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Abstract: Mathematical models of induction motor (IM) used in direct field-oriented control (DFOC)
strategies are characterized by parametrization resulting from the IM equivalent circuit and model-
type selection. The parameter inaccuracy causes DFOC detuning, which deteriorates the drive
performance. Therefore, many methods for parameter adaptation were developed in the literature.
One class of algorithms, popular due to their simplicity, includes estimators based on the model
reference adaptive system (MRAS). Their main disadvantage is the dependence on other machines’
parameters. However, although typically not considered in the respective literature, there are other
aspects that impair the performance of the MRAS estimators. These include, but are not limited to,
the nonlinear phenomenon of iron losses, the effect of necessary discretization of the algorithms and
selection of the sampling time, and the influence of the supply inverter nonlinear behavior. Therefore,
this paper aims to study the effect of the above-mentioned negative aspects on the performance
of selected MRAS estimators: active and reactive power MRAS for the stator and rotor resistance
estimation. Furthermore, improved reduced-order models and MRAS estimators that consider the
iron loss phenomenon are also presented to examine the iron loss influence. Another merit of this
paper is that it shows clearly and in one place how DFOC, with the included effect of iron losses and
inverter nonlinearities, can be modeled using simulation tools. The modeling of the IM and DFOC
takes place in MATLAB/Simulink environment.

Keywords: induction motor modeling; iron losses; MRAS; numerical methods; inverter nonlinearity

1. Introduction

Mathematical models of the induction motor (IM) are needed for two purposes: the
modeling of the machine itself and for the real-time high-performance control strategies,
among which we can include field-oriented control (FOC), direct torque control (DTC),
and model predictive control (MPC) [1]. The set of the parameters utilized by the math-
ematical models is defined by the IM equivalent circuit selection and model type [2–4].
The key parameters in the traditional T-equivalent circuit are the stator and rotor resis-
tances, leakage inductances, and magnetizing inductance. Unfortunately, these parameters
are not constant during the drive operation since they are affected mainly by the tem-
perature rise and magnetic flux saturation [5]. For instance, the nonlinear magnetizing
characteristics can be respected within the control algorithm using offline-measured data.
However, the compensation of the resistances must be handled online since it depends on
the machine’s loading.

So far, numerous online identification methods of IM parameters have been proposed
in the literature. These include model-based methods [6], recursive least-square algo-
rithms (RLS) [7–9], model reference adaptive systems (MRAS) [10–16], signal injection (SI)
techniques [17–19], state observers (SO) [20–22], and artificial intelligence (ANN) [23–25]
methods. Typically, the greater the estimation accuracy and insensitivity to other machine
parameters, the greater the algorithm complexity, which puts demands on hardware com-
putational power and the experience of the implementation engineer. Therefore, due to
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the ease of implementation, MRAS-based estimators are quite popular for IM speed or
parameter estimation.

The basic MRAS principle is that two mathematical models are evaluated parallelly:
the so-called reference and adaptive. The reference model does not depend on the estimated
quantity. On the contrary, the adaptive model utilizes the estimated quantity directly or
indirectly. An adaptation mechanism (usually a simple PI controller) estimates the desired
variable by driving the difference between the reference and adaptive model to zero. For
the MRAS design, the Lyapunov theory or hyperstability theory can be utilized [11].

Numerous MRAS estimators based on various quantities have been proposed in the
literature so far. These include MRAS based on: reactive power [10–14], rotor flux [26–28],
active power [29,30], PY fictitious quantity [31], X fictitious quantity [32], q-axis rotor
flux [33], d-axis air-gaip flux [34], d-axis stator voltage [35], or electromagnetic torque [14].
The major drawback of the MRAS schemes is that they inherently suppose that the error
between the reference and adaptive model is caused by the estimated parameter only.
The papers that focus on MRAS techniques usually strive to analyze the estimation pro-
cess in terms of the stability [11–13] and sensitivity to the machine parameters [36,37] or
speed [30,38,39]. However, other issues affecting the parameter estimation that are usually
not acknowledged or examined in the respective papers include:

• Effect of solver and sampling time selection. MRAS design is, in most cases, car-
ried out in the continuous-time domain. However, the actual control algorithms are
implemented on a discrete system: either a digital signal processor (DSP) or field-
programmable gate array (FPGA). Only a few papers consider the effect of discretiza-
tion [40,41]. However, they are focused on a specific MRAS for speed estimation.

• Effect of voltage-source inverter (VSI) nonlinearity. Most of the MRAS algorithms
utilize directly or indirectly the stator voltage vector. As the real-time voltage mea-
surement is hardware demanding and requires properly designed filters, the reference
voltage (i.e., the input to the modulator) is usually utilized instead of the direct mea-
surement. However, the fundamental output voltage of the commonly used IGBT
inverters is distorted, mainly due to the inserted deadtime and finite semiconduc-
tor switching.

