a0 is the center of the peak of the kernel function,

a represents an independent variable, ω is used to control the Pearson width, σ is the
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tailing factor of the function peak,
→

TV is the vector of the target values, and ICMlv and
ICMhv are the lowest and highest values of the inverted covariance matrix, respectively. To
optimize the performance of the GPR model, the model is implemented using the additive
function. An additive GPR is a function that decomposes into a sum of low-dimensional
functions, each depending on only a subset of the input attributes. If the attribute-class
pair is (xi, yi) ∈ Rd × R, where i = 1, 2, . . . , N then the additive non-parametric GPR is
defined as Equations (29) and (30) [56]

yi = F(xi) + εi, εi ∼ N
(

0, σ2
)

(29)

F(xi) = ϕ1 f1(xi) + ϕ2 f2(xi) + . . . + ϕz fz(xi) (30)

where N is the sample dimension, d is the dimensions of xi, F is the sum of the z regression
function, and ϕ is the parameter that prevents F from sample overfitting.

3.2.2. Optimal Node Selection

After estimating the load shed value required to ensure the security of the grid, the
next step is to determine the appropriate node within the grid to apply the intelligent
load shedding scheme. The proposed optimal node selection algorithm is based on the
security margin of individual nodes within the network. Security margin is defined as the
closeness of a node to insecurity, and is obtained from the critical voltage (Vcr) and the
initial voltage (Vin). The Vcr is the voltage at the point of collapse obtained from the voltage
stability assessment for each node while Vin is the initial voltage at the node. If N is the
total nodes in the network, the proposed algorithm for load shedding node identification is
given below.

Model 1: Load shedding node(s) selection

1. System initialization i = 1, 2, 3 . . . N.
2. Read the node load P(i) and required load shed value Pls.
3. Evaluate the node’s security margin α(i),

α(i) =
(

Vin(i)−Vcr(i)
Vcr(i)

)
× 100.

4. Sort α(∇) == α(i) (largest→ smallest).
5. Initialize i = 1.
6. if P(i) [α(∇)] ≥ Pls then.
7. i is a load shedding node.
8. else i = i + 1.

9. until
n
∑
i

P(i) ≥ Pls.

10. end
11. return node(s), i.

4. Results and Discussion
4.1. Test Network

The proposed technique was tested on the IEEE 39 bus test network with 10 generators
and 19 load buses as shown in Figure 9. The synchronous generators are modelled with the
constant gain exciters and conventional power system stabilizers. Generator G3 is chosen
as the center of inertia due to its lateral position with the grid. The network is reduced to a
single machine infinite bus model and modified to include a non-synchronous generator at
the lower voltage side. The wind turbine system is used to represent the aggregated power
generation from renewable sources.
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Figure 9. One-line diagram of the IEEE 39-bus system.

The network operation parameters considered for the transient security assessment
are given in Table 2. These parameters are also considered as the attributes in the training
dataset to obtain the security prediction model. A three-phase short circuit fault is applied
on one of the lines at different distances from the synchronous generation as an impulse
to obtain the rotor angle response from the transient security assessment. The fault was
activated at 1 s and cleared at the estimated critical clearing time of 0.1 s.

Table 2. Parameter for Security Assessment.

Attributes Value Range

Load (MW) 500–2500
Inertia Constant (s) 0.1–3.5

RES-DG output (MW) 100–1000
Fault distance (%) 10–100

4.2. Attribute Extraction and Processing

The transient security studies with three-phase short circuit fault were performed to
obtain 700 instances of possible system operating points (attributes). The attributes were
obtained through random number generators considering the minimum and maximum
values for each attribute. The numbers of secured and insecure instances concerning the
output of the renewable energy source distributed generation (RES-DG) and load level are
shown in Figures 10 and 11. The penetration of RES-DG alone does not contribute to the
insecurity of the grid since the grid can be secure under high penetration of RES-DG if the
system inertia can be maintained at the required level as shown in Figure 10. Significant
insecure conditions are recorded during very low RES-DG penetration even at relatively
high/maintained inertia. For example, about 60% of instances with inertia constants greater
than 1.75 s, which is half of the equivalent inertia of the network, are unstable. Also, only
64.7% of the total instances for the most secure RES-DG output range are above the inertia
constant of 1.75 s.
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Figure 10. Security scenarios with RES-DG dispatch.