• Effect of iron losses. Iron losses are a phenomenon that undoubtedly affects the IM
flux, torque, speed, and parameter estimation [42–44]. However, most of the proposed
MRAS estimators are based on IM equivalent circuits that do not consider iron losses.

This paper aims to examine and quantify the influence of the issues mentioned
above on the performance of MRAS-type IM parameter estimators. The most popular
reactive power MRAS (Q-MRAS) for the rotor resistance estimation and active power
MRAS (P-MRAS) for the stator resistance estimation are selected as the candidates for the
investigation. The presented results are based on simulations of the direct FOC (DFOC)
of a 3.6 kW IM drive in the MATLAB/Simulink because, in a real drive, it is not possible
to efficiently study the decoupled effects of various phenomena acting on the system. For
machine modeling, the traditional T-equivalent circuit is utilized. The circuit is augmented
with the fictitious iron loss resistance placed in parallel with the magnetizing branch to
study the effect of iron losses.

This paper is organized as follows: Section 2 shows full-order state-space models of
IM with and without the included effect of iron losses that are used to model the machine
itself. Section 3 then presents improved reduced-order models with the included effect of
iron losses used in the DFOC model to assess the influence of iron losses on the parameter
estimation. Furthermore, this section also introduces the numerical methods whose influ-
ence on the estimation accuracy is further examined in the simulations. In Section 4, the
mathematical model of the VSI with the possibility of simulating the nonlinear behavior of
the actual inverter is presented. Section 5 gives an overview of iron losses measurement,
modeling, and implementation into the FOC and IM models. Section 6 demonstrates the
derivation of the improved P-MRAS and Q-MRAS estimators that consider the influence
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of iron losses. Finally, the paper is concluded with Sections 7 and 8 dedicated to the results
and discussion of the simulations.

2. Induction Machine Equivalent Circuit

The IM traditional T-equivalent circuit can be augmented to include the effect of
the iron losses (Figure 1). In this case, the losses are considered load-independent. In
Figure 1, the symbols ψ

1
, ψ

2
, and ψ

m
represent the stator, rotor, and magnetizing flux

linkage space vectors, respectively; u1 represents the stator voltage space vector; i1, i2,
im, and iFe represent the stator, rotor, magnetizing, and equivalent iron loss current space
vectors, respectively; R1, R2, and RFe denote the stator, rotor, and equivalent iron loss
resistance, respectively; ωk is the electrical angular speed of the general reference frame;
ω is the rotor electrical angular speed; Lm is the magnetizing inductance; and the symbol
j represents an imaginary unit (j2 = −1). A short-circuited rotor is considered; therefore,
the rotor voltage equals zero. The stator inductance L1 is defined as L1 = Lm + L1σ, where
L1σ is the stator leakage inductance and the rotor inductance L2 is defined as L2 = Lm + L2σ,
where L2σ is the rotor leakage inductance.

Figure 1. Induction machine T-equivalent circuit with the included effect of iron losses.

The superscript k denotes that the space vectors are expressed in an arbitrary reference
frame. The two specific reference frames used in this paper are the stator-fixed (real and
imaginary axis denoted as α and β, respectively) and rotor flux vector-attached (real and
imaginary axis denoted as d and q, respectively) reference frames.

2.1. Full-Order State-Space Model with Included Effect of Iron Losses

For modeling IM with the included effect of iron losses, the full-order state-space
model in the stationary αβ reference frame with the current space vector, magnetizing flux
space vector, and rotor flux space vector components as state variables can be used [45].
The model is deductible from Figure 1 and can be expressed mathematically as

.
x = Ax + Bu, (1)

where

A =



a1 0 a2 0 a3 0
0 a1 0 a2 0 a3

RFe 0 a4 0 τ−1
Feσ 0

0 RFe 0 a4 0 τ−1
Feσ

0 0 τ−1
rσ 0 −τ−1

rσ −ω

0 0 0 τ−1
rσ ω −τ−1

rσ


, (2)
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B =



1
L1σ

0 0 0 − 1
L1σ

0
0 1

L1σ
0 0 0 − 1

L1σ

0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0



T

, (3)

x =
(

i1α i1β ψmα ψmβ ψ2α ψ2β

)T, (4)

u =
(

u1α u1β 0 0 0 0
)T, (5)

and where τrσ = L2σ/R2, τFeσ = L2σ/RFe, a1 = −(R1 + RFe)/L1σ, a2 = L2/(L1σLmτFeσ),
a3 = −1/(L1στFeσ), a4 = −L1σa′2.

The electromechanical torque and the motion equation, respectively, are considered in
the form

T =
3
2

pp
1

L2σ

(
ψk

2
× ψk

m

)
, (6)

T − TL =
J

pp

dω

dt
, (7)

where pp is the number of pole-pairs, T is the electromagnetic torque, TL is the load torque,
J is the moment of inertia, and the operator × denotes cross product.

2.2. Full-Order State-Space Model without Iron Losses

For the modeling of the machine without the effect of iron losses, it is convenient to
use a model with the stator and rotor flux linkage vector components as state variables.
The model in its state-space form can be written as [46]

.
ξ = A

′
ξ+ υ, (8)

where

A
′
=


− R1L2

D 0 R1Lm
D 0

0 − R1L2
D 0 R1Lm

D
R2Lm

D 0 − R2L1
D −ω

0 R2Lm
D ω − R2L1

D

, (9)

ξ =
(

ψ1α ψ1β ψ2α ψ2β

)T, (10)

υ =
(

u1α u1β 0 0
)T, (11)

and where D = L1L2 − L2
m.

The electromechanical torque is given by

T =
3
2

pp
Lm

D

(
ψk

2
× ψk

1

)
. (12)

The equation of motion is the same as (7).

3. Reduced-Order Models for Rotor Flux Estimation Considering Iron Loss Effect

In the FOC strategies, the decoupled regulation of flux-producing and torque-producing
current components is done in the synchronously rotating dq system where the electromag-
netic quantities become DC values. This paper implements a DFOC where the transforma-
tion angle, i.e., the angle between the stationary αβ and rotation dq system, is calculated
from the rotor flux linkage vector components. For this purpose, two IM reduced-order
models can be used: the so-called IM current and voltage models. Conventionally, these
models do not consider the effect of iron losses, contrary to the multiple known full-order
models that are based on the respective modification (i.e., placement of the iron loss re-
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sistance) of the IM equivalent circuit. Since the reduced-order models that consider the
iron losses are not often mentioned in the literature, their derivation is, for convenience,
presented in the following subsections.

3.1. Current Model with Included Iron Losses

The model will be derived in an arbitrary reference frame and then concretized to
αβ and dq reference frames. Using Figure 1, the rotor voltage equation and the rotor flux
linkage vector equation, respectively, can be expressed as

0 = R2ik
2 +

d ψk
2

dt
+ j(ωk −ω) ψk

2
, (13)

ψk
2
= L2σik

2 + Lmik
m = L2ik

2 + Lm

(
ik
1 − ik

Fe

)
. (14)

Substituting for the rotor current vector in (13) from (14) yields

d ψk
2

dt
=

LmR2

L2
i′1

k − R2

L2
ψk

2
− j(ωk −ω) ψk

2
, (15)

where i′1
k = ik

1− ik
Fe. If the stator-fixed reference frame is considered (ωk = 0), the model becomes

d ψ
αβ
2

dt
=

LmR2

L2
i′1

αβ − R2

L2
ψαβ

2
+ jω ψαβ

2
. (16)

On the other hand, choosing the rotor flux linkage vector-attached dq reference frame,
the steady-state expression for the rotor flux magnitude and slip frequency, respectively,
can be expressed as

ψ2 = Lmi′1d, (17)

ωsl =
LmR2

L2

i′1q

ψ2d
, (18)

where ψ2 = ψ2d =
∣∣∣ψ2

∣∣∣, i′1d = i1d − iFed, and i′1q = i1q − iFeq.

3.2. Voltage Model with Included Iron Losses

The model will be derived in the αβ reference frame. According to Figure 1, the stator
flux linkage vector can be expressed as

ψk
1
= L1σik

1 + Lmik
m = L1ik

1 + Lm

(
ik
2 − ik

Fe

)
. (19)

Substituting for the rotor current vector in (14) from (19) and considering the stator-
fixed reference frame yields

ψαβ
2

=
L2

Lm

(
ψαβ

1
− L1σiαβ

1

)
+ L2σiαβ

Fe , (20)

where σ = 1− L2
m/L1L2 is the leakage factor. The stator flux linkage vector is obtained as

ψαβ
1

=
∫ t

0

(
uαβ

1 − R1iαβ
1

)
dτ. (21)

3.3. Implementation of Current and Voltage Model into Discrete System

The real-time motor control algorithm is implemented either on DSP or FPGA. There-
fore, the continuous mathematical models must be solved numerically. The current model
(16) represents a complicated set of coupled differential equations when resolved into
the real and imaginary parts. Therefore, as mentioned in the introduction, one of the
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aims of this paper is to compare the influence of the solver and sampling time selection
on the accuracy of the DFOC and MRAS algorithms. The following numerical methods
are considered: the forward Euler method (FWEM), the trapezoidal rule (TR), and the
fourth-order Runge–Kutta method (RK4). These approaches are well-known algorithms
for the solution of ordinary differential equations (ODE); therefore, they will be described
here only briefly.