Figure 11. Security scenarios with load level.

The average inertia constants for the secure and insecure states considering the varying
RES-DG output are 2.23 s and 1.33 s, respectively. Figure 11 shows the secure and insecure
scenarios of the grid focusing on the load level. The result aligns with common knowledge,
showing a significant number of insecure instances as the load is increased. The average
inertia constants of the two highest insecure loading bands are respectively 42.7% and
56.6% more than the average inertia constants of the secure instances of the same loading
bands. Figure 12 shows the inertia distribution against the network’s stability state. The
highest and least stability to instability ratios were recorded for inertia bands 2.7–2.9 and
0.3–0.5, respectively. The resulting ratios show that the network will be more stable at high
inertia values than at low inertia values. As shown in Figure 13, the system is more likely
to be secure under scenarios with high inertia constant. Average inertia constant of 2.02 s
and 1 s is recorded for the secure and insecure states, respectively, considering the possible
system loading bands.
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Figure 12. Stability state inertia distribution.

Figure 13. Average inertia constant for RES-DG output.

4.3. Security Prediction

This section presents the results of training a Naïve Bayes classification model after
preprocessing data obtained from randomizing each attribute to obtain instances that
represent possible operation scenarios for the grid. Each generated scenario is classified
as secure or insecure from the response obtained from the time domain transient security
simulations. The Naïve Bayes updateable classifier is utilized to implement the proposed
incremental Naïve Bayes algorithm using the continuous training approach. The obtained
model after each batch is saved using a serialized model saver, which is included in the
classifier algorithm. To train each batch in a continual mode, the classifier is programmed
to load and update the initial model for each training batch until the best performance is
obtained.

Figures 14 and 15 show the performance indices obtained from normal and continual
training modes with six batches of 100 instances with a batch size of 5 instances. The NB
model is trained and tested using 85.7% and 14.3% of the training dataset, respectively.
Compared with the normally trained model where the changes in the Kappa and RMSE
values improve smoothly across the batches, the continually trained model experiences
an impulsive improvement at the beginning of each training batch. Since there is more
data for the normally trained model, the accuracy may be slightly higher than that of the
continually trained model for the first few batches. However, the eventual accuracy of the
continually trained model is usually higher than that of the normally trained models.
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Figure 14. Performance in normal training mode.

Figure 15. Performance in continual training mode.

The final model results from the continual and normal training modes are shown in
Table 3. The confusion matrix that gives the total correctly and incorrectly classified in-
stances is shown in Table 4. The best performance of the model obtained with the continual
mode is improved after the first few next training batches until the maximum accuracy
is reached. Figure 16 shows the accuracy and k-coefficient of the normal and continual
models after each data batch. Compared with the normally trained batch modes, the mean
accuracy of the models obtained from the continual training method is approximately 3.5%
improved. Since the continual training methods seeks to produce the best results for the
new data batch based on the previous model, the consistent improvement in the accuracy
of the model may be impacted as seen in batch 3 and batch 4.

Table 3. Models performance indices.

Training
Method Precision K-Coefficient π-Coefficient Precision

Recall Curve
Root Means

Squared Error

Normal 90.7 0.752 0.752 0.942 0.267

Continual 94.5 0.824 0.826 0.96 0.25

Table 4. Model confusion matrix.

Normal Training Continual Training

Class Yes No Class Yes No
Yes 493 (TP) 31 (FP) Yes 508 (TP) 16 (FP)
No 34 (FN) 142 (TN) No 29 (FN) 147 (TN)
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Figure 16. Model batch performance indices.

The comparison of the proposed Naïve Bayes incremental algorithm with other avail-
able incremental algorithms on the knowledge flow interface for real-time training and
testing imitation is shown in Table 5. The selection of the Naïve Bayes model is based on
the evaluated performance indices as well as the overall time required for model training
and testing.

Table 5. Incremental model comparison.