Let us consider a first-order ODE in the form

.
y(t) = f (t, y(t)), y(t0) = y0. (22)

The most straightforward approach for numerically solving (22) is the forward Euler
method given by the rule (a fixed step ∆t is assumed) [47]

yi = yi−1 + ∆t · f (ti−1, yi−1). (23)

The method is first order, making it computationally undemanding but with limited
accuracy and stability. An improvement can be achieved by using the trapezoidal rule: at
the cost of one extra function evaluation, we improve the order of the method by one. The
rule is given by the following formula [47]

yi = yi−1 +
∆t
2
[ f (ti−1, yi−1) + f (ti, yi)]. (24)

The last numerical approach considered in this paper is the popular fourth-order
Runge–Kutta method, which can be summarized as [47]

yi = yi−1 +
1
6

∆t(k1 + 2k2 + 2k3 + k4), (25)

k1 = f (ti−1, yi−1), (26)

k2 = f
(

ti−1 +
1
2

∆t, yi−1 +
1
2

∆t · k1

)
, (27)

k3 = f
(

ti−1 +
1
2

∆t, yi−1 +
1
2

∆t · k2

)
, (28)

k4 = f (ti, yi−1 + ∆t · k3). (29)

4. Modelling of Inverter Nonlinearities

A proper inverter model is needed to assess the effect of the IGBT inverter nonlinearities
on the DFOC and MRAS algorithms. By a nonlinear inverter behavior, we mean the semicon-
ductor’s finite turn-on and turn-off times, the voltage drop across the devices, and necessary
protective time, i.e., dead-time inserted by the microcontroller or the transistor driver [48].
Since a 400 V IM drive is considered, the voltage drop across the devices will be neglected.

Let us consider the most common space-vector modulation (SVM) with a fixed switch-
ing period TPWM. By a simple graphical analysis, it can be concluded that the turn-on time
Ton increases and the turn-off time Toff decreases the distortion given by the dead-time
Tdt [48]. Therefore, it is convenient to define the so-called effective dead-time as

Teff(ix) = Tdt + Ton(ix)− Toff(ix) x = a, b, c, (30)

where it is assumed that the turn-on and turn-off times are only the function of the load
current, and the symbols a, b, c denote the respective inverter leg. A direct inverter mea-
surement can be performed to easily determine the dependence of the effective deadtime
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on the load current. The resulting characteristics can then be implemented as a look-up
table or analytically approximated using the expression

Teff(ix) =
m

c1|ix|+ c2
+ n, (31)

where c1, c2, m, and n are parameters. The measured and approximated dependence of the
effective deadtime on the collector/load current of an IGBT module SKM100GB12T4 from
SEMIKRON that is used later in the simulation model is depicted in Figure 2 The actual
deadtime is selected as 2 µs.

Figure 2. Measured (blue) and approximated (orange) dependence of the effective deadtime on the
collector current; SEMIKRON SKM100GB12T4 IGBT module; actual deadtime 2 µs.

Let us assume that, within SVM, the standard up-down counters are utilized with the
top value normalized to one and the period of the signal equal to TPWM. Moreover, suppose
that the comparator, which compares the counter with the reference compare value, outputs a
logical one when a match during up-count occurs and logical zero when a match during a
down-count occurs. Then, to model the voltage distortion of an ideal inverter, the reference
compare value d∗x for the respective VSI leg (i.e., the SVM output) must be adjusted as

d′x = d∗x + ddist(x) x = a, b, c, (32)

where

ddist(x) =
Teff(x)

TPWM
sgn(ix) x = a, b, c. (33)

The following well-known expression can be utilized for the reconstruction of the
actual phase voltage of a wye-connected machine: ua

ub
uc

 =
1
3

UDC

 2 −1 −1
−1 2 −1
−1 −1 2

 Sa
Sb
Sc

, (34)

where ua, ub, and uc are the respective motor phase voltages and Sa, Sb, and Sc are the
logical switching variables (1—high-side switch in the respective inverter leg is on, 0—low-
side switch in the respective inverter leg is on) from the comparator. Knowing the effective
deadtime of each VSI leg, the nonideal inverter can be modeled using (32)–(34).

5. Measuring, Modelling, and Compensation of Iron Losses

The last phenomenon examined in this paper is the influence of iron losses on the
DFOC and MRAS performance. This section describes the integration of the iron losses
measured on a real machine either into a machine or DFOC model. According to Figure 1,
the equivalent iron loss current in an arbitrary reference frame can be expressed as

ik
Fe =

uk
m

RFe
, (35)
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where uk
m is the voltage across the magnetizing (parallel) branch. The power dissipated in

the fictitious iron loss resistance can be expressed as

PFe =
3
2
<
{

uk
mik

Fe

}
, (36)

where ik
Fe denotes the complex conjugate of the equivalent iron loss current. Substituting

(35) into (36), the iron loss resistance is obtained as

RFe =
3
2

u2
m

PFe
. (37)

The iron loss current in the stationary system is obtained using (37) to substitute for
the equivalent iron loss resistance in (35):

iαβ
Fe =

2
3

PFe
uαβ

m

u2
m

. (38)

Within the model of the machine, the voltage across the magnetizing branch can
be obtained directly using the magnetizing flux vector time derivative. In the control
algorithm, the voltage can be approximately calculated as

uαβ
m = uαβ

1 − R1iαβ
1 − jωsL1σ iαβ

1 . (39)

Equation (39) supposes a steady-state operation and considers the fundamental
wave only.

Iron Losses Measurement and Model Fitting

The iron losses can be obtained by a series of no-load tests at various fundamental
supply frequencies. The separation procedure based on the IEC standard (IEC 60034-2-1:
2014 [49]) can then be used for the loss calculation [50]. For the measurement, the inverter
is programmed to generate a fundamental voltage at a given frequency and magnitude
that corresponds to the reference stator flux linkage vector magnitude (obtained from the
voltage model). For the iron loss modeling, the following analytical function can be used [4]

PFe =
f 2
s ψ2

1 + κ fsψn
1

RFe0
, (40)

where f s is the fundamental supply frequency, ψ1 is the stator flux linkage amplitude, and
κ, n, and RFe0 are the model parameters. Figure 3 shows (40) fitted to the measured losses of
a 3.6 kW IM drive (nameplate data and nominal model parameters are given in Table A1).

Figure 3. Iron losses as a function of fundamental supply frequency and stator flux linkage vector
amplitude. The fitted model parameters are RFe0 = 277, κ = 460, n = 1.77.
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6. Improved MRAS Estimators with Included Effect of Iron Losses

The philosophy behind MRAS estimators is that the estimated parameter should
somehow influence the adaptive model. In the case of the active power MRAS, the adaptive
model directly depends on the stator resistance, making it suitable for the stator resistance
estimation. Contrary to that, the adaptive model of the reactive power MRAS used for
the rotor resistance estimation depends on the rotor resistance indirectly. By indirect
dependence, we mean that the model utilizes quantities affected by the rotor resistance,
i.e., the calculated slip speed and d and q-axis current components.

Since most of the MRAS algorithms for the parameter estimation proposed in the
literature do not include the effect of iron losses, this section presents improved stator and
rotor resistance estimators based on the active (P-MRAS) reactive (Q-MRAS) power.

6.1. Improved Reactive Power MRAS with Included Effect of Iron Losses

The reference model of the popular and widely used Q-MRAS for the rotor resistance
(or inverse rotor time constant) estimation is given by [10–14]

Q = =
{

udq
1 idq

1

}
= u1qi1d − u1di1q, (41)

where idq
1 denotes the conjugated current space vector. Using (20) transformed into the dq

reference frame, the stator flux linkage vector can be obtained as

ψdq
1

=
Lm

L2
ψdq

2
+ L1σidq

1 −
L2σLm

L2
idq
Fe. (42)

The stator voltage equation in the dq reference frame can be written as

udq
1 = R1idq

1 +
dψ

dq
1

dt
+ jωsψdq

1
. (43)

By substituting (41) into (43) and considering the steady-state operation, we obtain

udq
1 = R1idq

1 + jωs

(
Lm

L2
ψdq

2
+ L1σidq

1 −
L2σLm

L2
idq
Fe

)
. (44)

Separating (44) into the real and imaginary parts, respectively, while considering that
ψ2d = Lm(i1d − iFed) and ψ2q = 0, the adaptive model is finally obtained as

Q̂ = ωs

[
L1σ

(
i21d + i21q

)
+

Lm

L2

(
Lmi21d − L2iFedi1d − L2σiFeqi1q

)]
. (45)

The synchronous speed is calculated as the sum of the measured speed and estimated
slip speed (Equation (18)). The error for the rotor resistance adaptation mechanism is
given by

εQ = Q− Q̂. (46)

The estimated rotor resistance is then the output of the PI controller, i.e.,

R̂2 = KpQεQ + KiQ

∫ t

0
εQdτ + R2(init), (47)

where R2(init) is the initial rotor resistance. The block diagram of the Q-MRAS estimator
with the included iron loss effect is presented in Figure 4. Due to its dependency on the
rotor resistance, the current model is used for the transformation angle calculation.
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Figure 4. Modified reactive power MRAS for rotor resistance estimation.