Models Acc (%) Pre (%) Rec (%) Fm (%) Build Time (s) Test Time (s)

NB-Updateable 94.5 94.8 96.6 95.7 0 0.01
Hoeffding tree 92.7 93.8 93.9 93.8 0.01 0

Locally weighted learning (LWL) 90.4 92 90 93 0 0.68
Stochastic gradient descent (SGD) 94.1 94.7 94 94.7 0.02 0

The prediction results from the model obtained with the proposed technique using
different test datasets are shown in Figures 17–20. Considering that the accuracy of the
models improve as more training batches are introduced, the prediction confidence is
also expected to progressively increase with the addition of more training datasets. The
dip in the confidence of the fifth model in Figure 17 coincides with the decrease in k-
coefficients from 0.76 to 0.73. By grouping the test dataset into 10 batches with 10 instances
each, Figure 18 shows the composition of the 88% confidence level obtained for the final
model (sixth model). The prediction confidence for the secure and insecure states lies
between 53–93% and 51–100%, respectively. The accuracy of the final continual model for
10 data samples with different instance sizes using the 95% confidence level is presented
in Figure 19. The obtained mean and standard deviations of 0.96 and 0.006, respectively,
indicate a high prediction accuracy range for future predictions. To emulate an online
security prediction, Figure 20 shows the prediction outcomes and associated precisions for
10 sequential grid proposed operating points. A 90% true prediction was obtained with the
lowest precision of 0.61 for a true prediction.

Figure 17. Incremental model prediction confidence.
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Figure 18. Mean prediction confidence.

Figure 19. Model mean accuracy.

Figure 20. True security and predicted security.

4.4. Load Shedding for Security Control

This section presents the results from the proposed model using the intelligent load
shedding for security control. For every insecure state prediction with high precision
obtained from the classification model, the quantity of load to be shed is estimated alongside
the optimal node for load shedding action. To justify the recommendation of load shedding
for the security control, an attribute evaluation technique using ranking algorithms was
employed to assess the degree of correlation of the attributes employed for the security
prediction. As shown in Table 6, the system load level has the highest impact consistent
with the three ranking algorithms. The frequency distribution of the load shed quantities
obtained for 170 instances is shown in Figure 21. The probability that the required amount
of load shed for any predicted insecure state would be between 300 MW–550 MW is about
0.46. Figures 22 and 23 show the density distributions of the load shedding required
for different levels of system inertia and RES-DG, respectively. The equivalent inertia
constant is classified as follows: low (0.1 s–1.1 s), medium (1.1 s–2.2 s) and high (2.3 s–3.5 s).
Likewise, the RES-DG dispatch is classified as follows: low (100–330 MW), medium
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(331–660 MW), and high (661–1000 MW). For the mean load level of 2198 MW, a mean
of 480 MW of load shedding is estimated to ensure the security of the system under the
proposed medium inertia constant and RES-DG dispatch. The required average amount of
load shed is highest for instances with low inertia constant and RES-DG generation.

Table 6. Attribute impact evaluation.

Ranking
Algorithm Inertia (s) Load Level (MW) RES-DG (MW) Fault Distance (%)

Gain Ratio 0.0246 0.2208 0.0641 0.031
Information

Gain 0.223 0.3865 0.0567 0.01

Correlation 0.4861 0.6004 0.2857 0.0278

Figure 21. Load shedding distribution.

Figure 22. Load shedding density considering system inertia.

Figure 23. Load shedding density considering RES-DG output.
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This section presents the results from the proposed model for the intelligent load
shedding (ILS) for security control. The attribute was normalized. Since the required load
shed values are not linear with the predictors, a kernel is applied to obtain a quasi-linear
class. The Pearson Universal Kernel (PUK) kernel was adopted due to its adaptability to
various functions including the Gaussian. The performance of the additive GPR depends
not only on the data preparation and choice of the kernel but also on the number of models.
The number of models required is proportional to the average training time. Unlike the
incremental classification models, the additive GRP cannot be deployed until the final
model is obtained. Therefore, the optimal number of models to reduce the average training
time is selected. The performance of the proposed additive GPR with 10 models compared
with the normal Gaussian regression process is shown in Table 7. The proposed algorithm
is compared with similar regression-based algorithms with numerical class capability, as
shown in Table 8. Since the time it takes to generate all the models is negligible, priority
is given to models with the highest correlation coefficients for high prediction accuracies.
Figure 24 shows the variance between the actual and predicted load shed values using a
new test dataset with 15 instances. Since the predicted load shed values and the variance
are uncorrelated, the prediction must be made for each unstable instance. Also, there is
a variance of 15.16 kW for every 1 MW load shed required. Instances with low inertia
constant (0.1 s–1.1 s) contribute about 93% of the predicted values with variance greater
than 10 MW. The grid achieved 90% security when the new proposed load values were
tested on previous insecure instances.