6.2. Improved Active Power MRAS with Included Effect of Iron Losses

The reference model of the P-MRAS is given by [10,29,30]

P = <
{

uk
1ik

1

}
= u1di1d + u1qi1q. (48)

Separating (44) into the real and imaginary parts, respectively, and substituting the
resulting expression into (48) while considering that ψ2d = Lm(i1d − iFed) and ψ2q = 0, the
adaptive model is obtained as

P̂ = R1

(
i21d + i21q

)
+ ωsLm

(
Lm

L2
i1di1q +

L2σ

L2
iFeqi1d − iFedi1q

)
. (49)

The error for the rotor resistance adaptation mechanism is calculated as

εP = P− P̂. (50)

The estimated stator resistance is then the output of the PI controller, i.e.,

R̂1 = KpPεP + KiP

∫ t

0
εPdτ + R1(init), (51)

where R1(init) is the initial stator resistance. The block diagram of the modified P-MRAS
estimator is presented in Figure 5. Here, the voltage model is selected for the transformation
angle calculation due to its dependency on the stator resistance.

Figure 5. Modified active power MRAS for stator resistance estimation.

7. Simulation Results

As mentioned in the introduction, this paper aims to examine selected phenomena that
impair the performance of motor control algorithms. These include inverter nonlinearity,
iron losses, ODE solver type, and sampling time. The presented results are based on
simulations in MATLAB/Simulink because:
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• It is not possible to fully separate the influence of the aforementioned adverse effects
in an actual application.

• Many additional nonlinearities and imperfections are present in a real system.
• The exact system parameters are usually not known.

7.1. Simulation Setup Description

The principal block diagram of the Simulink model is depicted in Figure 6. The model
permits to switch between the machine model with the iron losses (1)–(6) and without
the iron losses (8)–(12). The simulated machine is a 3.6 kW IM whose nameplate data
and nominal model parameters are given in Table A1. The iron losses are measured and
implemented in accordance with Section 5. Both machine models are simulated using the
ode4 solver with a fixed-step size equal to 1 µs.

Figure 6. Principal block diagram of simulation setup.

The inverter model is implemented using SVM in a linear mode with the possibility to
simulate the inverter nonlinearity using the approach described in Section 4. The switching
frequency is selected as 10 kHz. Again, the inverter is simulated using the ode4 solver with
a fixed-step size 1 µs.

The block diagram of the considered DFOC scheme is depicted in Figure 7. The advan-
tage of the presented DFOC scheme is the ability to estimate the stator and rotor resistance
variation in the presence of iron losses using improved estimators. The disadvantage
is that machine iron losses and nonlinear inverter characteristics need to be measured
and implemented for proper functionality, and additional PI controllers have to be tuned.
Moreover, in an actual application, the DFOC performance can be further improved by
respecting the saturation of the main flux paths.

The FOC model is simulated as a triggered subsystem to mimic the fact that motor
control algorithms are implemented on a discrete system. The type of the ODE solver
(FWEM or TR) is selected by setting the appropriate integration method in the Discrete-
Time Integrator blocks. The RK4 method is implemented using the MATLAB Function
Block. Within FOC, it is also possible to switch between the voltage model and the current
model, both either with or without the iron losses. Concerning the MRAS testing, the
Q-MRAS is tested with the current model, and the P-MRAS is tested with the voltage
model active.

The initial gains of the PI controllers within the FOC were calculated using the opti-
mum modulus method. The obtained values were further adjusted to improve the con-
trollers’ performance. The gains of the adaptive PI controllers inside the MRAS estimators
were tuned experimentally (the values are given in Table A2).
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7.2. Influence of VSI Nonlinearities on P-MRAS and Q-MRAS Estimators

This simulation series aims to examine the influence of the inverter nonlinearity on
the accuracy of the MRAS estimators. The simulation setup is as follows:

• The IM model is implemented without iron losses using (8)–(12).
• The sample time of the FOC model (triggered subsystem) is selected as 100 µs (syn-

chronized with PWM).
• The rotor flux is set to a nominal value.

Within FOC control strategies, it is common that a reference voltage (i.e., the input to
the modulator) is utilized instead of a measured voltage. However, when this approach is
used, inverter nonlinearities should be compensated appropriately. The influence of the
nonideal inverter on the estimation of the stator flux linkage vector α component using (21)
is depicted in Figure 8. As expected, the nonlinearities become more significant at small
speeds and light loads (Figure 8a). At higher speeds and loads (Figure 8b), the relative
influence of the distorting voltage vector decreases.

Figure 9 shows the influence of the nonlinear inverter behavior on the stator resistance
(Figure 9a) and rotor resistance (Figure 9b) estimation. The resistances are presented in a
per-unit system (indicated by lower-case letters), with the base impedance selected as the
ratio of the machine nominal phase voltage and current.
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Figure 8. The effect of inverter nonlinearities on the accuracy of stator flux linkage estimation at different operating points.
(a) 20% of the nominal speed and torque; (b) 80% of the nominal speed and torque. Inverter nonlinearity turned on at 3 s.

Figure 9. The effect of inverter nonlinearities on the performance of MRAS-type estimators (ωn denotes the nominal
electrical rotor angular speed, Tn denotes the nominal torque, and r1n and r2n are the nominal stator and rotor resistance,
respectively). (a) P-MRAS for stator resistance estimation; (b) Q-MRAS for the rotor resistance estimation. In the case of the
P-MRAS, the inverter nonlinearity is activated at 7.5 s and deactivated at 23 s, and, in the case of the Q-MRAS, the inverter
nonlinearity is activated at 4 s and deactivated at 9 s.

In the case of the stator resistance, the voltage nonlinearity significantly impacts
the estimation accuracy because the distorted voltage is utilized not only by the voltage
model but also by the P-MRAS reference and adaptive models. The wrong estimate
during the low-speed and light-load operation is given mainly by the relatively low
ratio of the fundamental and distorting voltage vector. At higher speeds, the relative
influence of the stator resistance on the FOC performance decreases, which also impairs
the estimator’s performance.

The rotor resistance estimation depicted in Figure 9b is, overall, much less sensitive
to the voltage distortion because the stator voltage influences the estimator only through
the Q-MRAS reference and adaptive models. Like the P-MRAS, the resulting estimates
are influenced by the voltage nonlinearity mainly during low-speed and high-speed low-
load operations.
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7.3. Influence of Iron Losses on P-MRAS and Q-MRAS Estimators

The simulation setup is as follows:

• The IM model is implemented with iron losses using (1)–(6).
• The inverter is bypassed, i.e., the machine is supplied by a sinusoidal voltage.
• The FOC model makes it possible to switch between voltage, current, and synchronous

speed estimation with and without iron losses.
• The sample time of the FOC model (triggered subsystem) is selected as 10 µs.
• The rotor flux is set to a nominal value.

Figure 10 shows the influence of the iron losses on the stator resistance (Figure 10a) and
rotor resistance (Figure 10b) estimation. The iron losses are a non-linear phenomenon
whose influence on the flux estimation at different speeds and applied load torques is
described by complicated functions [42]. Combining the FOC with MRAS creates a complex
system where it is complicated to express the influence of the iron losses on the whole
system performance by explicit analytical expression. Overall, it can be stated that the iron
losses definitely and not negligibly affect the parameter estimation process and that the
influences of the speed and load are interconnected. However, in the case of the P-MRAS,
the impact of the iron losses on the estimation accuracy is relatively lower compared to the
inverter nonlinearity.

Figure 10. The effect of iron losses on the performance of MRAS-type estimators (ωn denotes the nominal electrical rotor
angular speed, Tn denotes the nominal torque, and r1n and r2n are the nominal stator and rotor resistance, respectively).
(a) P-MRAS for the stator resistance estimation; (b) Q-MRAS for the rotor resistance estimation. Compensation of iron losses
in the FOC model deactivated at 2.5 s and activated again at 6.5 s.

7.4. Influence of Discretization and Sampling Time on P-MRAS and Q-MRAS Estimators

The last examined phenomenon is the effect of the discretization and sampling time
on the relative error of the estimate. The simulation setup is as follows:

• The IM model is implemented without iron losses using (8)–(12).
• The inverter is bypassed, i.e., the machine is supplied by a sinusoidal voltage.
• The sample time of the FOC model (triggered subsystem) is varied from 10 µs to

300 µs.
• The FWEM and TR are selected by specifying an integration method in the Discrete-

Time Integrator blocks used in the DFOC model. The RK4 method is implemented
manually using the MATLAB Function block.

• The rotor flux is set to a nominal value.



Energies 2021, 14, 6826 15 of 19

Figure 11 shows the influence of the discretization method and sampling time on the
resulting relative error of the stator resistance estimation. As expected, the influence of the
discretization method grows with the increasing sampling time. Furthermore, the relative
error is much more significant at higher speeds because of the higher fundamental and
sampling frequency ratio. Since the order of the trapezoidal method is only one order
higher than the Euler method, it should be a preferred choice.

Figure 11. The effect of discretization and sampling time Ts on P-MRAS accuracy at different operating points. (a) 20% of
the nominal speed and 50% of the nominal torque; (b) 80% of the nominal speed and 50% of the nominal torque.