Table 7. Trained GRP model.

Model Correlation
Coefficient RAE (%) α B Av. Target Value

Addictive GRP 0.99 6.5 −0.52 0.41 5.34× 10−1

Normal GRP 0.96 22.8 −0.1 0.2 3.19× 10−1

Table 8. Regression-based model comparison.

Models Correlation Coefficient RMSE RAE (%) Build Time (s)

Normal GRP 0.96 69 22.8 0.01
Linear regression 0.92 107.1 36.9 0

Sequential minimal optimization for regression
(SMO-Reg) 0.9 123.8 32.9 0.02

Reduced error
pruning tree

(REPTree)
0.95 90.3 28.6 0

Figure 24. True load shed values vs. predicted load shed values.
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To implement load shedding, the optimal node(s) is determined using the proposed
ranking model. The voltage security index and the nodal power used to determine the
optimal node are shown in Figure 25. For example, considering instance 14 in Figure 25
where a load shed of 327.9 MW is required, the optimal nodes for load shedding are nodes
N04 and N15, considering high load level and RES generation. The voltage security index
for each node changes based on the node loads and proposed quantity of generation from
RES. Consequently, the ranking algorithm is continuously implemented for each scenario
with insecure prediction. The matrix in Table 9 shows the feasible nodes for the mean
low, medium, and high load shed values under different load levels and RES generations.
The proposed security prediction and load shedding models are suitable for real-time
applications since their average model training times are 1.2 s and 3 s, respectively.

Figure 25. Optimal node selection indices.

Table 9. Optimal nodes for load shedding.
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Load Level (MW)

Low Medium High
Low N15, N04 N07, N08, N12, N04 N15, N03, N04, N07

Medium N08, N07 N04, N07, N08, N03 N20, N12, N08, N07
High N28, N07, N04 N07, N04, N08, N03 N04, N16, N15

5. Conclusions

The replacement of synchronous generators with renewable energy sources distributed
generation (RES-DG) reduces the resultant inertia constant of the grid, thereby undermin-
ing the ability of the grid to remain secure after the occurrence of disturbances. The
proliferation of RES-DG units into the grid results in a time-varying inertia constant which
necessitates the prediction of the security state for every proposed grid operation. This pa-
per proposed a suitable model for real-time security prediction and control using machine
learning algorithms. The proposed model includes an incremental Naïve-Bayes algorithm
for dataset classification and future security state prediction. The dataset comprised of
700 instances of inertia constant, load level, generation from the renewable energy sources,
fault distance, and security label as the attributes. The proposed intelligent security control
technique involves an additive Gaussian process regression to estimate the load shed
required to ensure the security of predicted insecure outcomes, and a node ranking model
to determine the optimal node for load shedding. The optimal node selection model is
based on the cumulative sum of the node loads ranked by the voltage security index.

The security prediction models are obtained at the end of each batch training. The
mean accuracy and standard deviation of 0.94 and 0.025, respectively, were obtained from
six dataset batches of 100 instances per batch. A 90% accurate prediction of the security
state of a testing dataset with 10 instances was obtained when compared to the true security
state. The obtained AGRP model for security control was able to predict the load shed
values within 50 MW variance for 30 test instances. A 100% secure state was achieved



Energies 2021, 14, 6639 25 of 27

using the proposed optimal load shedding node identification. In conclusion, the proposed
models can predict and control the security state of the emerging power grid under the
described varying grid attributes.

Future research of this paper will focus on considering parallel computation techniques
to improve the efficiency of the proposed online security prediction model, especially for
very large power systems. It is also important to see how the Gaussian regression process
model can be optimized to avoid unnecessary interruption of supply through appropriate
hyperparameter selection. Although this paper has presented and discussed the possibility
of implementing the proposed technique in a real power system, the deployment of the
proposed model as an executable software for system operator utilization after being
evaluated for robustness and scalability is a good consideration for future research. Lastly,
considering that synthetic inertia is a tradable but costly commodity, the estimation of the
optimal amount of synthetic inertia needed to ensure the stability of every unstable grid
operation instance is also a significant and relevant future research area.
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