Figure 12 shows the results for the Q-MRAS estimator. Here, because of the current
model, the RK4 solver is also tested. The results and conclusions for the TR and FWEM are
the same as in the case of Figure 11. The RK4 method can increase the estimation accuracy,
especially at higher sampling times. Moreover, it is supposed to maintain higher numerical
stability during fast transients.

Figure 12. The effect of discretization and sampling time Ts on Q-MRAS accuracy at different operating points. (a) 20% of
the nominal speed and 50% of the nominal torque; (b) 80% of the nominal speed and 50% of the nominal torque.

If hardware with sufficient computational power, such as FPGA or DSP with FPGA,
is used in real applications, the FOC performance can be increased by oversampling.
However, this might not always be the most cost-effective solution. The sampling time
is often tied to the PWM period in medium-power drives operating with the switching
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frequencies around 10 kHz, which, according to Figures 11 and 12, can deteriorate the
accuracy of the MRAS-type estimators.

8. Discussion

This paper investigated three actual application phenomena on the accuracy of the
popular Q-MRAS and P-MRAS rotor and stator resistance estimators. The studied adverse
effects include inverter nonlinearity, iron losses, ODE solver type, and sampling time
selection. The main results and contributions of the paper can be summarized as follows:

• If not adequately accounted for, the inverter nonlinearity has a key influence on the
parameter estimation in the case of the P-MRAS and voltage model. The Q-MRAS is
also affected by the inaccurate voltage evaluation, but relatively much less.

• The influence of iron losses on the stator and rotor resistance estimation accuracy
is investigated using improved reduced-order IM models and improved Q-MRAS
and P-MRAS estimators with the included iron losses. The simulation results show
that, if not adequately compensated, the nonlinear phenomenon of iron losses im-
pairs the estimation process and leads to inaccurately identified parameters. The
error can become quite significant and is comparable for both the stator and rotor
resistance estimation.

• Numerical method and sampling time selection can also affect the MRAS-based
parameter estimation. When oversampling is impossible, and the drive control system
operates with the sampling time around 100 µs, it is recommended to use at least the
trapezoidal rule because the improvement compared to Euler’s method is significant.
The difference between the Runge–Kutta fourth-order method and the trapezoidal
rule is not so pronounced. However, the RK4 method is expected to exhibit better
numerical stability.

In the case of the inverter nonlinearity and iron losses, the operating conditions,
i.e., the applied load and the rotor speed, represent a complicated mixed influence on the
stator and rotor estimation accuracy. The analytical description of the observed would
represent a highly complex task due to the nonlinearity of the whole system.
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List of Symbols
The following symbols are used in the paper:
i1, i2, im, iFe stator, rotor, magnetizing, and iron loss current space vector (A)
u1, um stator and magnetizing voltage space vector (V)
ψ

1
, ψ

2
, ψ

m
stator, rotor, and magnetizing flux linkage space vector (Wb)

L1, L2, Lm stator, rotor, and magnetizing inductance (H)
L1σ, L2σ stator and rotor leakage inductance (H)
R1, R2, RFe stator resistance, rotor resistance, equivalent iron loss resistance
Sa, Sb, Sc logical switching variables (-)
Ton, Toff, Tdt, Teff turn-on time, turn-off time, dead-time, and effective dead-time (s)
TPWM, Ts PWM period, sampling time (s)
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UDC DC-link voltage (V)
d∗x, d′x, ddist(x) reference, adjusted, and distorting compare value (-)
pp number of pole-pairs (-)
Ω mechanical rotor speed (rad·s−1)
J moment of inertia (kg·m2)
P, PFe active power, iron losses (W)
Q reactive power (VAr)
T, TL, Tn motor electromechanical torque, load torque, nominal torque (Nm)
σ leakage factor (-); σ = 1− L2

m/(L1L2)
ω, ωs, ωsl, ωn electrical rotor speed, synchronous speed, slip speed, nominal speed (rad·s−1)
∗ reference value
a, b, c notation of stator phases
d, q real and imaginary axis of the synchronous reference frame
k notation of a general reference frame
α, β real and imaginary axis of the stator-fixed reference frame

Appendix A

Table A1. Induction motor nameplate data and mathematical model parameters.

Nameplate Data Mathematical Model Parameters

Nominal power 3.6 kW Stat. resistance 1.688 Ω
Nominal voltage 380 V Rot. resistance 3.685 Ω
Nominal current 11.5 A Stat. leak inductance 0.012 H
Nominal speed 935 min−1 Rot. leak. inductance 0.013 H

Number of poles 6 Mag. inductance 0.175 H
Winding connection Y Iron core resistance 520 Ω

Table A2. P-MRAS and Q-MRAS adaptive PI controller gain values.

P-MRAS Q-MRAS

Proportional gain 10−4 Proportional gain 10−6

Integral gain 0.25 Integral gain 0.05
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